
..

DataNucleus AccessPlatform
v. 4.1
User Guide

..

DataNucleus 2017-02-04

T a b l e o f C o n t e n t s i

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Table of Contents
...

1. Table of Contents . i

2. General . 1

2..1. What's New . 2

2..2. Upgrade Migration . 3

2..3. Getting Started . 16

2..4. Dependencies . 18

2..5. Persistence API Choice . 21

2..6. Development Process . 23

2..7. Compatibility . 25

2..8. Services . 27

2..9. Persistence Properties . 28

2..10. Security . 65

2..11. Logging . 67

3. Datastore . 72

3..1. Supported Features . 74

3..2. RDBMS . 79

3..2..1. Java Types (Spatial) . 91

3..2..2. Datastore Types . 97

3..2..3. Failover . 104

3..2..4. Queries . 106

3..2..5. JDOQL : Spatial Methods . 110

3..2..6. Statement Batching . 121

3..2..7. Views . 122

3..2..8. Datastore API . 125

3..3. ODF . 129

3..4. Excel (XLS) . 131

3..5. Excel (OOXML) . 132

3..6. XML . 133

3..7. HBase . 136

3..8. MongoDB . 139

3..9. Cassandra . 142

3..10. Neo4j . 144

3..11. JSON . 147

3..12. Amazon S3 . 149

3..13. GoogleStorage . 150

3..14. LDAP . 151

3..14..1. Relations by DN . 155

3..14..2. Relations by Attribute . 159

T a b l e o f C o n t e n t s ii

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

3..14..3. Relations by Hierarchy . 164

3..14..4. Embedded Objects . 169

3..15. NeoDatis . 171

4. JDO API . 174

4..1. Class Mapping . 176

4..2. Datastore Identity . 178

4..3. Application Identity . 181

4..4. Nondurable Identity . 187

4..5. Compound Identity . 188

4..6. Versioning . 198

4..7. Inheritance . 200

4..8. Fields/Properties . 213

4..8..1. Java Types . 216

4..8..2. Value Generation . 224

4..8..3. Sequences . 237

4..8..4. Embedded Fields . 241

4..8..5. Serialised Fields . 254

4..8..6. Interface Fields . 262

4..8..7. Object Fields . 266

4..8..8. Array Fields . 269

4..8..9. 1-to-1 Relations . 274

4..8..10. 1-to-N Relations . 278

4..8..10..1. Collections . 279

4..8..10..2. Sets . 292

4..8..10..3. Lists . 302

4..8..10..4. Maps . 313

4..8..11. N-to-1 Relations . 322

4..8..12. M-to-N Relations . 324

4..8..13. Cascading . 331

4..9. MetaData Reference . 336

4..9..1. XML . 339

4..9..2. Annotations . 375

4..9..3. MetaData API . 408

4..9..4. ORM MetaData . 410

4..10. Schema Mapping . 412

4..10..1. Multitenancy . 419

4..10..2. Datastore Identifiers . 420

4..10..3. Secondary Tables . 425

4..11. Constraints . 430

4..12. Enhancer . 435

T a b l e o f C o n t e n t s iii

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

4..13. Datastore Schema . 446

4..14. Bean Validation . 456

4..15. API Javadocs .

4..16. PersistenceManagerFactory . 457

4..16..1. L2 Cache . 463

4..16..2. Auto-Start . 470

4..16..3. Data Federation . 473

4..17. PersistenceManager . 474

4..17..1. Managing Relationships . 478

4..17..2. PM Proxy . 481

4..17..3. Object Lifecycle . 482

4..17..4. Lifecycle Callbacks . 486

4..17..5. Attach/Detach . 493

4..17..6. Datastore Connection . 500

4..18. Transactions . 512

4..19. Fetch Groups . 521

4..20. Query API . 526

4..20..1. Query Cache . 532

4..20..2. JDOQL . 534

4..20..3. JDOQL Declarative . 554

4..20..4. JDOQL Typesafe . 560

4..20..5. SQL . 565

4..20..6. Stored Procedures . 571

4..20..7. JPQL . 573

4..21. Development Guides . 587

4..21..1. Datastore Replication . 588

4..21..2. JEE Environments . 592

4..21..3. OSGi Environments . 601

4..21..4. Troubleshooting . 618

4..21..5. Performance Tuning . 623

4..21..6. Monitoring . 631

4..21..7. Maven with DataNucleus . 633

4..21..8. Eclipse with DataNucleus . 636

4..21..9. DAO Layer Design . 644

4..22. Samples . 652

4..22..1. Tutorial with RDBMS . 653

4..22..2. Tutorial with ODF . 665

4..22..3. Tutorial with Excel . 677

4..22..4. Tutorial with MongoDB . 689

4..22..5. Tutorial with HBase . 701

T a b l e o f C o n t e n t s iv

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

4..22..6. Tutorial with Neo4j . 713

4..22..7. 1-N Bidir FK Relation . 723

4..22..8. 1-N Bidir Join Relation .

4..22..9. M-N Relation . 730

4..22..10. M-N Attributed Relation . 741

4..22..11. Spatial Types Tutorial . 745

5. JPA API . 750

5..1. Class Mapping . 751

5..2. Application Identity . 753

5..3. Datastore Identity . 758

5..4. Compound Identity . 760

5..5. Versioning . 770

5..6. Inheritance . 772

5..7. Fields/Properties . 782

5..7..1. Java Types . 785

5..7..2. Value Generation . 795

5..7..3. Embedded Fields . 801

5..7..4. Serialised Fields . 809

5..7..5. Interface Fields . 812

5..7..6. Object Fields . 817

5..7..7. Array Fields . 820

5..7..8. 1-to-1 Relations . 825

5..7..9. 1-to-N Relations . 829

5..7..9..1. Collections . 830

5..7..9..2. Sets . 845

5..7..9..3. Lists . 855

5..7..9..4. Maps . 865

5..7..10. N-to-1 Relations . 872

5..7..11. M-to-N Relations . 876

5..7..12. Cascading . 880

5..8. MetaData Reference . 884

5..8..1. XML . 885

5..8..2. Annotations . 909

5..9. Schema Mapping . 952

5..9..1. Multitenancy . 956

5..9..2. Datastore Identifiers . 957

5..9..3. Secondary Tables . 959

5..10. Constraints . 961

5..11. Enhancer . 965

5..12. Datastore Schema . 975

T a b l e o f C o n t e n t s v

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

5..13. Bean Validation . 984

5..14. API Javadocs .

5..15. EntityManagerFactory . 985

5..15..1. L2 Cache . 991

5..16. Entity Manager . 997

5..16..1. Managing Relationships . 1001

5..16..2. Object Lifecycle . 1003

5..16..3. Lifecycle Callbacks . 1005

5..16..4. Datastore Connection . 1007

5..17. Transactions . 1018

5..18. Entity Graphs . 1026

5..19. Query API . 1028

5..19..1. Query Cache . 1031

5..19..2. JPQL . 1033

5..19..3. JPQL Criteria . 1051

5..19..4. Native Query . 1058

5..19..5. Stored Procedures . 1063

5..20. Development Guides . 1065

5..20..1. Datastore Replication . 1066

5..20..2. JavaEE Environments . 1067

5..20..3. OSGi Environments . 1073

5..20..4. Performance Tuning . 1076

5..20..5. Troubleshooting . 1083

5..20..6. Monitoring . 1088

5..20..7. Maven with DataNucleus . 1090

5..20..8. Eclipse with DataNucleus . 1093

5..20..9. Eclipse Dali . 1100

5..20..10. TomEE and DataNucleus . 1104

5..21. Samples . 1106

5..21..1. Tutorial with RDBMS . 1107

5..21..2. Tutorial with ODF . 1119

5..21..3. Tutorial with Excel . 1131

5..21..4. Tutorial with MongoDB . 1143

5..21..5. Tutorial with HBase . 1155

5..21..6. Tutorial with Neo4j . 1167

5..21..7. Tutorial with Cassandra . 1177

5..21..8. JPA Tutorial (TheServerSide) .

6. REST API . 1189

7. Extensions .

T a b l e o f C o n t e n t s vi

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

1 G e n e r a l 1

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

1 General
...

1.1 DataNucleus AccessPlatform 4.1

DataNucleus AccessPlatform v4.1 provides persistence and retrieval of Java objects to a range of
datastores using JDO/ JPA/ REST APIs, with a range of query languages and is fully-compliant
with JDO and JPA specifications. It is Apache 2 licensed. No other persistence solution offers the
same range of APIs, datastores and query languages whilst also being fully compliant.

DataNucleus AccessPlatform 4.1 Checklist

• MetaData/Mapping Supported : JDO, JPA

• Datastores Supported : RDBMS, Excel, OOXML, ODF, XML, HBase, MongoDB, Cassandra, Neo4j,
JSON, Amazon S3, GoogleStorage, LDAP, NeoDatis

• JRE required : 1.7 or above

• Specifications : JDO3.1, JPA2.1

• Beginners : The first thing to do is to visit the Getting Started Guide
• Migrating from older version : please read this first about how to upgrade.

If you find something that DataNucleus Access Platform can't handle you can always
extend it using its plugin mechanism for one of its defined interfaces. Just look for the

icon.

http://www.datanucleus.org/documentation/license.html

2 W h a t ' s N e w 2

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

2 What's New
...

2.1 AccessPlatform : What's New in 4.1
DataNucleus AccessPlatform version 4.1 extends the 4.0 capabilities with some internal refactoring.
Below are some of the new features you can find in DataNucleus AccessPlatform 4.1.

• Minor upgrade to bytecode enhancement contract to allow for separation of enhancement API
• Rewrite of handling of container field update code.
• Types : support for Jodatime LocalDateTime
• JDO : PersistenceManager and Query implementations now implement AutoCloseable
• JDO : Ability to save a query as a "named" query, for later access
• JDO : support for JDOQL subqueries in SELECT clause
• JPA : support for non-standard value generators
• JPA : support for "KEY", "VALUE" keywords in JPQL
• JPA : support for parameters in FROM "ON" clause of JPQL
• JPA : support for JPQL subqueries in SELECT and HAVING clauses
• JPA : support for JPQL ordering by result alias
• JPA : support for JPQL "RIGHT OUTER JOIN"
• JPA : support for AttributeConverters on map key/value and collection element
• JPA : Ability to save a query as a "named" query, for later access
• REST : support for map/array fields
• REST : support for maxFetchDepth on GET requests
• REST : support for GZIP compression on GET requests
• MongoDB : much improved relation handling, and support for date and interface fields.
• RDBMS : support for some HikariCP connection pool properties
• RDBMS : support for SQL Anywhere
• Persistent Properties : you can now use inheritance in persistent properties, overriding getters etc

3 U p g r a d e M i g r a t i o n 3

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

3 Upgrade Migration
...

3.1 AccessPlatform : Migration between versions
This version of DataNucleus AccessPlatform builds on the 4.0 releases and includes some refactoring
to the internal APIs to allow future flexibility. All releases are checked regularly against the JDO/
JPA TCKs, meaning that DataNucleus is always stable in terms of functionality. Occasionally, due
to unknown bugs, or due to new functionality being introduced we need to change some aspects of
DataNucleus. As a result sometimes users will have to make some changes to move between versions
of DataNucleus. We aim to keep this to a minimum.

3.1.1 Migration from 4.1.15 to 4.1.16

Migrating will require the following changes.
• Default JDBC type for java Serialized fields for SQLServer is changed to VARBINARY from

LONGVARBINARY.

3.1.2 Migration from 4.1.13 to 4.1.14

Migrating will require the following changes.
• DatastoreAdapter method getRangeByLimitEndOfStatementClause now has an extra argument

added, for people who are overriding an adapter

3.1.3 Migration from 4.1.8 to 4.1.9

Migrating will require the following changes.
• REST : "/jdoql" URL now takes parameter "query={the_query}" rather than assuming the query

string starts with it.
• REST : "/jpql" URL now takes parameter "query={the_query}" rather than assuming the query

string starts with it.
• REST : "/query" URL is no longer supported, use /jdoql or /jpql.

3.1.4 Migration from 4.1.1 to 4.1.2

Migrating will require the following changes.
• JPA : The JPA extension annotation @DatastoreIdentity is renamed @DatastoreId

3.1.5 Migration from 4.1.0.M4 to 4.1.0.RELEASE

Migrating will require no changes.

3.1.6 Migration from 4.1.0.M3 to 4.1.0.M4

Migrating will require the following changes.

3 U p g r a d e M i g r a t i o n 4

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• RDBMS : if persisting java.sql.Timestamp field as VARCHAR, the conversion method has
changed slightly to pass a String to JDBC and not rely on JDBC drivers

• RDBMS : new persistence property added "datanucleus.rdbms.useDefaultSqlType" with default
value of true. This could impact on schema generation if your JDBC driver has multiple possible
"sql-type" for a specific "jdbc-type". Set it to false if you want the previous (4.0, 4.1) behaviour.

3.1.7 Migration from 4.1.0.M2 to 4.1.0.M3

Migrating will require the following changes.

• HikariCP : requires HikariCP v2.3.5+ if using that connection pool

3.1.8 Migration from 4.1.0.M1 to 4.1.0.M2

Migrating will require the following changes.

• The query hint "datanucleus.multivaluedFetch" is renamed to
datanucleus.rdbms.query.multivaluedFetch and also can be specified as a persistence
property. It also now defaults to 'EXISTS' (meaning perform an EXISTS query for single SQL
retrieval of a container field).

• The metadata extension "adapter-column-name" for overriding the order column name in join
tables has been removed - just use the column name within "order"

• MongoDB : any fields of type java.sql.Time/java.sql.Date were previously defaulted to storing
as String, yet now default to the internal MongoDB date type. Set "jdbcType" to "varchar" on all
fields that need to be stored as String for backwards compatibility.

• MongoDB : now require Mongo driver v2.13 or above (including v3)
• Jodatime : now requires Jodatime v2.0+ (if using LocalDateTime support)

3.1.9 Migration from 4.0.4 to 4.1.0.M1

Migrating will require the following changes.

• The bytecode enhancement contract has been revised slightly, so all classes will need re-
enhancement for use with this release.

• A query hint has been added "datanucleus.useIsNullWhenEqualsNullParameter" for particular
use by JPA for compatibility. It defaults to false.

3.1.10 Migration from 4.0.3 to 4.0.4

Migrating will require the following changes.

• The default naming for JPA "element collection" tables has changed to make it consistent with
the spec. If you had a table generated using the earlier default naming and want to keep that
name then you should explicitly specify the table name in annoations/XML to avoid problems.

3.1.11 Migration from 4.0.2 to 4.0.3

Migrating should require no changes.

3 U p g r a d e M i g r a t i o n 5

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

3.1.12 Migration from 4.0.1 to 4.0.2

Migrating will require the following changes.

• JPA plugin handling of nulls allowed was not very predictable before and the code has been
changed to work simpler. If you get a field that is now different to 4.0.1 or earlier then you
should explicitly specify "allows-null".

3.1.13 Migration from 4.0.0.RELEASE to 4.0.1

Migrating will require the following changes.

• For the Cassandra plugin, the default data type for UUID fields has changed from "text" to
"uuid". If you have used UUID fields on v4.0.0-release you should specify jdbc-type as "varchar"
in column metadata when migrating to 4.0.1.

3.1.14 Migration from 4.0.0.M4 to 4.0.0.RELEASE

Migrating will require the following changes.

• For MongoDB, JSON, Neo4J, HBase the process for table/column naming has changed,
particularly for embedded fields. This may result in slightly different default table/column names
(for example, the case of the name). To avoid problems use the metadata to explicitly set the
column names (or check that the new behaviour matches your expectations).

3.1.15 Migration from 4.0.0.M3 to 4.0.0.M4

Migrating will require the following changes

• Fields of type Calendar were previously persisted using 2 columns (millisecs, timezone) by
default. The default is now changed to use a single column (Timestamp). If you want 2 columns
then either specify 2 column metadata for the field, or set the extension metadata calendar-one-
column as false

• The persistence properties datanucleus.localisation.language and
datanucleus.localisation.messageCodes are removed. You can now specify either of these as
Java system properties since they apply for the JVM as a whole.

• All 'boolean' fields with JPA (when using annotations) were previously defaulted to use jdbc-
type of SMALLINT for some reason. This is now changed to just use the DataNucleus default,
and you can get the old behaviour by either specifying @JdbcType or by setting the persistence
property datanucleus.jpa.legacy.mapBooleanToSmallint to true

3.1.16 Migration from 4.0.0.M2 to 4.0.0.M3

Migrating will require the following changes

• The EclipsePluginRegistry is now removed, and anyone using OSGi should use
OSGiPluginRegistry. Should this not provide for your requirements the EclipsePluginRegistry
class is in DataNucleus GitHub for earlier releases so you could simply include it.

• The bytecode enhancement contract has changed, so you should re-enhance any classes for use
with this version of DataNucleus

3 U p g r a d e M i g r a t i o n 6

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• The previously supported JDO metadata vendor-name="jpox" is now no longer supported. Set
the vendor-name to datanucleus

3.1.17 Migration from 4.0.0.M1 to 4.0.0.M2

Migrating will require the following changes

• Persistence property datanucleus.identifier.case value PreserveCase is now MixedCase
• User mapping extensions are now not needed if there is a TypeConverter that does the

conversion. Also the helper mapping classes ObjectAsStringMapping etc are now removed.
• DataNucleus now uses ASM v5 so should, in principle, be JDK1.8-ready (as well as backwards

compatible). Report any problems in the normal way
• ODF/Excel : The previously permitted extension of specifying the column "name" to be the

position of that column is now no longer supported; specify the column 'position' attribute if
wanting to specify the position.

3.1.18 Migration from 3.3.7 to 4.0.0.M1

Migrating will require the following changes

• Persistence property datanucleus.allowAttachOfTransient now defaults to true for JPA usage;
set it explicitly to get old behaviour

• Persistence property datanucleus.metadata.validate was removed (replaced by
datanucleus.metadata.xml.validate some time back)

• Persistence property datanucleus.defaultInheritanceStrategy is renamed to
datanucleus.metadata.defaultInheritanceStrategy

• Persistence property datanucleus.autoCreateSchema is renamed to
datanucleus.schema.autoCreateAll

• Persistence property datanucleus.autoCreateTables is renamed to
datanucleus.schema.autoCreateTables

• Persistence property datanucleus.autoCreateColumns is renamed to
datanucleus.schema.autoCreateColumns

• Persistence property datanucleus.autoCreateConstraints is renamed to
datanucleus.schema.autoCreateConstraints

• Persistence property datanucleus.validateSchema is renamed to
datanucleus.schema.validateAll

• Persistence property datanucleus.validateTables is renamed to
datanucleus.schema.validateTables

• Persistence property datanucleus.validateColumns is renamed to
datanucleus.schema.validateColumns

• Persistence property datanucleus.validateConstraints is renamed to
datanucleus.schema.validateConstraints

• Persistence property datanucleus.fixedDatastore is now removed, since it only equated to setting
the "autoCreate" properties to false.

3.1.19 Migration from 3.3.6 to 3.3.7

Migrating will require the following changes

3 U p g r a d e M i g r a t i o n 7

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Persistence property datanucleus.jpa.findTypeConversion is now removed and replaced with
datanucleus.findObject.typeConversion, defaulting to true

3.1.20 Migration from 3.3.5 to 3.3.6

Migrating will require the following changes

• The spatial and awtgeom plugins have been merged, to be datanucleus-geospatial

3.1.21 Migration from 3.3.4 to 3.3.5

Migrating will require the following changes

• RDBMS : where you have a query that has a collection member in the FetchPlan it previously
would have been ignored. Now it is used to attempt a bulk-fetch of the collection. Since this is
new functionality there may be cases where the syntax is not optimal; remove the collection field
from the query FetchPlan to get the previous behaviour.

3.1.22 Migration from 3.3.3 to 3.3.4

Migrating will require the following changes

• RDBMS : default mapping for Boolean/boolean java types is now JDBC type BOOLEAN for
H2 database; previously this was unspecified so most likely fell back to CHAR for that database.
Specify the jdbc-type explicitly if you want to have CHAR

3.1.23 Migration from 3.3.2 to 3.3.3

Migrating from AccessPlatform 3.3.2 to 3.3.3 will require the following changes

• datanucleus-googlecollections plugin is now renamed to datanucleus-guava

3.1.24 Migration from 3.3.1 to 3.3.2

Migrating will require no changes except to internal API(s).

3.1.25 Migration from 3.3.0.RELEASE to 3.3.1

Migrating will require no changes except to internal API(s).

3.1.26 Migration from 3.3.0.M1 to 3.3.0.RELEASE

Migrating will require the following changes

• DataNucleus @FetchGroup extension annotation for JPA is now dropped and people should use
the official JPA 2.1 @NamedEntityGraph annotation instead (or XML equivalent of course)

3 U p g r a d e M i g r a t i o n 8

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

3.1.27 Migration from 3.2.3 to 3.3.0.M1

Migrating will require the following changes

• Now requires a compliant JPA 2.1 API jar. An official JPA 2.1 API jar is not yet available,
but as a stopgap there is a Eclipse javax.persistence v2.1.0 jar. If using the Maven plugin with
JPA, note that you also require v3.3.0.m1 of that plugin

• DataNucleus @Index extension annotation for JPA is now dropped and people should use the
official JPA 2.1 @Index annotation instead (or XML equivalent of course)

3.1.28 Migration from 3.2.8 to 3.2.9

Migrating will require the following changes

• RDBMS : where you have a query that has a collection member in the FetchPlan it previously
would have been ignored. Now it is used to attempt a bulk-fetch of the collection. Since this is
new functionality there may be cases where the syntax is not optimal; remove the collection field
from the query FetchPlan to get the previous behaviour.

3.1.29 Migration from 3.2.7 to 3.2.8

Migrating will require the following changes

• RDBMS : default mapping for Boolean/boolean java types is now JDBC type BOOLEAN for
H2 database; previously this was unspecified so most likely fell back to CHAR for that database.
Specify the jdbc-type explicitly if you want to have CHAR

3.1.30 Migration from 3.2.6 to 3.2.7

Migrating from AccessPlatform 3.2.6 to 3.2.7 will require the following changes

• datanucleus-googlecollections plugin is now renamed to datanucleus-guava

3.1.31 Migration from 3.2.2 to 3.2.3

Migrating will require the following changes

• The persistence property datanucleus.metadata.validate is renamed to
datanucleus.metadata.xml.validate to better describe its usage. The original name is still
supported but you are advised to move to this new naming as the old one can be removed in a
future release.

3.1.32 Migration from 3.2.1 to 3.2.2

Migrating will require no changes.

3.1.33 Migration from 3.2.0.RELEASE to 3.2.1

Migrating will require the following changes

3 U p g r a d e M i g r a t i o n 9

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• The persistence property datanucleus.attachSameDatastore defaults to true with datanucleus-
core version 3.2.1 and later. Set it to false if you require replicating objects into other datastores

• The JDOQL method Date.getDay is now deprecated and Date.getDate should be used instead
(day of the month). Date.getDay is likely to be converted to return the day of the week in a later
release, so fixing any use of this now makes sense

• PreparedStatement pooling is turned now turned OFF by default due to the fact that DBCP has a
bug where it isn't closing ResultSets correctly when this is enabled.

3.1.34 Migration from 3.2.0.M4 to 3.2.0.RELEASE

Migrating will require no changes.

3.1.35 Migration from 3.2.0.M3 to 3.2.0.M4

Migrating will require the following changes.

• The RDBMS persistence property datanucleus.rdbms.sqlParamValuesInBrackets is now
removed, and replaced by datanucleus.rdbms.statementLogging (see the docs)

• The persistence property datanucleus.rdbms.useUpdateLock is now removed (was deprecated
many releases back). Use standard JDO/JPA locking mechanisms instead.

• Any user-defined RDBMS mapping plugins will need updating to match some minor type
changes to the "datanucleus-rdbms" plugin API.

3.1.36 Migration from 3.2.0.M2 to 3.2.0.M3

Migrating will require no changes.

3.1.37 Migration from 3.2.0.M1 to 3.2.0.M2

Migrating will require the following changes.

• The Maven plugin has been renamed to datanucleus-maven-plugin from maven-datanucleus-
plugin to match Maven3 naming policies.

• You no longer require to include asm.jar since version 4.1 of ASM is now repackaged into
datanucleus-core.jar

• Added persistence property "datanucleus.useImplementationCreator" to allow turning off the
persistent interface implementation creator.

• All java type mappings used by the RDBMS plugin are now moved
from org.datanucleus.store.mapped.mapping in the core plugin, to
org.datanucleus.store.rdbms.mapping.java in the RDBMS plugin. Related classes only for
"mapped" datastores are also now in the RDBMS plugin

3.1.38 Migration from 3.1.x to 3.2.0.M1

Migrating will require the following changes.

• The Enhancer plugin is now merged into "datanucleus-core". Note also that the "pre-
compilation" enhancement process is now discontinued.

3 U p g r a d e M i g r a t i o n 10

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• The Enhancer Ant task is now moved to org.datanucleus.enhancer.EnhancerTask
• Various DataNucleus internal classes have been refactored. Please refer to this guide for details

of upgrading DataNucleus internal API calls
• Many "simple" Java field types now default to persistent (all supported types are now set to

default persistent). Additionally many "simple" types default to being in the DFG whereas they
used not to (i.e you had to enable the persistence of them, e.g java.sql.Date)

3.1.39 Migration from 3.1.1 to 3.1.2

Migrating will require no changes.

3.1.40 Migration from 3.1.0.RELEASE to 3.1.1

Migrating will require no changes.

3.1.41 Migration from 3.1.0.M5 to 3.1.0.RELEASE

Migrating will require the following changes.

• You no longer are required to specify the persistence property
datanucleus.rdbms.stringDefaultLength as 255 for JDO; this is its new default

3.1.42 Migration from 3.1.0.M4 to 3.1.0.M5

Migrating will require no changes.

3.1.43 Migration from 3.1.0.M3 to 3.1.0.M4

Migrating will require the following changes.

• The enhancer (v3.1) is now upgraded and requires ASM v4.0+. You can continue to use the v3.0
enhancer with ASM v3.x but that will not work completely with JDK1.7

• The RDBMS plugin now requires JDK1.6+ to run. Use v3.0 if you are still using JDK1.5

3.1.44 Migration from 3.1.0.M2 to 3.1.0.M3

Migrating will require the following changes.

• Persistence property datanucleus.managedRuntime replaced by datanucleus.jmxType defining
the JMX server to use.

• Persistence property datanucleus.datastoreTransactionDelayOperations is removed and
replaced by datanucleus.flush.mode with values of MANUAL and AUTO. MANUAL means
that operations will only go to the datastore on flush/commit, whereas AUTO will send them
immediately.

• The persistence property datanucleus.nontx.atomic previously only included persists and
deletes. It now also encompasses field updates. Bear this in mind when considering behaviour

http://www.datanucleus.org/documentation/plugin_migration.html

3 U p g r a d e M i g r a t i o n 11

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• The value strategy chosen when "native"(JDO)/"auto"(JPA) is specified has changed. It will
now take "identity"/"sequence"/"increment" when numeric-based (first that is supported for
that datastore) and "uuid-hex" when string-based. For RDBMS, use persistence property
datanucleus.rdbms.useLegacyNativeValueStrategy as true if wanting the old process.

3.1.45 Migration from 3.1.0.M1 to 3.1.0.M2

Migrating will require the following changes.

• "javax.cache" is now split into "jcache" (old API) and "javax.cache" (standard API) and the
standard API is now supported in datanucleus-core

• datanucleus-management plugin is now merged into datanucleus-core

3.1.46 Migration from 3.0.x to 3.1.0.M1

Migrating will require the following changes.

• Excel, ODF, MongoDB and HBase plugins now respect JDO/JPA table/column naming
strategies. Make sure that you set the table/column names explicitly if requiring some other
naming that was default with v3.0 and earlier plugins

• If you have any "type" plugins using the ObjectStringConverter or ObjectLongConverter
interface please rewrite them to use the new TypeConverter interface (minimal changes).

3.1.47 Migration from 3.0.3 to 3.0.4

Migrating will require the following changes.

• Move java.awt geometric type support into datanucleus-awtgeom plugin

3.1.48 Migration from 3.0.2 to 3.0.3

Migrating will require no changes.

3.1.49 Migration from 3.0.1 to 3.0.2

Migrating will require the following changes.

• HBase : Default behaviour was to use Java serialisation to get the bytes of the PK of objects.
This is changed to now use HBase Bytes.toBytes resulting in cleaner PK ROW ID. To get the old
behaviour set the persistence property datanucleus.hbase.serialisePK

• HBase : default behaviour used to be to persist primitive wrapper fields as serialized. They are
now persisted as serialised if specified in metadata, otherwise using HBase Bytes handler

3.1.50 Migration from 3.0.0 M6 to 3.0.0 RELEASE

Migrating will require no changes.

3 U p g r a d e M i g r a t i o n 12

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

3.1.51 Migration from 3.0.0 M5 to 3.0.0 M6

Migrating will require the following changes.

• The plugin attribute "override" utilised by "java_type", "store_mapping" and "rdbms_mapping"
is now removed, and users should make use of the attribute "priority" (specify a number and the
higher the number the higher the priority that plugin extension gets.

• JPA usage now defaults to use "datanucleus.RetainValues". This means that when an object
leaves a transaction it will not move to HOLLOW state, but instead to PERSISTENT
NONTRANSACTIONAL and has its field values intact.

• If using an identity string translator, note that this is now a IdentityStringTranslator and the
persistence property is now "datanucleus.identityStringTranslatorType"

3.1.52 Migration from 3.0.0 M4 to 3.0.0 M5

Migrating should require no changes.

3.1.53 Migration from 3.0.0 M3 to 3.0.0 M4

Migrating will require the following changes.

• Maven2 plugin option "outputFile" is renamed to "ddlFile" for consistency with all docs/tools

3.1.54 Migration from 3.0.0 M2 to 3.0.0 M3

Migrating will require the following changes.

• Anyone using "memcache" cache provider should rename it to "spymemcached". This renaming
is to clarify which implementation of "memcached" is actually being used. Similarly the
persistence properties are now spelt "memcached" instead of "memcache". Also the former
property datanucleus.cache.level2.memcached.keyprefix is dropped and users should use
datanucleus.cache.level2.cacheName instead

• HBase : previously all primitives were stored serialised. Set the metadata 'serialized' flag on the
field/property to continue doing that.

• Queries are no longer run in a separate thread (which was the previous way of supporting query
cancellation, now reworked for RDBMS to use SQL error codes).

• Persistence properties for schema validation datanucleus.validateXXX now default to false

3.1.55 Migration from 3.0.0 M1 to 3.0.0 M2

Migrating will require the following changes.

• The connection password decryption interface has been repackaged/renamed to
org.datanucleus.store.encryption.ConnectionEncryptionProvider so if you were providing your
own decryption of passwords then rebuild to this

• If using your own DataNucleus plugins, make sure you specify the persistence property
datanucleus.plugin.allowUserBundles as true since the default is now to just use official
DataNucleus plugins.

• The identifier naming strategy datanucleus has been renamed to datanucleus1 to make it clearer
that it was used as the default for DataNucleus v1.x but no longer

3 U p g r a d e M i g r a t i o n 13

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

3.1.56 Migration from 2.2.x to 3.0.0 M1

Migrating will require the following changes.

• JDO API has been moved into its own plugin "datanucleus-api-jdo" and you
will need this if using the JDO API. JDO classes have been repackaged to
org.datanucleus.api.jdo and this is of particular importance for your PMF class (
org.datanucleus.api.jdo.JDOPersistenceManagerFactory)

• "datanucleus-jpa" jar has been repackaged as "datanucleus-api-jpa" and the classes within
repackaged to "org.datanucleus.api.jpa". In particular your JPA persistence provider class should
reference this new package name (org.datanucleus.api.jpa.PersistenceProviderImpl)

• "datanucleus-rest" jar has been repackaged as "datanucleus-api-rest".
• SchemaTool (and its Ant task) has been moved in package to org.datanucleus.store.schema
• HBase : generation of "family name" has changed when previously specifying a column name

without a colon; previously used that as family name and qualifier name, but now uses the table
name as the family name in that situation.

• HBase : previously all relationships were stored serialised. Set the metadata 'serialized' flag on
the field/property to continue doing that.

3.1.57 Migration from 2.2.0 RELEASE to 2.2.1

Migrating will require the following changes.

• JDO 3.1 changes the return type of JDOQL "AVG" to be double or BigDecimal depending on
the type being averaged (previously just returned the same type as the averaged type).

3.1.58 Migration from 2.2.0 Milestone3 to 2.2.0 RELEASE

Migrating will require the following changes.

• datanucleus-connectionpool is no longer provided/needed, and is included within datanucleus-
rdbms. In addition, if using JDK1.6 you can use a builtin DBCP connection pool. You still need
to include the relevant connection pool (e.g DBCP) in your CLASSPATH if using JDK1.5

• If you experience different behaviour with delete of objects with Excel or ODF, this is because
they now support cascade-delete

• Major changes have been made to the use of the L2 cache (so that fields are used from there
rather than from the datastore wherever possible) and also to Managed Relations. Please report
any problems

3.1.59 Migration from 2.2.0 Milestone2 to 2.2.0 Milestone3

Migrating will require the following changes.

• Persistence property datanucleus.attachPolicy was removed since no longer needed - the
default attach handler copes with all situations.

• Much improved support for collections/arrays/maps containing nulls is now present to better
match the Java spec for types. If any problems come up, make use of the "allow-nulls" extension
metadata

3 U p g r a d e M i g r a t i o n 14

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• JPA Criteria query annotation processor is now in its own plugin jar known as datanucleus-jpa-
query

• JDO Typesafe query annotation processor is now in its own plugin jar known as datanucleus-
jdo-query

3.1.60 Migration from 2.2.0 Milestone1 to 2.2.0 Milestone2

Migrating will require the following changes.

• NucleusJDOHelper methods for getting dirty/loaded fields have been improved. Check the docs
for the new method names.

• JDO3.1 sequence changes allow specification of "allocationSize" and "initialValue". These
default to 50 and 1 respectively. Set them for your sequences as required. The persistence
properties now become only fallback values

3.1.61 Migration from 2.1.x to 2.2.0 Milestone1

Migrating will require the following changes.

• Legacy JDOQL implementation for RDBMS is now dropped. Use AccessPlatform 2.1 if you
require it

3.1.62 Migration from 2.1.2 to 2.1.3

Migrating will require the following changes.

• Persistence property datanucleus.attachPolicy is now removed, and the default handling should
work fine

3.1.63 Migration from 2.1.1 to 2.1.2

Migrating will require the following changes.

• The metadata extension index that is used to specify a column position (in table) was previously
required under "field" for Excel/ODF plugins. It should be under "column" now

3.1.64 Migration from 2.1.0 RELEASE to 2.1.1

Migrating will require the following changes.

• Default allocation size for increment and sequence value strategies have been changed for
JDO usage to 10 and 10 respectively (from 5 and 1). You can configure the global defaults via
persistence properties

3.1.65 Migration from 2.1.0 Milestone3 to 2.1.0 RELEASE

Migrating will require the following changes.

• Move to using JDO3 jar instead of JDO 2.3 "ec"

3 U p g r a d e M i g r a t i o n 15

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Dropped support for class-level metadata extension "cacheable"; use standardised cacheable
attribute (or annotation) instead.

3.1.66 Migration from 2.1.0 Milestone2 to 2.1.0 Milestone3

Migrating will require no changes.

3.1.67 Migration from 2.1.0 Milestone1 to 2.1.0 Milestone2

Migrating will require the following changes.

• JPQL "CASE" statements are now supported
• JPA2 static metamodel is now supported, and so can be used with criteria queries alongside the

string-based field specification method
• Runtime enhancement is now turned off by default even when you use JDK1.6+ and have the

enhancer/core jars in the CLASSPATH. Specify the compiler argument processor to enable it
(see docs)

3.1.68 Migration from 2.0.x to 2.1.0 Milestone1

Migrating will require the following changes.

• The JDOQL implementation used for RDBMS is now the rewritten "generic" implementation.
To use the old implementation, set the JDOQL implementation as "JDOQL-Legacy"

• Use of JPA should be run against the JPA2 "final" jar (or its Apache Geronimo specs equivalent)
• Heavy refactoring has been done internally so if relying on DataNucleus APIs you should

check against SVN for changes. In particular, plugins should be using ObjectProvider instead of
StateManager, and ExecutionContext in place of ObjectManager.

4 G e t t i n g S t a r t e d 16

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

4 Getting Started
...

4.1 AccessPlatform : Getting Started
DataNucleus AccessPlatform implements the JDO and JPA specifications. These specifications
define how Java classes can be persisted to a datastore and how they can be queried. By choosing
AccessPlatform you can select which of these APIs you feel most comfortable with. Time for you to
get started and use AccessPlatform!

4.1.1 What is required?

1. Decide which datastore your project will use, and then download DataNucleus AccessPlatform
2. Depending on which ZIP you downloaded above, and what add-ons you'll be using you may also

need to download some dependencies
You now have the necessary components to start investigating use of DataNucleus.

4.1.2 Starting up

Decide which persistence API you want to use. If you're not familiar with these APIs then the
next thing to do is to learn about JDO and JPA, or alternatively REST. You need to understand
the basic concepts involved. There is plenty of reading on the internet, starting with the JDO or JPA
specifications of course.

The best thing to do after some reading is to try the JDO Tutorial (for RDBMS, HBase,
MongoDB, Neo4j, Cassandra, ODF, Excel) or try the JPA Tutorial (for RDBMS, HBase,
MongoDB, Neo4j, Cassandra, ODF, Excel). These explain the basic steps of applying JDO/JPA
(and DataNucleus) to your own application and provides a link to download the source code for the
Tutorial. Please download it and start up your development environment with the Tutorial classes and
files. Once you have completed the Tutorial you're in a position to apply DataNucleus JDO/JPA to
your own application, and start benefiting from what it offers.

4.1.3 Key Points

There are some key points to bear in mind when starting using JDO/JPA for java persistence.

• To persist objects of classes you firstly need to define which classes are persistable, and how
they are persisted. Start under the JDO Class Mapping and JPA Class Mapping sections

http://www.datanucleus.org/download.html

4 G e t t i n g S t a r t e d 17

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Use of JDO or JPA requires a datastore-controlling factory : PersistenceManagerFactory for
JDO, EntityManagerFactory for JPA. You can define many properties to define the capabilities
of this

• The persistence of objects is controlled by an API. Look under JDO API and JPA API for more
details

• During the persistence process objects are in different lifecycle states (JDO, JPA) and you
ought to be aware of what they are

• You retrieve objects either by their identity, or using a query. With JDO you can use JDOQL,
SQL or JPQL query languages. With JPA you can use JPQL or SQL query languages

• For JDO usage you will need jdo-api/ javax.jdo as well as datanucleus-api-jdo, datanucleus-core
and the datanucleus-XXX jar for whichever datastore you are using.

• For JPA usage you will need persistence-api/ javax.persistence as well as datanucleus-api-jpa,
datanucleus-core and the datanucleus-XXX jar for whichever datastore you are using.

5 D e p e n d e n c i e s 18

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

5 Dependencies
...

5.1 AccessPlatform : Dependencies
DataNucleus AccessPlatform utilises some third party software to provide some of its functionality.
Dependent on how you intend to use this product you may have to also download some of these third
party software packages. You can see below the dependencies and when they are required.

Software Description Version Requirement

Essential Dependencies

JDO API JDO API definition,
developed by Apache
JDO.

3.0 or 3.1 Required if you are using
the JDO API or JDO
Annotations. Use v3.1
or v3.0.1 depending on
whether you require JDO
3.1 or JDO 3.0

JPA API JPA API definition 2.1.0 Required if you are using
the JPA API or JPA
annotations. Note that
the JPA "Expert Group"
are seemingly too lazy to
upload this into a freely
downloadable location so
you have to use this one
we prepared ourselves.

Datastore Dependencies
(choose your datastore
driver)

NeoDatis NeoDatis object database 1.9.30 Required if you are using
a NeoDatis datastore

jaxb-api JAXB API 2.1 Required is you are using
an XML datastore

jaxb-impl JAXB Reference
Implementation

2.x Required if you are using
an XML datastore

JDBC Driver JDBC Driver for your
chosen RDBMS

Required if you want to
use an RDBMS datastore.
Obtain from your RDBMS
vendor

Apache POI Apache library for writing
to Microsoft documents

3.5+ Required if you want to
use Excel (XLS/OOXML)
documents

ODFDOM ODF Toolkit for Java 0.8.7 Required if you want to
use an ODF document for
persistence.

Xerces Xerces XML parser 2.8+ Required if you want to
use an ODF document for
persistence. Required by
ODFDOM

http://db.apache.org/jdo/downloads.html
http://central.maven.org/maven2/org/datanucleus/javax.persistence/2.1.0/
http://www.neodatis.org
http://repo1.maven.org/maven2/javax/xml/bind/jaxb-api/2.1/
http://repo1.maven.org/maven2/javax/xml/jaxb-impl/
http://poi.apache.org//
http://odftoolkit.org
http://xerces.apache.org/

5 D e p e n d e n c i e s 19

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Apache HBase HBase 0.94-0.96 Required if you want
to persist to HBase
datastores

HADOOP Core HADOOP Core 1.0 Required if you want
to persist to HBase
datastores

Apache ZooKeeper Apache Zookeeper 3.4 Required if you want
to persist to HBase
datastores

MongoDB Java driver MongoDB Java driver 2.11+ Required if you want
to persist to MongoDB
datastores

Cassandra Datastax Java
driver

Cassandra Datastax
driver

2.x Required if you want to
persist to Cassandra
datastores

Neo4j driver Neo4j driver 1.9.4 Required if you want
to persist to Neo4j
datastores

Feature Dependencies
(optional depending on
what you want to use)

Log4j Log4J logging library. 1.2+ Required if you wish
to log using Log4J.
DataNucleus supports
Log4J or JDK1.4 logging

mx4j MX4J management library 3.0+ Required if you want
to use JMX with
DataNucleus via MX4J

mx4j-tools MX4J tools 1.2+ Required if you want
to use JMX with
DataNucleus via MX4J

JodaTime JodaTime 2.0+ Required if you want to
persist JodaTime java
types

javax.time JSR Time Library 0.6+ Required if you want to
persist javax.time types

GoogleCollections GoogleCollections 1.0 Required if you want to
persist Google Collections
java types, or are using
BoneCP connection pool
for RDBMS

EHCache EHCache caching product 1.0+ Required if you want to
use EHCache for level 2
caching

OSCache OSCache caching product 2.1 Required if you want to
use OSCache for level 2
caching

SwarmCache SwarmCache caching
product

1.0RC2 Required if you want to
use SwarmCache for level
2 caching

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.mongodb.org/
http://docs.datastax.com/en/developer/java-driver/2.1
http://docs.datastax.com/en/developer/java-driver/2.1
http://www.neo4j.org/
http://jakarta.apache.org/log4j/
http://www.mx4j.org
http://www.mx4j.org
http://www.sf.net/projects/joda-time/
http://code.google.com/p/google-collections/
http://repo1.maven.org/maven2/ehcache/jars/
http://repo1.maven.org/maven2/opensymphony/oscache/jars/
http://repo1.maven.org/maven2/swarmcache/jars/

5 D e p e n d e n c i e s 20

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

C3P0 C3P0 RDBMS connection
pooling library

0.9.0+ Required if you are using
an RDBMS datastore
and want to use C3P0 for
connection pooling

proxool Proxool RDBMS
connection pooling library

0.9.0RC3 Required if you are using
an RDBMS datastore and
want to use Proxool for
connection pooling

commons-logging Apache commons logging
library

1.0+ Required if you are using
an RDBMS datastore and
want to use Proxool for
connection pooling

bonecp BoneCP RDBMS
connection pooling library

0.6.5 Required if you are using
an RDBMS datastore and
want to use BoneCP for
connection pooling

SLF4J SLF4J logging library 1.5.6 Required if you are using
BoneCP for connection
pooling

sdoapi Oracle Spatial library 1.2+ Required if you want to
persist Oracle spatial
types

jta JTA transaction API 1.0+ Required if you want to
use JTA transactions

cache-api Cache API 0.61+ Required if you want
to use javax.cache L2
caching

validation-api Bean validation API 1.0+ Required if you want
to use bean validation
(you also require a bean
validation implementation)

http://repo1.maven.org/maven2/c3p0/jars/
http://repo1.maven.org/maven2/proxool/jars/
http://repo1.maven.org/maven2/commons-logging/jars/
http://jolbox.com/bonecp/downloads/maven/com/jolbox/bonecp/
http://www.slf4j.org
http://www.oracle.com/technology/software/products/spatial/index.html

6 P e r s i s t e n c e A P I C h o i c e 21

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

6 Persistence API Choice
...

6.1 Persistence API : JDO or JPA ?
There are two standard API's for persistence in Java - Java Data Objects (JDO) and Java Persistence
API (JPA). JDO is designed for all datastores, and JPA is designed for RDBMS datastores only.
DataNucleus supports both, fully, and also provides support for a REST API. When choosing the
persistence API to use in your application you should bear the following factors in mind

• Target datastore : JDO is designed for all datastores, whereas JPA is just designed around
RDBMS and explicitly uses RDBMS/SQL terminology. If using RDBMS then you have the
choice. If using, for example, a NoSQL store then JDO makes much more sense

• Datastore interoperability : are you likely to change your datastore type at some point in the
future ? If so you likely ought to use JDO due to its design

• API : both APIs are very similar. JDO provides more options and control though for basic
persistence and retrieval there are differences only in the namings

• ORM : JDO has a more complete ORM definition, as shown on Apache JDO ORM Guide
• Experience : do your developers know a particular API already ? As mentioned the API's

themselves are very similar, though the metadata definition is different. Remember that you can
use JPA metadata with the JDO API, and vice-versa.

• Querying : do you need a flexible query language that is object-oriented and extensible ?
JDOQL provides this and the implementation in DataNucleus allows extensions. If you just want
SQL then you can use JDO or JPA since both provide this

• Fetch Control : do you need full control of what is fetched, and when ? JDO provides fetch
groups, whereas JPA2.1 now provides EntityGraphs (A subset of fetch groups). Use JDO if full
fetch groups is an important factor for your design, otherwise either

• API experience : you may be more likely to find people with experience in JPA, but your
developers may already have experience with one API

There is a further comparison of JDO and JPA on technical grounds over at Apache JDO.

6.2 Persistence API FAQ
To supplement the factors above to bear in mind when choosing your persistence API, there has been
much FUD on the web about JDO and JPA, largely perpetrated by RDBMS vendors, and we provide
a FAQ that corrects many of these points so you can base your decision on what is best for you

Q: Which specification was the original?
JDO was the first Java persistence specification, starting in 1999, and the JDO 1.0 specification being
published in April 2002. This provided the persistence API, and was standardised as JSR012. In
May 2006 JDO2 was released. This provided an update to the persistence API as well as a complete
definition of ORM, standardised as JSR243. Later in May 2006 JPA1 was released. This provided
a persistence API, and a limited definition of ORM, concentrating only on RDBMS, and was
standardised as JSR220.

Q: Why did JPA come about when we already had a specification for Java persistence in JDO?
Politics. RDBMS vendors apparently didn't like the idea of having a technology that allowed users to
leverage a single API, and easily swap to a different type of datastore. Much pressure was applied to
SUN to provide a different specification, and even to try to say that JPA was to supercede JDO. The
JCP is dominated by large organisations and SUN capitulated. They even published a "FAQ" to try to
justify their decision.

Q: Is JDO dead?

http://db.apache.org/jdo/jdo_v_jpa_orm.html
http://db.apache.org/jdo/jdo_v_jpa.html
http://jcp.org/en/jsr/detail?id=012
http://jcp.org/en/jsr/detail?id=243
http://jcp.org/en/jsr/detail?id=220
http://www.oracle.com/technetwork/java/javaee/persistence-jsp-136066.html

6 P e r s i s t e n c e A P I C h o i c e 22

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

No. As part of SUN's capitulation above, they donated JDO to Apache to develop the technology
further. There have been the following revisions to the JDO specification;

• JDO2.1 adding on support for annotations, enums, and some JPA concepts.
• JDO2.2 adding on support for dynamic fetch groups, transaction isolation and cache control.
• JDO3.0 adding on MetaData/Enhancer APIs as well as query timeout/cancel support etc

In addition, JDO3.1 is reaching its conclusion, adding on support for more JDOQL methods, as well
as control over position of a column, size of a sequence etc.

Q: Will JPA replace JDO ?
It is very hard to see that happening since JPA provides nothing to cater for persistence of Java
objects to non-RDBMS datastores (LDAP, ODBMS, XML, ODF, Excel etc). It doesn't even provide
a complete definition of ORM, so cannot yet compete with JDO's ORM handling. Even in JPA2 (final
in late 2009) there are still basic ORM concepts that are not handled by JPA yet JDO standardises
them. JDO is still being developed, and while users require this technology then it will continue
to exist. DataNucleus will continue to support both APIs since there is a need for both in modern
enterprise applications despite what Oracle, IBM, et al try to impose on you.

Q: What differences are there between how JDO is developed and how JPA is developed ?
JPA is developed in isolation by an "expert group" though in JPA2.1 they have added a mailing list so
you can see their discussion (not that they'll reply to input necessarily). JDO is developed in public by
anybody interested in the technology. The tests to verify compliance with JPA are only available after
signing non-disclosure agreements with SUN and this process can take up to 3 months just to get the
test suite (if ever). The tests to verify compliance with JDO are freely downloadable and can be run by
users or developers. This means that anybody can check whether an implementation is compliant with
JDO, whereas the same is not true of JPA. DataNucleus runs the JDO3.x and JPA1 TCKs at frequent
intervals and we publish the results on our website. DataNucleus has been prevented from accessing
the JPA2 TCK (by Oracle and the JCP, documented in our blog).

Q: Why should I use JDO when JPA is supported by "large organisations" ?
By "large organisations" you presumably mean commercial organisations like Oracle, IBM, RedHat.
And they have their own vested interest in RDBMS technologies, or in selling application servers.
You should make your own decisions rather than just follow down the path you are shepherded
in by any commercial organisation. Your application will be supported by you not by them. The
technology you use should be the best for the job and what you feel most comfortable with. If you
feel more comfortable with JPA and it provides all that your application needs then use it. Similarly if
JDO provides what you need then you use that. For this reason DataNucleus provides support for both
specifications.

http://db.apache.org/jdo

7 D e v e l o p m e n t P r o c e s s 23

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

7 Development Process
...

7.1 DataNucleus AccessPlatform Development Process
DataNucleus attempts to make the whole process of persisting data a transparent process. The idea
revolves around the developer having a series of Java classes that need persisting. With DataNucleus,
the developer defines the persistence of these classes using Metadata (defined in XML, annotations
or by API), and byte-code "enhances" these classes. DataNucleus also provides RDBMS SchemaTool
that allows for schema generation/validation before running your application, to make sure that
all is correctly mapped. Finally you provide persistence code (to manage the persistence of your
objects), and queries (to retrieve your persisted data). DataNucleus Access Platform implements all
JDO specifications (1.0, 2.0, 2.1, 2.2, 3.0, 3.1) and also all JPA specifications (1.0, 2.0, 2.1). The
following diagram shows the process for DataNucleus AccessPlatform (several parts of the diagram
are clickable giving more details).

7.2 Complementary Third Party Tools
While DataNucleus attempts to provide all tools specific to its domain, there are obviously related
areas where third-party products are recommended. If you have some product that could be used
alongside DataNucleus then we would like to publicise them here so that DataNucleus users have

7 D e v e l o p m e n t P r o c e s s 24

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

all information at their disposal for designing their application. OpenSource free products are
publicised free of charge. Commercial products can also be publicised and you should [contact us]
(mailto:info@datanucleus.org) to discuss this, requiring a donation to the DataNucleus project.

• [OpenSource] Cumulus4J - add encryption to your DataNucleus storage
• [OpenSource] Eclipse Dali providing Eclipse integration for generating (JPA) entities from the

datastore
• [OpenSource] EMSoft Data JDO providing JDO utilities.
• [Commercial] Vestigo Query Browser allowing browsing of your JDO/JPA queries graphically
• [Commercial] Javelin, a lightweight development tool to use alongside DataNucleus.

http://cumulus4j.org
http://www.eclipse.org/webtools/dali/
http://java.net/projects/emsoft-data-jdo
https://marketplace.eclipse.org/content/vestigo-jdojpa-query-browser
http://stepaheadsoftware.com/products/javelin/javelin.htm

8 C o m p a t i b i l i t y 25

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

8 Compatibility
...

8.1 AccessPlatform : Compatibility
There are two aspects to compatibility that we discuss here. The compatibility between DataNucleus
plugins, and the compatibility of DataNucleus with third party software.

8.1.1 Plugin Compatibility

If you download one of the DataNucleus AccessPlatform distribution zip files you get a consistent
set of DataNucleus plugins. Alternatively you can inspect the Maven "POM" files in Maven Central
repository to see the dependency requirements. For the record the latest released versions of the
following plugins are all consistent.

datanucleus-core 4.1.14

datanucleus-api-jdo 4.1.4

datanucleus-api-jpa 4.1.13

datanucleus-api-rest 4.1.2

datanucleus-cassandra 4.1.0.release

datanucleus-excel 4.1.0.release

datanucleus-hbase 4.1.1

datanucleus-json 4.1.1

datanucleus-ldap 4.1.0.release

datanucleus-mongodb 4.1.0.release

datanucleus-neo4j 4.1.1

datanucleus-neodatis 4.1.0.release

datanucleus-odf 4.1.0.release

datanucleus-rdbms 4.1.16

datanucleus-xml 4.1.0.release

datanucleus-geospatial 4.1.0.release

datanucleus-jodatime 4.1.1

datanucleus-guava 4.1.3

datanucleus-java8 4.1.2

datanucleus-cache 4.0.4

datanucleus-jdo-query 4.0.5

datanucleus-jpa-query 4.0.5

datanucleus-maven-plugin 4.0.5

datanucleus-eclipse-plugin 4.0.0.release

8.1.2 Third Party Compatibility

We aim to make DataNucleus AccessPlatform as compatible with related software as possible. Here
we give an overview of known compatibilities/problems

8 C o m p a t i b i l i t y 26

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Software Status

GraniteDS Fully compatible from GraniteDS 2.0+

Scala Fully compatible. If you want to use "SBT" you may
benefit from the following links. SBT and Enhancing,
SBT and MetaModel generation

Play Framework Fully compatible with version 2.0 or later. Version 1
of Play had a hardcoded Hibernate implementation
which was obviously a bad idea when the whole point
of having a persistence standard (JPA) is to allow
portability.

GWT Current versions of GWT (2+) ought to be able to
serialise/deserialise any detached JDO/JPA objects.
Earlier GWT versions had a problem with a bytecode
enhancement field of type Object[] and there was
a project GILEAD that attempted to handle this for
various persistence solutions (and in version 1.3 will
have specific support for DataNucleus, already in
Gilead SVN). Also look at this and this.

iReport v5 Fully compatible, but you could consider removing the
following iReport-5.0.0/ireport/modules/ext/commons-
dbcp-1.2.2.jar and iReport-5.0.0/ireport/modules/ext/
hive as they have been found by some to cause
conflicts.

Spring DataNucleus is a fully compliant JDO/JPA
implementation, so should work with anything that
purports to support standards.

Wicket Fully compatible. See this and this for tutorials with
JDO, and follow the general Wicket JPA guide when
using the JPA API.

http://stackoverflow.com/questions/30218001/how-can-i-run-datanucleus-bytecode-enhancer-from-sbt
http://stackoverflow.com/questions/30401746/how-can-i-generate-a-metamodel-from-persistence-classes-with-datanucleus-and-sbt
http://stackoverflow.com/questions/30401746/how-can-i-generate-a-metamodel-from-persistence-classes-with-datanucleus-and-sbt
http://www.playframework.com/documentation/2.1.0/JavaJPA
http://noon.gilead.free.fr/gilead/
http://groups.google.com/group/Google-Web-Toolkit-Contributors/browse_thread/thread/3c768d8d33bfb1dcseems
http://timepedia.blogspot.com/2009/04/google-appengine-and-gwt-now-marriage.html
https://github.com/tomhowe/wicket-spring-jdo
https://github.com/tomhowe/wicket-spring-jdo-interfaces
http://www.jweekend.com/dev/LegUp

9 S e r v i c e s 27

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

9 Services
...

9.1 DataNucleus Services : Free and Commercial
With any software, there are times when you need assistance to make full use of it. Here at
DataNucleus we want you to make the best of the software that we provide. For that reason we
provide both commercial and free support facilities.

9.1.1 DataNucleus : Commercial Support

Where you or your company require timely support when you need it without having to wait for
somebody to respond on a forum we provide commercial support. You could, for example, have a
preference for email support, or maybe phone support. If this is the case then we can discuss what
would be possible. Please refer to our Support services for details.

9.1.2 DataNucleus : Free Support

DataNucleus provides its own online forums providing a place to discuss issues you are having. We
don't guarantee to provide answers on this forum. It is simply a place where you could get some level
of support when people have time. This may not be adequate for some people hence why we provide
the commercial version above.

1. Check the Documentation before anything else. The answer is usually there, either in a tutorial/
example, or in one of the many guides.

2. Look in the DataNucleus Log. This usually contains a lot of information that may answer the
issue. You can always configure the log to give more output.

3. Try a recent build to see if your version is out of date and the expected result is achieved with the
latest nightly builds.

4. Go to the Online Forum and ask. Always try to give as clear a description of the problem as
possible, together with your input data, and any associated log output. Please be aware that
we have very little time for this type of support and contributors to DataNucleus are more
likely to get any available free support

9.1.3 DataNucleus : Commercial Consulting/Training

The DataNucleus experts are available for Consulting for cases where you need somebody
intrinsically familiar with the DataNucleus system available to resolve any particular implementation
issues.

Similarly, if your company would like to build up your own experience in DataNucleus and would
like a kick start for this process the DataNucleus experts are available to provide Training.

One further possible use for DataNucleus consulting is to provide a plugin for a datastore that we
don't currently support. Do you have a datastore that you'd like to be able to persist to using JDO or
JPA ? We can help you achieve this. Contact us to discuss

http://www.datanucleus.com/services/index.html#support
http://forum.datanucleus.org
http://forum.datanucleus.org
http://www.datanucleus.com/services/consulting.html
http://www.datanucleus.com/services/training.html

1 0 P e r s i s t e n c e P r o p e r t i e s 28

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

10 Persistence Properties
...

10.1 Persistence Properties
JDO and JPA with DataNucleus are highly configurable using persistence properties. When defining
your PersistenceManagerFactory or EntityManagerFactory you have the opportunity to control many
aspects of the persistence process. DataNucleus is perhaps more configurable than any other JDO/
JPA implementation in this respect. This section defines the properties available for use. Please bear
in mind that these properties are only for use with DataNucleus and will not work with other JDO/JPA
implementations. All persistence property names are case-insensitive

• Datastore Definition - datastore properties
• General - general properties
• Schema Control - properties controlling the generation of the datastore schema.
• Transactions and Locking - properties controlling how transactions operate
• Caching - properties controlling the behaviour of the cache(s)
• Bean Validation - properties controlling bean validation at persist
• Value Generation - properties controlling the generation of object identities and field values
• MetaData - metadata properties
• Auto-Start - Auto-Start Mechanism properties
• Query - properties controlling the behaviour of queries
• Datastore-Specific - properties for particular datastores e.g RDBMS

10.1.1 Datastore Definition

datanucleus.ConnectionURL

Description URL specifying the datastore to use for persistence.
Note that this will define the type of datastore
as well as the datastore itself. Please refer to the
datastores guides for the URL appropriate for the type
of datastore you're using.

Range of Values

datanucleus.ConnectionUserName

Description Username to use for connecting to the DB

Range of Values

datanucleus.ConnectionPassword

Description Password to use for connecting to the DB. See
datanucleus.ConnectionPasswordDecrypter for a way
of providing an encrypted password here

1 0 P e r s i s t e n c e P r o p e r t i e s 29

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Range of Values

datanucleus.ConnectionDriverName

Description The name of the (JDBC) driver to use for the DB (for
RDBMS only).

Range of Values

datanucleus.ConnectionFactory

Description Instance of a connection factory for transactional
connections. This is an alternative to
datanucleus.ConnectionURL. For RDBMS, it must
be an instance of javax.sql.DataSource. See Data
Sources.

Range of Values

datanucleus.ConnectionFactory2

Description Instance of a connection factory for nontransactional
connections. This is an alternative to
datanucleus.ConnectionURL. For RDBMS, it must
be an instance of javax.sql.DataSource. See Data
Sources.

Range of Values

datanucleus.ConnectionFactoryName

Description The JNDI name for a connection factory for
transactional connections. For RBDMS, it must be
a JNDI name that points to a javax.sql.DataSource
object. See Data Sources.

Range of Values

datanucleus.ConnectionFactory2Name

Description The JNDI name for a connection factory for
nontransactional connections. For RBDMS, it must
be a JNDI name that points to a javax.sql.DataSource
object. See Data Sources.

Range of Values

1 0 P e r s i s t e n c e P r o p e r t i e s 30

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.ConnectionPasswordDecrypter

Description Name of a class that implements
org.datanucleus.store.connection.DecryptionProvider
and should only be specified if the password is
encrypted in the persistence properties

Range of Values

10.1.2 General

datanucleus.IgnoreCache

Description Whether to ignore the cache for queries. If the user
sets this to true then the query will evaluate in the
datastore, but the instances returned will be formed
from the datastore; this means that if an instance
has been modified and its datastore values match
the query then the instance returned will not be the
currently cached (updated) instance, instead an
instance formed using the datastore values.

Range of Values true | false

datanucleus.Multithreaded

Description Whether to run the PM/EM multithreaded. Note
that this is a hint only to try to allow thread-safe
operations on the PM/EM

Range of Values true | false

datanucleus.NontransactionalRead

Description Whether to allow nontransactional reads

Range of Values false | true

datanucleus.NontransactionalWrite

Description Whether to allow nontransactional writes

Range of Values false | true

datanucleus.Optimistic

1 0 P e r s i s t e n c e P r o p e r t i e s 31

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Whether to use optimistic transactions (JDO, JPA).
For JDO this defaults to false and for JPA it defaults to
true

Range of Values true | false

datanucleus.RetainValues

Description Whether to suppress the clearing of values from
persistent instances on transaction completion. With
JDO this defaults to false, whereas for JPA it is true

Range of Values true | false

datanucleus.RestoreValues

Description Whether persistent object have transactional field
values restored when transaction rollback occurs.

Range of Values true | false

datanucleus.Mapping

Description Name for the ORM MetaData mapping files to use
with this PMF. For example if this is set to "mysql"
then the implementation looks for MetaData mapping
files called "{classname}-mysql.orm" or "package-
mysql.orm". If this is not specified then the JDO
implementation assumes that all is specified in the
JDO MetaData file.

Range of Values

datanucleus.mapping.Catalog

Description Name of the catalog to use by default for all classes
persisted using this PMF/EMF. This can be overridden
in the MetaData where required, and is optional.
DataNucleus will prefix all table names with this
catalog name if the RDBMS supports specification of
catalog names in DDL. RDBMS datastores only

Range of Values

datanucleus.mapping.Schema

1 0 P e r s i s t e n c e P r o p e r t i e s 32

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Name of the schema to use by default for all classes
persisted using this PMF/EMF. This can be overridden
in the MetaData where required, and is optional.
DataNucleus will prefix all table names with this
schema name if the RDBMS supports specification of
schema names in DDL. RDBMS datastores only

Range of Values

datanucleus.tenantId

Description String id to use as a discriminator on all persistable
class tables to restrict data for the tenant using
this application instance (aka multi-tenancy via
discriminator). RDBMS, MongoDB datastores only

Range of Values

datanucleus.DetachAllOnCommit

Description Allows the user to select that when a transaction is
committed all objects enlisted in that transaction will
be automatically detached.

Range of Values true | false

datanucleus.detachAllOnRollback

Description Allows the user to select that when a transaction is
rolled back all objects enlisted in that transaction will
be automatically detached.

Range of Values true | false

datanucleus.CopyOnAttach

Description Whether, when attaching a detached object, we create
an attached copy or simply migrate the detached
object to attached state

Range of Values true | false

datanucleus.allowAttachOfTransient

Description When you call EM.merge with a transient object (with
PK fields set), if you enable this feature then it will first
check for existence of an object in the datastore with
the same identity and, if present, will merge into that
object (rather than just trying to persist a new object).
The default for JDO is false, and for JPA is true.

1 0 P e r s i s t e n c e P r o p e r t i e s 33

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Range of Values true | false

datanucleus.attachSameDatastore

Description When attaching an object DataNucleus by default
assumes that you're attaching to the same datastore
as you detached from. DataNucleus does though allow
you to attach to a different datastore (for things like
replication). Set this to false if you want to attach to a
different datastore to what you detached from

Range of Values true | false

datanucleus.detachAsWrapped

Description When detaching, any mutable second class objects
(Collections, Maps, Dates etc) are typically detached
as the basic form (so you can use them on client-
side of your application). This property allows you to
select to detach as wrapped objects. It only works with
"detachAllOnCommit" situations (not with detachCopy)
currently

Range of Values true | false

datanucleus.DetachOnClose

Description This allows the user to specify whether, when a PM/
EM is closed, that all objects in the L1 cache are
automatically detached. Users are recommended
to use the datanucleus.DetachAllOnCommit
wherever possible. This will not work in JCA mode.

Range of Values false | true

datanucleus.detachmentFields

Description When detaching you can control what happens to
loaded/unloaded fields of the FetchPlan. The default
for JDO is to load any unloaded fields of the current
FetchPlan before detaching. You can also unload
any loaded fields that are not in the current FetchPlan
(so you only get the fields you require) as well as a
combination of both options

Range of Values load-fields | unload-fields | load-unload-fields

datanucleus.maxFetchDepth

1 0 P e r s i s t e n c e P r o p e r t i e s 34

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Specifies the default maximum fetch depth to use for
fetching operations. The JDO spec defines a default
of 1, meaning that only the first level of related objects
will be fetched by default. The JPA spec doesn't
provide fetch group control, just a "default fetch group"
type concept, consequently the default there is -1
currently.

Range of Values -1 | 1 | positive integer (non-zero)

datanucleus.detachedState

Description Allows control over which mechanism to use to
determine the fields to be detached. By default
DataNucleus uses the defined "fetch-groups".
Obviously JPA1/JPA2 don't have that (although it is
an option with DataNucleus), so we also allow loaded
which will detach just the currently loaded fields,
and all which will detach all fields of the object (be
careful with this option since it, when used with
maxFetchDepth of -1 will detach a whole object
graph!)

Range of Values fetch-groups | all | loaded

datanucleus.TransactionType

Description Type of transaction to use. If running under JavaSE
the default is RESOURCE_LOCAL, and if running
under JavaEE the default is JTA.

Range of Values RESOURCE_LOCAL | JTA

datanucleus.ServerTimeZoneID

Description Id of the TimeZone under which the datastore server
is running. If this is not specified or is set to null it is
assumed that the datastore server is running in the
same timezone as the JVM under which DataNucleus
is running.

Range of Values

datanucleus.PersistenceUnitName

Description Name of a persistence-unit to be found in a
persistence.xml file (under META-INF) that defines the
persistence properties to use and the classes to use
within the persistence process.

Range of Values

1 0 P e r s i s t e n c e P r o p e r t i e s 35

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.PersistenceUnitLoadClasses

Description Used when we have specified the persistence-
unit name for a PMF/EMF and where we want the
datastore "tables" for all classes of that persistence-
unit loading up into the StoreManager. Defaults to
false since some databases are slow so such an
operation would slow down the startup process.

Range of Values true | false

datanucleus.persistenceXmlFilename

Description URL name of the persistence.xml file that should be
used instead of using "META-INF/persistence.xml".

Range of Values

datanucleus.datastoreReadTimeout

Description The timeout to apply to all reads (millisecs). e.g by
query or by PM.getObjectById(). Only applies if the
underlying datastore supports it

Range of Values 0 | A positive value (MILLISECONDS)

datanucleus.datastoreWriteTimeout

Description The timeout to apply to all writes (millisecs). e.g by
makePersistent, or by an update. Only applies if the
underlying datastore supports it

Range of Values 0 | A positive value (MILLISECONDS)

datanucleus.singletonPMFForName

Description Whether to only allow a singleton PMF for a particular
name (the name can be either the name of the PMF in
jdoconfig.xml, or the name of the persistence-unit). If
a subsequent request is made for a PMF with a name
that already exists then a warning will be logged and
the original PMF returned.

Range of Values true | false

datanucleus.singletonEMFForName

1 0 P e r s i s t e n c e P r o p e r t i e s 36

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Whether to only allow a singleton EMF for persistence-
unit. If a subsequent request is made for an EMF
with a name that already exists then a warning will be
logged and the original EMF returned.

Range of Values true | false

datanucleus.allowListenerUpdateAfterInit

Description Whether you want to be able to add/remove listeners
on the JDO PMF after it is marked as not configurable
(when the first PM is created). The default matches
the JDO spec, not allowing changes to the listeners in
use.

Range of Values true | false

datanucleus.storeManagerType

Description Type of the StoreManager to use for this PMF/EMF.
This has typical values of "rdbms", "mongodb". If
it isnt specified then it falls back to trying to find
the StoreManager from the connection URL. The
associated DataNucleus plugin has to be in the
CLASSPATH when selecting this. When using data
sources (as usually done in a JavaEE container),
DataNucleus cannot find out the correct type
automatically and this option must be set.

Range of Values rdbms | mongodb | alternate StoreManager key

datanucleus.jmxType

Description Which JMX server to use when hooking into JMX.
Please refer to the Monitoring Guide

Range of Values default | mx4j

datanucleus.deletionPolicy

Description Allows the user to decide the policy when deleting
objects. The default is "JDO2" which firstly checks if
the field is dependent and if so deletes dependents,
and then for others will null any foreign keys out. The
problem with this option is that it takes no account
of whether the user has also defined <foreign-key>
elements, so we provide a "DataNucleus" mode
that does the dependent field part first and then if a
FK element is defined will leave it to the FK in the
datastore to perform any actions, and otherwise does
the nulling.

1 0 P e r s i s t e n c e P r o p e r t i e s 37

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Range of Values JDO2 | DataNucleus

datanucleus.identityStringTranslatorType

Description You can allow identities input to pm.getObjectById(id)
be translated into valid JDO ids if there is a suitable
translator. See Identity String Translator Plugin

Range of Values

datanucleus.identityKeyTranslatorType

Description You can allow identities input to pm.getObjectById(cls,
key) be translated into valid JDO ids if there is a
suitable key translator. See Identity Key Translator
Plugin

Range of Values

datanucleus.datastoreIdentityType

Description Which "datastore-identity" class plugin to use to
represent datastore identities. Refer to Datastore
Identity extensions for details.

Range of Values datanucleus | kodo | xcalia | {user-supplied plugin}

datanucleus.executionContext.maxIdle

Description Specifies the maximum number of ExecutionContext
objects that are pooled ready for use

Range of Values 20 | integer value greater than 0

datanucleus.executionContext.reaperThread

Description Whether to start a reaper thread that continually
monitors the pool of ExecutionContext objects
and frees them off after they have surpassed their
expiration period

Range of Values false | true

datanucleus.objectProvider.className

Description Class name for the ObjectProvider to use
when managing object state. The default for
RDBMS is ReferentialStateManagerImpl, and is
StateManagerImpl for all other datastores.

Range of Values {user-provided class-name}

1 0 P e r s i s t e n c e P r o p e r t i e s 38

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.useImplementationCreator

Description Whether to allow use of the implementation-creator
(feature of JDO to dynamically create implementations
of persistent interfaces). Defaults to true for JDO, and
false for JPA

Range of Values true | false

datanucleus.manageRelationships

Description This allows the user control over whether DataNucleus
will try to manage bidirectional relations, correcting
the input objects so that all relations are consistent.
This process runs when flush()/commit() is called. JDO
defaults to true and JPA defaults to false You can set
it to false if you always set both sides of a relation
when persisting/updating.

Range of Values true | false

datanucleus.manageRelationshipsChecks

Description This allows the user control over whether DataNucleus
will make consistency checks on bidirectional
relations. If "datanucleus.managedRelationships"
is not selected then no checks are performed. If a
consistency check fails at flush()/commit() then a
JDOUserException is thrown. You can set it to false if
you want to omit all consistency checks.

Range of Values true | false

datanucleus.persistenceByReachabilityAtCommit

Description Whether to run the "persistence-by-reachability"
algorithm at commit() time. This means that objects
that were reachable at a call to makePersistent() but
that are no longer persistent will be removed from
persistence. For performance improvements, consider
turning this off.

Range of Values true | false

datanucleus.classLoaderResolverName

1 0 P e r s i s t e n c e P r o p e r t i e s 39

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Name of a ClassLoaderResolver to use in class
loading. DataNucleus provides a default that loosely
follows the JDO specification for class loading. This
property allows the user to override this with their own
class better suited to their own loading requirements.

Range of Values datanucleus | {name of class-loader-resolver plugin}

datanucleus.primaryClassLoader

Description Sets a primary classloader for situations where
a primary classloader is not accessible. This
ClassLoader is used when the class is not found in
the default ClassLoader search path. As example,
when the database driver is loaded by a different
ClassLoader not in the ClassLoader search path for
JDO or JPA specifications.

Range of Values instance of java.lang.ClassLoader

datanucleus.plugin.pluginRegistryClassName

Description Name of a class that acts as
registry for plug-ins. This defaults to
org.datanucleus.plugin.NonManagedPluginRegistry
(for when not using OSGi). If you are within
an OSGi environment you can set this to
org.datanucleus.plugin.OSGiPluginRegistry

Range of Values {fully-qualified class name}

datanucleus.plugin.pluginRegistryBundleCheck

Description Defines what happens when plugin bundles are found
and are duplicated

Range of Values EXCEPTION | LOG | NONE

datanucleus.plugin.allowUserBundles

Description Defines whether user-provided bundles providing
DataNucleus extensions will be registered. This is only
respected if used in a non-Eclipse OSGi environment.

Range of Values true | false

datanucleus.plugin.validatePlugins

Description Defines whether a validation step should be performed
checking for plugin dependencies etc. This is only
respected if used in a non-Eclipse OSGi environment.

Range of Values false | true

1 0 P e r s i s t e n c e P r o p e r t i e s 40

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.findObject.validateWhenCached

Description When a user calls getObjectById (JDO) or findObject
(JPA) and they request validation this allows the
turning off of validation when an object is found in the
(L2) cache. Can be useful for performance reasons,
but should be used with care. Defaults to true for JDO
(to be consistent with the JDO spec), and to false for
JPA.

Range of Values true | false

datanucleus.findObject.typeConversion

Description When calling PM.getObjectById(Class, Object) or
EM.find(Class, Object) the second argument really
ought to be the exact type of the primary-key field.
This property enables conversion of basic numeric
types (Long, Integer, Short) to the appropriate numeric
type (if the PK is a numeric type). Set this to false if
you want strict JPA compliance.

Range of Values true | false

10.1.3 Schema Control

datanucleus.schema.autoCreateAll

Description Whether to automatically generate any schema,
tables, columns, constraints that don't exist. Please
refer to the Schema Guide for more details.

Range of Values true | false

datanucleus.schema.autoCreateSchema

Description Whether to automatically generate any schema that
doesn't exist. This depends very much on whether the
datastore in question supports this operation. Please
refer to the Schema Guide for more details.

Range of Values true | false

datanucleus.schema.autoCreateTables

Description Whether to automatically generate any tables that
don't exist. Please refer to the Schema Guide for
more details.

Range of Values true | false

1 0 P e r s i s t e n c e P r o p e r t i e s 41

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.schema.autoCreateColumns

Description Whether to automatically generate any columns that
don't exist. Please refer to the Schema Guide for
more details.

Range of Values true | false

datanucleus.schema.autoCreateConstraints

Description Whether to automatically generate any constraints
that don't exist. Please refer to the Schema Guide for
more details.

Range of Values true | false

datanucleus.autoCreateWarnOnError

Description Whether to only log a warning when errors occur
during the auto-creation/validation process. Please
use with care since if the schema is incorrect
errors will likely come up later and this will
postpone those error checks til later, when it may
be too late!!

Range of Values true | false

datanucleus.schema.validateAll

Description Alias for defining
datanucleus.schema.validateTables,
datanucleus.schema.validateColumns and
datanucleus.schema.validateConstraints as all
true. Please refer to the Schema Guide for more
details.

Range of Values true | false

datanucleus.schema.validateTables

Description Whether to validate tables against the persistence
definition. Please refer to the Schema Guide for more
details.

Range of Values true | false

datanucleus.schema.validateColumns

Description Whether to validate columns against the persistence
definition. This refers to the column detail structure
and NOT to whether the column exists or not. Please
refer to the Schema Guide for more details.

Range of Values true | false

1 0 P e r s i s t e n c e P r o p e r t i e s 42

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.schema.validateConstraints

Description Whether to validate table constraints against the
persistence definition. Please refer to the Schema
Guide for more details.

Range of Values true | false

datanucleus.readOnlyDatastore

Description Whether the datastore is read-only or not (fixed in
structure and contents).

Range of Values true | false

datanucleus.readOnlyDatastoreAction

Description What happens when a datastore is read-only and an
object is attempted to be persisted.

Range of Values EXCEPTION | IGNORE

datanucleus.generateSchema.database.mode

Description Whether to perform any schema generation to the
database at startup. Will process the schema for all
classes that have metadata loaded at startup (i.e the
classes specified in a persistence-unit).

Range of Values create | drop | drop-and-create | none

datanucleus.generateSchema.scripts.mode

Description Whether to perform any schema generation into
scripts at startup. Will process the schema for all
classes that have metadata loaded at startup (i.e the
classes specified in a persistence-unit).

Range of Values create | drop | drop-and-create | none

datanucleus.generateSchema.scripts.create.target

Description Name of the script file to write to if doing a "create"
with the target as "scripts"

Range of Values datanucleus-schema-create.ddl | {filename}

datanucleus.generateSchema.scripts.drop.target

Description Name of the script file to write to if doing a "drop" with
the target as "scripts"

1 0 P e r s i s t e n c e P r o p e r t i e s 43

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Range of Values datanucleus-schema-drop.ddl | {filename}

datanucleus.generateSchema.scripts.create.source

Description Name of a script file to run to create tables. Can be
absolute filename, or URL string

Range of Values {filename}

datanucleus.generateSchema.scripts.drop.source

Description Name of a script file to run to drop tables. Can be
absolute filename, or URL string

Range of Values {filename}

datanucleus.generateSchema.scripts.load

Description Name of a script file to run to load data into the
schema. Can be absolute filename, or URL string

Range of Values {filename}

datanucleus.identifierFactory

Description Name of the identifier factory to use when generating
table/column names etc (RDBMS datastores only).
See also the JDO RDBMS Identifier Guide.

Range of Values datanucleus1 | datanucleus2 | jpox | jpa | {user-
plugin-name}

datanucleus.identifier.namingFactory

Description Name of the identifier NamingFactory to use when
generating table/column names etc (non-RDBMS
datastores). Defaults to "datanucleus2" for JDO and
"jpa" for JPA usage.

Range of Values datanucleus2 | jpa | {user-plugin-name}

datanucleus.identifier.case

Description Which case to use in generated table/column identifier
names. See also the Datastore Identifier Guide.
RDBMS defaults to UPPERCASE. Cassandra defaults
to lowercase

Range of Values UPPERCASE | LowerCase | MixedCase

datanucleus.identifier.wordSeparator

1 0 P e r s i s t e n c e P r o p e r t i e s 44

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Separator character(s) to use between words in
generated identifiers. Defaults to "_" (underscore)

datanucleus.identifier.tablePrefix

Description Prefix to be prepended to all generated table names (if
the identifier factory supports it)

datanucleus.identifier.tableSuffix

Description Suffix to be appended to all generated table names (if
the identifier factory supports it)

datanucleus.defaultInheritanceStrategy

Description How to choose the inheritance strategy default
for classes where no strategy has been specified.
With JDO2 this will be "new-table" for base classes
and "superclass-table" for subclasses. With
TABLE_PER_CLASS this will be "new-table" for all
classes.

Range of Values JDO2 | TABLE_PER_CLASS

datanucleus.store.allowReferencesWithNoImplementations

Description Whether we permit a reference field (1-1 relation) or
collection of references where there are no defined
implementations of the reference. False means that an
exception will be thrown during schema generation

Range of Values true | false

10.1.4 Transactions and Locking

datanucleus.transactionIsolation

Description Select the default transaction isolation level for ALL
PM/EM factories. Some databases do not support all
isolation levels, refer to your database documentation.
Please refer to the transaction guides for JDO and
JPA

Range of Values read-uncommitted | read-committed | repeatable-
read | serializable

datanucleus.SerializeRead

1 0 P e r s i s t e n c e P r o p e r t i e s 45

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description With datastore transactions you can apply locking
to objects as they are read from the datastore. This
setting applies as the default for all PM/EMs obtained.
You can also specify this on a per-transaction or per-
query basis (which is often better to avoid deadlocks
etc)

Range of Values true | false

datanucleus.jtaLocator

Description Selects the locator to use when using JTA
transactions so that DataNucleus can find the JTA
TransactionManager. If this isn't specified and using
JTA transactions DataNucleus will search all available
locators which could have a performance impact. See
JTA Locator extension. If specifying "custom_jndi"
please also specify "datanucleus.jtaJndiLocation"

Range of Values jboss | jonas | jotm | oc4j | orion | resin | sap | sun |
weblogic | websphere | custom_jndi | alias of a JTA
transaction locator

datanucleus.jtaJndiLocation

Description Name of a JNDI location to find the JTA transaction
manager from (when using JTA transactions). This is
for the case where you know where it is located. If not
used DataNucleus will try certain well-known locations

Range of Values JNDI location

datanucleus.datastoreTransactionFlushLimit

Description For use when using datastore transactions and is the
limit on number of dirty objects before a flush to the
datastore will be performed.

Range of values 1 | positive integer

datanucleus.flush.mode

Description Sets when persistence operations are flushed to
the datastore. MANUAL means that operations will
be sent only on flush()/commit(). AUTO means that
operations will be sent immediately.

Range of values MANUAL | AUTO

datanucleus.flush.optimised

1 0 P e r s i s t e n c e P r o p e r t i e s 46

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Whether to use an "optimised" flush process, changing
the order of persists for referential integrity (as used
by RDBMS typically), or whether to just build a list of
deletes, inserts and updates and do them in batches.
RDBMS defaults to true, whereas other datastores
default to false (due to not having referential integrity,
so gaining from batching

Range of values true | false

datanucleus.nontx.atomic

Description When a user invokes a nontransactional operation
they can choose for these changes to go straight
to the datastore (atomically) or to wait until either
the next transaction commit, or close of the PM/EM.
Disable this if you want operations to be processed
with the next real transaction. This defaults to true for
JDO, and false for JPA

Range of Values true | false

datanucleus.connectionPoolingType

Description This property allows you to utilise a 3rd party software
package for enabling connection pooling. When using
RDBMS you can select from DBCP, C3P0, Proxool,
BoneCP, or dbcp-builtin. You must have the 3rd party
jars in the CLASSPATH to use these options. Please
refer to the Connection Pooling guide for details.

Range of Values None | DBCP | DBCP2 | C3P0 | Proxool | BoneCP |
HikariCP | dbcp-builtin | {others}

datanucleus.connectionPoolingType.nontx

Description This property allows you to utilise a 3rd party
software package for enabling connection pooling for
nontransactional connections using a DataNucleus
plugin. If you don't specify this value but do define the
above value then that is taken by default. Refer to the
above property for more details.

Range of Values None | DBCP | DBCP2 | C3P0 | Proxool | BoneCP |
HikariCP | "dbcp-builtin" | {others}

datanucleus.connection.nontx.releaseAfterUse

1 0 P e r s i s t e n c e P r o p e r t i e s 47

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Applies only to non-transactional connections and
refers to whether to re-use (pool) the connection
internally for later use. The default behaviour is
to close any such non-transactional connection
after use. If doing significant non-transactional
processing in your application then this may provide
performance benefits, but be careful about the number
of connections being held open (if one is held open
per PM/EM).

Range of Values true | false

datanucleus.connection.singleConnectionPerExecutionContext

Description With an ExecutionContext (PM/EM) we normally
allocate one connection for a transaction and close it
after the transaction, then a different connection for
nontransactional ops. This flag acts as a hint to the
store plugin to obtain and retain a single connection
throughout the lifetime of the PM/EM.

Range of Values true | false

datanucleus.connection.resourceType

Description Resource Type for connection ???

Range of Values JTA | RESOURCE_LOCAL

datanucleus.connection.resourceType2

Description Resource Type for connection 2

Range of Values JTA | RESOURCE_LOCAL

10.1.5 Caching

datanucleus.cache.collections

Description SCO collections can be used in 2 modes in
DataNucleus. You can allow DataNucleus to cache
the collections contents, or you can tell DataNucleus
to access the datastore for every access of the SCO
collection. The default is to use the cached collection.

Range of Values true | false

datanucleus.cache.collections.lazy

1 0 P e r s i s t e n c e P r o p e r t i e s 48

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description When using cached collections/maps, the elements/
keys/values can be loaded when the object is
initialised, or can be loaded when accessed (lazy
loading). The default is to use lazy loading when
the field is not in the current fetch group, and to not
use lazy loading when the field is in the current fetch
group.

Range of Values true | false

datanucleus.cache.level1.type

Description Name of the type of Level 1 cache to use. Defines the
backing map. See also Cache docs for JDO, and for
JPA

Range of Values soft | weak | strong | {your-plugin-name}

datanucleus.cache.level2.type

Description Name of the type of Level 2 Cache to use. Can be
used to interface with external caching products. Use
"none" to turn off L2 caching. See also Cache docs
for JDO, and for JPA

Range of Values none | soft | weak | coherence | ehcache |
ehcacheclassbased | cacheonix | oscache |
swarmcache | javax.cache | spymemcached |
xmemcached | {your-plugin-name}

datanucleus.cache.level2.mode

Description The mode of operation of the L2 cache,
deciding which entities are cached. The
default (UNSPECIFIED) is the same as
DISABLE_SELECTIVE. See also Cache docs for
JDO, and for JPA

Range of Values NONE | ALL | ENABLE_SELECTIVE |
DISABLE_SELECTIVE | UNSPECIFIED

datanucleus.cache.level2.storeMode

Description Whether to use the L2 cache for storing values (set
to "bypass" to not store within the context of the
operation)

Range of Values use | bypass

datanucleus.cache.level2.retrieveMode

Description Whether to use the L2 cache for retrieving values (set
to "bypass" to not retrieve from L2 cache within the
context of the operation, i.e go to the datastore)

1 0 P e r s i s t e n c e P r o p e r t i e s 49

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Range of Values use | bypass

datanucleus.cache.level2.updateMode

Description When the objects in the L2 cache should be updated.
Defaults to updating at commit AND when fields are
read from a datastore object

Range of Values commit-and-datastore-read | commit

datanucleus.cache.level2.cacheName

Description Name of the cache. This is for use with plugins such
as the Tangosol cache plugin for accessing the
particular cache. Please refer to the Cache Guide for
JDO or JPA

Range of Values your cache name

datanucleus.cache.level2.maxSize

Description Max size for the L2 cache (supported by weak,
soft, coherence, ehcache, ehcacheclassbased,
javax.cache)

Range of Values -1 | integer value

datanucleus.cache.level2.clearAtClose

Description Whether the close of the L2 cache (when the PMF/
EMF closes) should also clear out any objects from
the underlying cache mechanism. By default it will
clear objects out but if the user has configured an
external cache product and wants to share objects
across multiple PMF/EMFs then this can be set to
false.

Range of Values true | false

datanucleus.cache.level2.batchSize

Description When objects are added to the L2 cache at commit
they are typically batched. This property sets the max
size of the batch.

Range of Values 100 | integer value

datanucleus.cache.level2.timeout

Description Some caches (Cacheonix, javax.cache) allow
specification of an expiration time for objects in the
cache. This property is the timeout in milliseconds (will
be unset meaning use cache default).

1 0 P e r s i s t e n c e P r o p e r t i e s 50

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Range of Values -1 | integer value

datanucleus.cache.level2.readThrough

Description With javax.cache L2 caches you can configure the
cache to allow read-through

Range of Values true | false

datanucleus.cache.level2.writeThrough

Description With javax.cache L2 caches you can configure the
cache to allow write-through

Range of Values true | false

datanucleus.cache.level2.storeByValue

Description With javax.cache L2 caches you can configure the
cache to store by value (as opposed to by reference)

Range of Values true | false

datanucleus.cache.level2.statisticsEnabled

Description With javax.cache L2 caches you can configure the
cache to enable statistics gathering (accessible via
JMX)

Range of Values false | true

datanucleus.cache.queryCompilation.type

Description Type of cache to use for caching of generic query
compilations

Range of Values none | soft | weak | strong | {your-plugin-name}

datanucleus.cache.queryCompilationDatastore.type

Description Type of cache to use for caching of datastore query
compilations

Range of Values none | soft | weak | strong | {your-plugin-name}

datanucleus.cache.queryResults.type

Description Type of cache to use for caching query results.

Range of Values none | soft | weak | strong | javax.cache |
spymemcached | xmemcached | cacheonix | {your-
plugin-name}

1 0 P e r s i s t e n c e P r o p e r t i e s 51

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.cache.queryResults.cacheName

Description Name of cache for caching the query results.

Range of Values datanucleus-query | {your-name}

datanucleus.cache.queryResults.maxSize

Description Max size for the query results cache (supported by
weak, soft, strong)

Range of Values -1 | integer value

10.1.6 Validation

datanucleus.validation.mode

Description Determines whether the automatic lifecycle event
validation is in effect. Defaults to auto for JPA and
none for JDO

Range of Values auto | callback | none

datanucleus.validation.group.pre-persist

Description The classes to validation on pre-persist callback

Range of Values

datanucleus.validation.group.pre-update

Description The classes to validation on pre-update callback

Range of Values

datanucleus.validation.group.pre-remove

Description The classes to validation on pre-remove callback

Range of Values

datanucleus.validation.factory

Description The validation factory to use in validation

Range of Values

1 0 P e r s i s t e n c e P r o p e r t i e s 52

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

10.1.7 Value Generation

datanucleus.valuegeneration.transactionAttribute

Description Whether to use the PM connection or open a new
connection. Only used by value generators that
require a connection to the datastore.

Range of Values New | UsePM

datanucleus.valuegeneration.transactionIsolation

Description Select the default transaction isolation
level for identity generation. Must have
datanucleus.valuegeneration.transactionAttribute set
to New Some databases do not support all isolation
levels, refer to your database documentation. Please
refer to the transaction guides for JDO and JPA

Range of Values read-uncommitted | read-committed | repeatable-
read | serializable

datanucleus.valuegeneration.sequence.allocationSize

Description If using JDO3.0 still and not specifying the size of your
sequence, this acts as the default allocation size.

Range of Values 10 | (integer value)

datanucleus.valuegeneration.increment.allocationSize

Description Sets the default allocation size for any "increment"
value strategy. You can configure each member
strategy individually but they fall back to this value if
not set

Range of Values 10 | (integer value)

10.1.8 MetaData

datanucleus.metadata.jdoFileExtension

Description Suffix for JDO MetaData files. Provides the ability to
override the default suffix and also to have one PMF
with one suffix and another with a different suffix,
hence allowing differing persistence of the same
classes using different PMF's.

Range of values jdo | {file suffix}

datanucleus.metadata.ormFileExtension

1 0 P e r s i s t e n c e P r o p e r t i e s 53

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Suffix for ORM MetaData files. Provides the ability
to override the default suffix and also to have one
PMF with one suffix and another with a different suffix,
hence allowing differing persistence of the same
classes using different PMF's.

Range of values orm | {file suffix}

datanucleus.metadata.jdoqueryFileExtension

Description Suffix for JDO Query MetaData files. Provides the
ability to override the default suffix and also to have
one PMF with one suffix and another with a different
suffix, hence allowing differing persistence of the same
classes using different PMF's.

Range of values jdoquery | {file suffix}

datanucleus.metadata.alwaysDetachable

Description Whether to treat all classes as detachable irrespective
of input metadata. See also "alwaysDetachable"
enhancer option.

Range of values false | true

datanucleus.metadata.ignoreMetaDataForMissingClasses

Description Whether to ignore metadata for classes that aren't
found. Default(false) is to throw an exception.

Range of values false | true

datanucleus.metadata.xml.validate

Description Whether to validate the MetaData file(s) for XML
correctness (against the DTD) when parsing.

Range of values true | false

datanucleus.metadata.xml.namespaceAware

Description Whether to allow for XML namespaces in metadata
files. The vast majority of sane people should not need
this at all, but it's enabled by default to allow for those
that do (since v3.2.3)

Range of values true | false

datanucleus.metadata.allowXML

Description Whether to allow XML metadata. Turn this off if not
using any, for performance. From v3.0.4 onwards

1 0 P e r s i s t e n c e P r o p e r t i e s 54

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Range of values true | false

datanucleus.metadata.allowAnnotations

Description Whether to allow annotations metadata. Turn this off if
not using any, for performance. From v3.0.4 onwards

Range of values true | false

datanucleus.metadata.allowLoadAtRuntime

Description Whether to allow load of metadata at runtime. This
is intended for the situation where you are handling
persistence of a persistence-unit and only want the
classes explicitly specified in the persistence-unit.

Range of values true | false

datanucleus.metadata.autoregistration

Description Whether to use the JDO auto-registration of metadata.
Turned on by default

Range of values true | false

datanucleus.metadata.supportORM

Description Whether to support "orm" mapping files. By default we
use what the datastore plugin supports. This can be
used to turn it off when the datastore supports it but
we dont plan on using it (for performance)

Range of values true | false

10.1.9 Auto-Start

datanucleus.autoStartMechanism

1 0 P e r s i s t e n c e P r o p e r t i e s 55

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description How to initialise DataNucleus at startup. This allows
DataNucleus to read in from some source the classes
that it was persisting for this data store the previous
time. XML stores the information in an XML file for this
purpose. SchemaTable (only for RDBMS) stores a
table in the RDBMS for this purpose. Classes looks
at the property datanucleus.autoStartClassNames
for a list of classes. MetaData looks at the property
datanucleus.autoStartMetaDataFiles for a list of
metadata files The other option (default) is None (start
from scratch each time). Please refer to the Auto-
Start Mechanism Guide for more details. Alternatively
just use persistence.xml to specify the classes
and/or mapping files to load at startup. Note also
that "Auto-Start" is for RUNTIME use only (not during
SchemaTool).

Range of Values None | XML | Classes | MetaData | SchemaTable

datanucleus.autoStartMechanismMode

Description The mode of operation of the auto start mode.
Currently there are 3 values. "Quiet" means that at
startup if any errors are encountered, they are fixed
quietly. "Ignored" means that at startup if any errors
are encountered they are just ignored. "Checked"
means that at startup if any errors are encountered
they are thrown as exceptions.

Range of values Checked | Ignored | Quiet

datanucleus.autoStartMechanismXmlFile

Description Filename used for the XML file for AutoStart when
using "XML" Auto-Start Mechanism

datanucleus.autoStartClassNames

Description This property specifies a list of classes (comma-
separated) that are loaded at startup when using the
"Classes" Auto-Start Mechanism.

datanucleus.autoStartMetaDataFiles

Description This property specifies a list of metadata files (comma-
separated) that are loaded at startup when using the
"MetaData" Auto-Start Mechanism.

10.1.10 Query control

datanucleus.query.flushBeforeExecution

1 0 P e r s i s t e n c e P r o p e r t i e s 56

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description This property can enforce a flush to the datastore of
any outstanding changes just before executing all
queries. If using optimistic transactions any updates
are typically held back until flush/commit and so the
query would otherwise not take them into account.

Range of Values true | false

datanucleus.query.useFetchPlan

Description Whether to use the FetchPlan when executing a
JDOQL query. The default is to use it which means
that the relevant fields of the object will be retrieved.
This allows the option of just retrieving the identity
columns.

Range of Values true | false

datanucleus.query.compileOptimised

Description The generic query compilation process has a simple
"optimiser" to try to iron out potential problems in
users queries. It isn't very advanced yet, but currently
will detect and try to fix a query clause like "var ==
this" (which is pointless). This will be extended in the
future to handle other common situations

Range of Values true | false

datanucleus.query.jdoql.allowAll

Description javax.jdo.query.JDOQL queries are allowed by JDO
only to run SELECT queries. This extension permits to
bypass this limitation so that DataNucleus extension
bulk "update" and bulk "delete" can be run.

Range of Values false | true

datanucleus.query.sql.allowAll

Description javax.jdo.query.SQL queries are allowed by JDO2
only to run SELECT queries. This extension permits
to bypass this limitation (so for example can execute
stored procedures).

Range of Values false | true

datanucleus.query.checkUnusedParameters

Description Whether to check for unused input parameters and
throw an exception if found. The JDO and JPA
specs require this check and is a good guide to
having misnamed a parameter name in the query for
example.

1 0 P e r s i s t e n c e P r o p e r t i e s 57

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Range of Values true | false

10.1.11 Datastore Specific

Properties below here are for particular datastores only.

datanucleus.rdbms.datastoreAdapterClassName

Description This property allows you to supply the class name
of the adapter to use for your datastore. The default
is not to specify this property and DataNucleus will
autodetect the datastore type and use its own internal
datastore adapter classes. This allows you to override
the default behaviour where there maybe is some
issue with the default adapter class. Applicable for
RDBMS only

Range of Values (valid class name on the CLASSPATH)

datanucleus.rdbms.useLegacyNativeValueStrategy

Description This property changes the process for deciding the
value strategy to use when the user has selected
"native"(JDO)/"auto"(JPA) to be like it was with version
3.0 and earlier, so using "increment" and "uuid-hex".
Applicable for RDBMS only

Range of Values true | false

datanucleus.rdbms.statementBatchLimit

Description Maximum number of statements that can be batched.
The default is 50 and also applies to delete of objects.
Please refer to the Statement Batching guide
Applicable for RDBMS only

Range of Values integer value (0 = no batching)

datanucleus.rdbms.checkExistTablesOrViews

Description Whether to check if the table/view exists. If false, it
disables the automatic generation of tables that don't
exist. Applicable for RDBMS only

Range of Values true | false

datanucleus.rdbms.useDefaultSqlType

1 0 P e r s i s t e n c e P r o p e r t i e s 58

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description This property applies for schema generation in terms
of setting the default column "sql-type" (when you
haven't defined it) and where the JDBC driver has
multiple possible "sql-type" for a "jdbc-type". If the
property is set to false, it will take the first provided
"sql-type" from the JDBC driver. If the property is set
to true, it will take the "sql-type" that matches what
the DataNucleus "plugin.xml" implies. Applicable for
RDBMS only

Range of Values true | false

datanucleus.rdbms.initializeColumnInfo

Description Allows control over what column information is
initialised when a table is loaded for the first time.
By default info for all columns will be loaded.
Unfortunately some RDBMS are particularly poor at
returning this information so we allow reduced forms
to just load the primary key column info, or not to load
any. Applicable for RDBMS only

Range of Values ALL | PK | NONE

datanucleus.rdbms.classAdditionMaxRetries

Description The maximum number of retries when trying to find a
class to persist or when validating a class. Applicable
for RDBMS only

Range of Values 3 | A positive integer

datanucleus.rdbms.constraintCreateMode

Description How to determine the RDBMS constraints to be
created. DataNucleus will automatically add foreign-
keys/indices to handle all relationships, and will utilise
the specified MetaData foreign-key information. JDO2
will only use the information in the MetaData file(s).
Applicable for RDBMS only

Range of Values DataNucleus | JDO2

datanucleus.rdbms.uniqueConstraints.mapInverse

Description Whether to add unique constraints to the element
table for a map inverse field. Possible values are true
or false. Applicable for RDBMS only

Range of values true | false

datanucleus.rdbms.discriminatorPerSubclassTable

1 0 P e r s i s t e n c e P r o p e r t i e s 59

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Property that controls if only the base class where
the discriminator is defined will have a discriminator
column Applicable for RDBMS only

Range of values false | true

datanucleus.rdbms.stringDefaultLength

Description The default (max) length to use for all strings that
don't have their column length defined in MetaData.
Applicable for RDBMS only

Range of Values 255 | A valid length

datanucleus.rdbms.stringLengthExceededAction

Description Defines what happens when persisting a String field
and its length exceeds the length of the underlying
datastore column. The default is to throw an
Exception. The other option is to truncate the String
to the length of the datastore column. Applicable for
RDBMS only

Range of Values EXCEPTION | TRUNCATE

datanucleus.rdbms.useColumnDefaultWhenNull

Description If an object is being persisted and a field (column)
is null, the default behaviour is to look whether the
column has a "default" value defined in the datastore
and pass that in. You can turn this off and instead
pass in NULL for the column by setting this property to
false. Applicable for RDBMS only

Range of Values true | false

datanucleus.rdbms.persistEmptyStringAsNull

Description When persisting en empty string, should it be
persisted as null in the datastore. This is to allow for
datastores (Oracle) that dont differentiate between null
and empty string. If it is set to false and the datastore
doesnt differentiate then a special character will be
saved when storing an empty string. Applicable for
RDBMS only

Range of Values true | false

datanucleus.rdbms.query.fetchDirection

Description The direction in which the query results will be
navigated. Applicable for RDBMS only

Range of Values forward | reverse | unknown

1 0 P e r s i s t e n c e P r o p e r t i e s 60

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.rdbms.query.resultSetType

Description Type of ResultSet to create. Note 1) Not all JDBC
drivers accept all options. The values correspond
directly to the ResultSet options. Note 2) Not all
java.util.List operations are available for scrolling
result sets. An Exception is raised when unsupported
operations are invoked. Applicable for RDBMS only

Range of Values forward-only | scroll-sensitive | scroll-insensitive

datanucleus.rdbms.query.resultSetConcurrency

Description Whether the ResultSet is readonly or can be updated.
Not all JDBC drivers support all options. The
values correspond directly to the ResultSet options.
Applicable for RDBMS only

Range of Values read-only | updateable

datanucleus.rdbms.query.multivaluedFetch

Description How any multi-valued field should be fetched in a
query. 'exists' means use an EXISTS statement
hence retrieving all elements for the queried objects
in one SQL with EXISTS to select the affected owner
objects. 'none' means don't fetch container elements.
Applicable for RDBMS only

Range of Values exists | none

datanucleus.rdbms.oracleNlsSortOrder

Description Sort order for Oracle String fields in queries (BINARY
disables native language sorting) Applicable for
RDBMS only

Range of Values LATIN | See Oracle documentation

datanucleus.rdbms.mysql.engineType

Description Specify the default engine for any tables created in
MySQL. Applicable to MySQL only

Range of Values InnoDB | valid engine for MySQL

datanucleus.rdbms.mysql.collation

Description Specify the default collation for any tables created in
MySQL. Applicable to MySQL only

Range of Values valid collation for MySQL

1 0 P e r s i s t e n c e P r o p e r t i e s 61

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.rdbms.mysql.characterSet

Description Specify the default charset for any tables created in
MySQL. Applicable to MySQL only

Range of Values valid charset for MySQL

datanucleus.rdbms.schemaTable.tableName

Description Name of the table to use when using auto-start
mechanism of "SchemaTable" Please refer to the
JDO Auto-Start guide Applicable for RDBMS only

Range of Values NUCLEUS_TABLES | Valid table name

datanucleus.rdbms.connectionProviderName

Description Name of the connection provider to use to allow
failover Please refer to the Failover guide Applicable
for RDBMS only

Range of Values PriorityList | Name of a provider

datanucleus.rdbms.connectionProviderFailOnError

Description Whether to fail if an error occurs, or try to continue and
log warnings Applicable for RDBMS only

Range of Values true | false

datanucleus.rdbms.dynamicSchemaUpdates

Description Whether to allow dynamic updates to the schema.
This means that upon each insert/update the types
of objects will be tested and any previously unknown
implementations of interfaces will be added to the
existing schema. Applicable for RDBMS only

Range of Values true | false

datanucleus.rdbms.omitDatabaseMetaDataGetColumns

Description Whether to bypass all calls to
DatabaseMetaData.getColumns(). This JDBC method
is called to get schema information, but on some
JDBC drivers (e.g Derby) it can take an inordinate
amout of time. Setting this to true means that your
datastore schema has to be correct and no checks will
be performed. Applicable for RDBMS only

Range of Values true | false

datanucleus.rdbms.sqlTableNamingStrategy

1 0 P e r s i s t e n c e P r o p e r t i e s 62

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Name of the plugin to use for defining the names of
the aliases of tables in SQL statements. Applicable
for RDBMS only

Range of Values alpha-scheme | t-scheme

datanucleus.rdbms.tableColumnOrder

Description How we should order the columns in a table. The
default is to put the fields of the owning class first,
followed by superclasses, then subclasses. An
alternative is to start from the base superclass first,
working down to the owner, then the subclasses
Applicable for RDBMS only

Range of Values owner-first | superclass-first

datanucleus.rdbms.allowColumnReuse

Description This property allows you to reuse columns for more
than 1 field of a class. It is false by default to protect
the user from erroneously typing in a column name.
Additionally, if a column is reused, the user ought to
think about how to determine which field is written to
that column ... all reuse ought to imply the same value
in those fields so it doesn't matter which field is written
there, or retrieved from there. Applicable for RDBMS
only

Range of Values true | false

datanucleus.rdbms.statementLogging

Description How to log SQL statements. The default is to log
the statement and replace any parameters with the
value provided in angle brackets. Alternatively you
can log the statement with any parameters replaced
by just the values (no brackets). The final option is to
log the raw JDBC statement (with ? for parameters).
Applicable for RDBMS only

Range of Values values-in-brackets | values | jdbc

datanucleus.rdbms.fetchUnloadedAutomatically

Description If enabled will, upon a request to load a field, check
for any unloaded fields that are non-relation fields or
1-1/N-1 fields and will load them in the same SQL call.
Applicable for RDBMS only

Range of Values true | false

datanucleus.rdbms.adapter.informixUseSerialForIdentity

1 0 P e r s i s t e n c e P r o p e r t i e s 63

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Whether we are using SERIAL for identity columns
(instead of SERIAL8). Applicable for RDBMS only.

Range of Values true | false

datanucleus.cloud.storage.bucket

Description This is a mandatory property that allows you to supply
the bucket name to store your data. Applicable for
Google Storage, and AmazonS3 only.

Range of Values Any valid string

datanucleus.hbase.enforceUniquenessInApplication

Description Setting this property to true means that when a new
object is persisted (and its identity is assigned), no
check will be made as to whether it exists in the
datastore and that the user takes responsibility for
such checks. Applicable for HBase only.

Range of Values true | false

datanucleus.cassandra.compression

Description Type of compression to use for the Cassandra cluster.
Applicable for Cassandra only.

Range of Values none | snappy

datanucleus.cassandra.metrics

Description Whether metrics are enabled for the Cassandra
cluster. Applicable for Cassandra only.

Range of Values true | false

datanucleus.cassandra.ssl

Description Whether SSL is enabled for the Cassandra cluster.
Applicable for Cassandra only.

Range of Values true | false

datanucleus.cassandra.socket.readTimeoutMillis

Description Socket read timeout for the Cassandra cluster.
Applicable for Cassandra only.

Range of Values

datanucleus.cassandra.socket.connectTimeoutMillis

1 0 P e r s i s t e n c e P r o p e r t i e s 64

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Description Socket connect timeout for the Cassandra cluster.
Applicable for Cassandra only.

Range of Values

1 1 S e c u r i t y 65

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

11 Security
...

11.1 Java Security Manager
The Java Security Manager can be used with DataNucleus to provide a security platform to sensitive
applications.

To use the Security Manager, specify the java.security.manager and java.security.policy arguments
when starting the JVM. e.g.

java -Djava.security.manager -Djava.security.policy==/etc/apps/security/security.policy ...

Note that when you use -Djava.security.policy==... (double equals sign) you override the default
JVM security policy files, while if you use -Djava.security.policy=... (single equals sign), you append
the security policy file to any existing ones.

The following is a sample security policy file to be used with DataNucleus.

1 1 S e c u r i t y 66

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

grant codeBase "file:${/}jdo2-api-2.0.jar" {

 //jdo API needs datetime (timezone class needs the following)

 permission java.util.PropertyPermission "user.country", "read";

 permission java.util.PropertyPermission "user.variant", "read";

 permission java.util.PropertyPermission "user.timezone", "read,write";

 permission java.util.PropertyPermission "java.home", "read";

};

grant codeBase "file:${/}datanucleus*.jar" {

 //jdo

 permission javax.jdo.spi.JDOPermission "getMetadata";

 permission javax.jdo.spi.JDOPermission "setStateManager";

 //DataNucleus needs to get classloader of classes

 permission java.lang.RuntimePermission "getClassLoader";

 //DataNucleus needs to detect the java and os version

 permission java.util.PropertyPermission "java.version", "read";

 permission java.util.PropertyPermission "os.name", "read";

 //DataNucleus reads these system properties

 permission java.util.PropertyPermission "datanucleus.*", "read";

 permission java.util.PropertyPermission "javax.jdo.*", "read";

 //DataNucleus runtime enhancement (needs read access to all jars/classes in classpath,

 // so use <<ALL FILES>> to facilitate config)

 permission java.lang.RuntimePermission "createClassLoader";

 permission java.io.FilePermission "<<ALL FILES>>", "read";

 //DataNucleus needs to read manifest files (read permission to location of MANIFEST.MF files)

 permission java.io.FilePermission "${user.dir}${/}-", "read";

 permission java.io.FilePermission "<<ALL FILES>>", "read";

 //DataNucleus uses reflection!!!

 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

 permission java.lang.RuntimePermission "accessDeclaredMembers";

};

grant codeBase "file:${/}datanucleus-hbase*.jar" {

 //HBASE does not run in a doPrivileged, so we do...

 permission java.net.SocketPermission "*", "connect,resolve";

};

1 2 L o g g i n g 67

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

12 Logging
...

12.1 DataNucleus Logging
DataNucleus can be configured to log significant amounts of information regarding its process.
This information can be very useful in tracking the persistence process, and particularly if you have
problems. DataNucleus will log as follows :-

• Log4J - if you have Log4J in the CLASSPATH, Apache Log4J will be used
• java.util.logging - if you don't have Log4J in the CLASSPATH, then java.util.logging will be

used
DataNucleus logs messages to various categories (in Log4J and java.util.logging these correspond
to a "Logger"), allowing you to filter the logged messages by these categories - so if you are only
interested in a particular category you can effectively turn the others off. DataNucleus's log is written
by default in English. If your JDK is running in a Spanish locale then your log will be written in
Spanish. If you have time to translate our log messages into other languages, please contact one
of the developers via the Online Forum.

12.1.1 Logging Categories

DataNucleus uses a series of categories, and logs all messages to these categories. Currently
DataNucleus uses the following

• DataNucleus.Persistence - All messages relating to the persistence process
• DataNucleus.Transaction - All messages relating to transactions
• DataNucleus.Connection - All messages relating to Connections.
• DataNucleus.Query - All messages relating to queries
• DataNucleus.Cache - All messages relating to the DataNucleus Cache
• DataNucleus.MetaData - All messages relating to MetaData
• DataNucleus.Datastore - All general datastore messages
• DataNucleus.Datastore.Schema - All schema related datastore log messages
• DataNucleus.Datastore.Persist - All datastore persistence messages
• DataNucleus.Datastore.Retrieve - All datastore retrieval messages
• DataNucleus.Datastore.Native - Log of all 'native' statements sent to the datastore
• DataNucleus.General - All general operational messages
• DataNucleus.Lifecycle - All messages relating to object lifecycle changes
• DataNucleus.ValueGeneration - All messages relating to value generation
• DataNucleus.Enhancer - All messages from the DataNucleus Enhancer.
• DataNucleus.SchemaTool - All messages from DataNucleus SchemaTool
• DataNucleus.JDO - All messages general to JDO
• DataNucleus.JPA - All messages general to JPA
• DataNucleus.JCA - All messages relating to Connector JCA.
• DataNucleus.IDE - Messages from the DataNucleus IDE.

12.1.2 Using Log4J

Log4J allows logging messages at various severity levels. The levels used by Log4J, and by
DataNucleus's use of Log4J are DEBUG, INFO, WARN, ERROR, FATAL. Each message is
logged at a particular level to a category (as described above). The other setting is OFF which turns

http://jakarta.apache.org/log4j
http://forum.datanucleus.org

1 2 L o g g i n g 68

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

off a logging category. This is very useful in a production situation where maximum performance is
required.

To enable the DataNucleus log, you need to provide a Log4J configuration file when starting up your
application. This may be done for you if you are running within a JavaEE application server (check
your manual for details). If you are starting your application yourself, you would set a JVM parameter
as

-Dlog4j.configuration=file:log4j.properties

where log4j.properties is the name of your Log4J configuration file. Please note the "file:" prefix
to the file since a URL is expected. [When using java.util.logging you need to specify the system
property "java.util.logging.config.file"]

The Log4J configuration file is very simple in nature, and you typically define where the log goes to
(e.g to a file), and which logging level messages you want to see. Here's an example

Define the destination and format of our logging

log4j.appender.A1=org.apache.log4j.FileAppender

log4j.appender.A1.File=datanucleus.log

log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.A1.layout.ConversionPattern=%d{HH:mm:ss,SSS} (%t) %-5p [%c] - %m%n

DataNucleus Categories

log4j.category.DataNucleus.JDO=INFO, A1

log4j.category.DataNucleus.Cache=INFO, A1

log4j.category.DataNucleus.MetaData=INFO, A1

log4j.category.DataNucleus.General=INFO, A1

log4j.category.DataNucleus.Transaction=INFO, A1

log4j.category.DataNucleus.Datastore=DEBUG, A1

log4j.category.DataNucleus.ValueGeneration=DEBUG, A1

log4j.category.DataNucleus.Enhancer=INFO, A1

log4j.category.DataNucleus.SchemaTool=INFO, A1

In this example, I am directing my log to a file (datanucleus.log). I have defined a particular "pattern"
for the messages that appear in the log (to contain the date, level, category, and the message itself). In
addition I have assigned a level "threshold" for each of the DataNucleus categories. So in this case I
want to see all messages down to DEBUG level for the DataNucleus RDBMS persister.

Performance Tip : Turning OFF the logging, or at least down to ERROR level provides a significant
improvement in performance. With Log4J you do this via

log4j.category.DataNucleus=OFF

12.1.3 Using java.util.logging

java.util.logging allows logging messages at various severity levels. The levels used by
java.util.logging, and by DataNucleus's internally are fine, info, warn, severe. Each message is
logged at a particular level to a category (as described above).

By default, the java.util.logging configuration is taken from a properties file <JRE_DIRECTORY>/
lib/logging.properties". Modify this file and configure the categories to be logged, or use the

1 2 L o g g i n g 69

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.util.logging.config.file system property to specify a properties file (in java.util.Properties format)
where the logging configuration will be read from. Here is an example:

handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler

DataNucleus.General.level=fine

DataNucleus.JDO.level=fine

--- ConsoleHandler ---

Override of global logging level

java.util.logging.ConsoleHandler.level=SEVERE

java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

--- FileHandler ---

Override of global logging level

java.util.logging.FileHandler.level=SEVERE

Naming style for the output file:

java.util.logging.FileHandler.pattern=datanucleus.log

Limiting size of output file in bytes:

java.util.logging.FileHandler.limit=50000

Number of output files to cycle through, by appending an

integer to the base file name:

java.util.logging.FileHandler.count=1

Style of output (Simple or XML):

java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter

Please read the javadocs for java.util.logging for additional details on its configuration.

12.1.4 Sample Log Output

Here is a sample of the type of information you may see in the DataNucleus log when using Log4J.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/LogManager.html

1 2 L o g g i n g 70

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

21:26:09,000 (main) INFO DataNucleus.Datastore.Schema - Adapter initialised : MySQLAdapter, MySQL version 4.0.11

21:26:09,365 (main) INFO DataNucleus.Datastore.Schema - Creating table null.DELETE_ME1080077169045

21:26:09,370 (main) DEBUG DataNucleus.Datastore.Schema - CREATE TABLE DELETE_ME1080077169045

(

 UNUSED INTEGER NOT NULL

) TYPE=INNODB

21:26:09,375 (main) DEBUG DataNucleus.Datastore.Schema - Execution Time = 3 ms

21:26:09,388 (main) WARN DataNucleus.Datastore.Schema - Schema Name could not be determined for this datastore

21:26:09,388 (main) INFO DataNucleus.Datastore.Schema - Dropping table null.DELETE_ME1080077169045

21:26:09,388 (main) DEBUG DataNucleus.Datastore.Schema - DROP TABLE DELETE_ME1080077169045

21:26:09,392 (main) DEBUG DataNucleus.Datastore.Schema - Execution Time = 3 ms

21:26:09,392 (main) INFO DataNucleus.Datastore.Schema - Initialising Schema "" using "SchemaTable" auto-start

21:26:09,401 (main) DEBUG DataNucleus.Datastore.Schema - Retrieving type for table DataNucleus_TABLES

21:26:09,406 (main) INFO DataNucleus.Datastore.Schema - Creating table null.DataNucleus_TABLES

21:26:09,406 (main) DEBUG DataNucleus.Datastore.Schema - CREATE TABLE DataNucleus_TABLES

(

 CLASS_NAME VARCHAR (128) NOT NULL UNIQUE ,

 `TABLE_NAME` VARCHAR (127) NOT NULL UNIQUE

) TYPE=INNODB

21:26:09,416 (main) DEBUG DataNucleus.Datastore.Schema - Execution Time = 10 ms

21:26:09,417 (main) DEBUG DataNucleus.Datastore - Retrieving type for table DataNucleus_TABLES

21:26:09,418 (main) DEBUG DataNucleus.Datastore - Validating table : null.DataNucleus_TABLES

21:26:09,425 (main) DEBUG DataNucleus.Datastore - Execution Time = 7 ms

So you see the time of the log message, the level of the message (DEBUG, INFO, etc), the
category (DataNucleus.Datastore, etc), and the message itself. So, for example, if I had set the
DataNucleus.Datastore.Schema to DEBUG and all other categories to INFO I would see *all* DDL
statements sent to the database and very little else.

12.1.5 HOWTO : Log with log4j and DataNucleus under OSGi

This guide was provided by Marco Lopes, when using DataNucleus v2.2. All the bundles
which use log4j should have org.apache.log4j in their Import-Package attribute! (use:
org.apache.log4j;resolution:=optional if you don't want to be stuck with log4j whenever you use an
edited bundle in your project!).

Method 1

• Create a new "Fragment Project". Call it whatever you want (ex: log4j-fragment)
• You have to define a "Plugin-ID", that's the plugin where DN will run
• Edit the MANIFEST
• Under RUNTIME add log4j JAR to the Classpath
• Under Export-Packages add org.apache.log4j
• Save MANIFEST
• PASTE the log4j PROPERTIES file into the SRC FOLDER of the Project

Method 2

• Get an "OSGI Compliant" log4j bundle (you can get it from the SpringSource Enterprise Bundle
Repository at [http://ebr.springsource.com/repository/app/])

• Open the Bundle JAR with WINRAR (others might work)
• PASTE the log4j PROPERTIES file into the ROOT of the bundle

1 2 L o g g i n g 71

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Exit. Winrar will ask to UPDATE the JAR. Say YES.
• Add the updated OSGI compliant Log4j bundle to your Plugin Project Dependencies (Required-

Plugins)
Each method has it's own advantages. Use method 1 if you need to EDIT the log4j properties file
ON-THE-RUN. The disadvantage: it can only "target" one project at a time (but very easy to edit the
MANIFEST and select a new Host Plugin!). Use method 2 if you want to have log4j support in every
project with only one file. The disadvantage: it's not very practical to edit the log4j PROPERTIES file
(not because of the bundle EDIT, but because you have to restart eclipse in order for the new bundle
to be recognized).

1 3 D a t a s t o r e 72

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

13 Datastore
...

13.1 Datastores
The DataNucleus AccessPlatform is designed for flexibility to operate with any type of datastore.
We already support a very wide range of datastores and this will only increase in the future. In this
section you can find the specifics for particular supported datastores over and above what was already
addressed for JDO and JPA persistence.

RDBMS : tried and tested since the 1970s, relational
databases form an integral component of many
systems. They incorporate optimised querying
mechanisms, yet also can suffer from object-relational
impedance mismatch in some situations. They also
require an extra level of configuration to map from
objects across to relational tables/columns.

• HBase : HBase is a map-based datastore
originated within Hadoop, following the model of
BigTable.

• Cassandra : Cassandra is a distributed robust
clustered datastore.

• Neo4J : plugin providing persistence to the Neo4j
graph store

1 3 D a t a s t o r e 73

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Open Document Format (ODF) : ODF is an
international standard document format, and
its spreadsheets provide a widely used form for
publishing of data, making it available to other
groups.

• Excel (XLS) : Excel spreadsheets provide a
widely used format allowing publishing of data,
making it available to other groups (XLS format).

• Excel (OOXML) : Excel spreadsheets provide a
widely used format allowing publishing of data,
making it available to other groups (OOXML
format).

• XML : XML defines a document format and, as
such, is a key data transfer medium.

• JSON : another format of document for exchange,
in this case with particular reference to web
contexts.

• Amazon S3 : Amazon Simple Storage Service.

• Google Storage : Google Storage.

• MongoDB : plugin providing persistence to the
MongoDB NoSQL datastore

• NeoDatis : an open source object datastore. This
provides fast persistence of large object graphs,
without the necessity of any object-relational
mapping.

• LDAP : an internet standard datastore for indexed
data that is not changing significantly.

If you have a requirement for persistence to some other datastore, then it would likely be easily
provided by creation of a DataNucleus StoreManager. Please contact us via the forum so that you can
provide this and contribute it back to the community.

1 4 S u p p o r t e d F e a t u r e s 74

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

14 Supported Features
...

14.1 Datastore Feature Support
Whilst we aim to ultimately support all API features on all supported datastores, this isn't currently
possible. See below for a summary of what feature is supported on which datastore. .

Feature

General
Features

Datastore
Identity

Application
Identity

Nondurable
Identity
[1]

Composite
Identity

Nontransactional

ACID
Transactions

Versioned
objects

Optimistic
Checks

Fetch
Plan
control

Native
Connection
access
(JDO)

Encryption
of
data
[7]

Backed
object
wrappers
[2]

1 4 S u p p o r t e d F e a t u r e s 75

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Cascade
Persist

Cascade
Update

Cascade
Delete

Schema
Evolution
-
New
fields
[3]

Value
Generation

native(JDO)/
auto(JPA)

increment(JDO)/
table(JPA)

identity(JDO/
JPA)

sequence(JDO/
JPA)

uuid-
hex(JDO)

uuid-
string(JDO)

uuid

timestamp

timestamp-
value

max

O/R
Mapping

Indexes

Unique
Keys

Foreign
Keys

Primary
Keys

Inheritance(complete-
table)
[4]

1 4 S u p p o r t e d F e a t u r e s 76

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Inheritance(new-
table)

Inheritance(subclass-
table)

Inheritance(superclass-
table)

Discriminators

Secondary
Tables

Join
Tables

Embedded
PC

Embedded
PC
stored
nested
([8])

Embedded
Collection

Embedded
Map

Embedded
Array

Serialised
PC

Serialised
Collection

Serialised
Map

1-1

1-N

M-N

SchemaTool

Multitenancy
by
discriminator

Field
Types

Primitives,
Wrappers

java.lang.String
etc

1 4 S u p p o r t e d F e a t u r e s 77

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.lang.Enum

java.util.Date
etc

java.lang.Object

java.io.Serializable

java.util.Collection

java.util.Map

Arrays

Interfaces

Type
Converters

Type
Converter :
auto-
apply

Type
Converter :
multicolumn

Queries

JDOQL
evaluated
in
memory

JDOQL
evaluated
in
datastore
[5]

JDOQL
of
candidate
interface

JDOQL
Polymorphic
queries

JPQL
evaluated
in
memory

JPQL
evaluated
in
datastore
[5]

1 4 S u p p o r t e d F e a t u r e s 78

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

SQL
[6]

Stored
Procedures

JDOQL
Bulk
Update

JDOQL
Bulk
Delete

JPQL
Bulk
Update

JPQL
Bulk
Delete

[1]

represents partial implementation.
[2] - when a collection/map/array is "backed" it can put individual elements in the datastore at once
rather than writing everything, and additionally can control how the elements are retrieved
[3]

represents partial implementation.
[4]

means that datastore doesn't explicitly support inheritance but "complete-table" is the nearest to what
happens.
[5]

means partially evaluated in datastore and remains evaluated in memory.
[6]

means supports some SQL syntax.
[7] Using Cumulus4j plugin for DataNucleus
[8] The embedded object is stored nested in the datastore under the owner object

http://cumulus4j.org

1 5 R D B M S 79

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

15 RDBMS
...

15.1 RDBMS Datastores

1 5 R D B M S 80

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

DataNucleus supports persisting objects to RDBMS datastores (using the datanucleus-rdbms plugin).
It supports the vast majority of RDBMS products available today. DataNucleus communicates
with the RDBMS datastore using JDBC. RDBMS systems accept varying standards of SQL and so

https://github.com/datanucleus/datanucleus-rdbms

1 5 R D B M S 81

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

DataNucleus will support particular RDBMS/JDBC combinations only, though clearly we try to
support as many as possible.

The jars required to use DataNucleus RDBMS persistence are datanucleus-core, datanucleus-api-jdo/
datanucleus-api-jpa, datanucleus-rdbms and JDBC driver.

There are tutorials available for use of DataNucleus with RDBMS for JDO and for JPA

By default when you create a PersistenceManagerFactory or EntityManagerFactory to connect to a
particular datastore DataNucleus will automatically detect the datastore adapter to use and will use
its own internal adapter for that type of datastore. If you find that either DataNucleus has incorrectly
detected the adapter to use, you can override the default behaviour using the persistence property
datanucleus.rdbms.datastoreAdapterClassName.

The following RDBMS have support built in to DataNucleus. Click on the one of interest to see
details of any provisos for its support, as well as the JDBC connection information

• MySQL/MariaDB
• PostgreSQL Database
• PostgreSQL+PostGIS Database
• HSQL DB
• H2 Database
• SQLite
• Apache Derby
• Microsoft SQLServer
• Sybase
• SQL Anywhere
• Oracle
• IBM DB2
• IBM Informix
• Firebird
• NuoDB
• SAPDB/MaxDB
• Virtuoso
• Pointbase
• Oracle TimesTen
• McKoi database

Note that if your RDBMS is not listed or currently supported you can easily write your own
Datastore Adapter for it raise an issue in DataNucleus JIRA when you have it working and attach a
patch to contribute it. Similarly if you are using an adapter that has some problem on your case you
could use the same plugin mechanism to override the non-working feature.

15.1.1 DB2

To specify DB2 as your datastore, you will need something like the following specifying (where
"mydb1" is the name of the database)

1 5 R D B M S 82

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.ConnectionDriverName=com.ibm.db2.jcc.DB2Driver

datanucleus.ConnectionURL=jdbc:db2://localhost:50002/mydb1

datanucleus.ConnectionUserName='username' (e.g db2inst1)

datanucleus.ConnectionPassword='password'

With DB2 Express-C v9.7 you need to have db2jcc.jar and db2jcc_license_cu.jar in the
CLASSPATH.

15.1.2 MySQL

MySQL and its more developed drop in replacement MariaDB are supported as an RDBMS datastore
by DataNucleus with the following provisos

• You can set the table (engine) type for any created tables via persistence property
datanucleus.rdbms.mysql.engineType or by setting the extension metadata on a class with key
mysql-engine-type. The default is INNODB

• You can set the collation type for any created tables via persistence property
datanucleus.rdbms.mysql.collation or by setting the extension metadata on a class with key
mysql-collation

• You can set the character set for any created tables via persistence property
datanucleus.rdbms.mysql.characterSet or by setting the extension metadata on a class with
key mysql-character-set

• JDOQL.isEmpty()/contains() will not work in MySQL 4.0 (or earlier) since the query uses
EXISTS and that is only available from MySQL 4.1

• MySQL on Windows MUST specify datanucleus.identifier.case as "LowerCase" since the
MySQL server stores all identifiers in lowercase BUT the mysql-connector-java JDBC driver
has a bug (in versions up to and including 3.1.10) where it claims that the MySQL server stores
things in mixed case when it doesnt

• MySQL 3.* will not work reliably with inheritance cases since DataNucleus requires UNION
and this doesn't exist in MySQL 3.*

• MySQL before version 4.1 will not work correctly on JDOQL Collection.size(), Map.size()
operations since this requires subqueries, which are not supported before MySQL 4.1.

• If you receive an error "Incorrect arguments to mysql_stmt_execute" then this is a bug in
MySQL and you need to update your JDBC URL to append "?useServerPrepStmts=false".

• MySQL throws away the milliseconds on a Date and so cannot be used reliably for Optimistic
locking using strategy "date-time" (use "version" instead)

• You can specify "BLOB", "CLOB" JDBC types when using MySQL with DataNucleus but
you must turn validation of columns OFF. This is because these types are not supported by the
MySQL JDBC driver and it returns them as LONGVARBINARY/LONGVARCHAR when
querying the column type

To specify MySQL as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=com.mysql.jdbc.Driver

datanucleus.ConnectionURL=jdbc:mysql://'host':'port'/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

http://www.mysql.com
https://mariadb.org

1 5 R D B M S 83

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

15.1.3 MS SQL Server

Microsoft SQLServer is supported as an RDBMS datastore by DataNucleus with the following
proviso

• MS SQL 2000 does not keep accuracy on datetime datatypes. This is an MS SQL 2000 issue. In
order to keep the accuracy when storing java.util.Date java types, use int datatype.

To specify MS SQL as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

Microsoft SqlServer 2005 JDBC Driver (Recommended)

datanucleus.ConnectionDriverName=com.microsoft.sqlserver.jdbc.SQLServerDriver

datanucleus.ConnectionURL=jdbc:sqlserver://'host':'port';DatabaseName='db-name'

 ;SelectMethod=cursor

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

Microsoft SqlServer 2000 JDBC Driver

datanucleus.ConnectionDriverName=com.microsoft.jdbc.sqlserver.SQLServerDriver

datanucleus.ConnectionURL=jdbc:microsoft:sqlserver://'host':'port';DatabaseName='db-name'

 ;SelectMethod=cursor

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

15.1.4 Oracle

To specify Oracle as your datastore, you will need something like the following specifying (replacing
'db-name' with name of your database etc) ... you can also use 'oci' instead of 'thin' depending on your
driver.

datanucleus.ConnectionDriverName=oracle.jdbc.driver.OracleDriver

datanucleus.ConnectionURL=jdbc:oracle:thin:@'host':'port':'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

15.1.5 Sybase

To specify Sybase as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

http://www.microsoft.com/sql
http://www.oracle.com/database/
http://www.sybase.com

1 5 R D B M S 84

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.ConnectionDriverName=com.sybase.jdbc2.jdbc.SybDriver

datanucleus.ConnectionURL=jdbc:sybase:Tds:'host':'port'/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

15.1.6 SAP SQL Anywhere

To specify SQL Anywhere as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=sybase.jdbc4.sqlanywhere.IDriver

datanucleus.ConnectionURL=jdbc:sqlanywhere:uid=DBA;pwd=sql;eng=demo

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

15.1.7 HSQLDB

HSQLDB is supported as an RDBMS datastore by DataNucleus with the following proviso

• Use of batched statements is disabled since HSQLDB has a bug where it throws exceptions
"batch failed" (really informative). Still waiting for this to be fixed in HSQLDB

• Use of JDOQL/JPQL subqueries cannot be used where you want to refer back to the parent
query since HSQLDB up to and including version 1.8 don't support this.

To specify HSQL (1.x) as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=org.hsqldb.jdbcDriver

datanucleus.ConnectionURL=jdbc:hsqldb:hsql://'host':'port'/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

Note that in HSQLDB v2.x the driver changes to org.hsqldb.jdbc.JDBCDriver

15.1.8 H2

H2 is supported as an RDBMS datastore by DataNucleus

To specify H2 as your datastore, you will need something like the following specifying (replacing 'db-
name' with name of your database etc)

http://www.sap.com/pc/tech/database/software/sybase-sql-anywhere/index.html
http://hsqldb.org
http://www.h2database.com

1 5 R D B M S 85

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.ConnectionDriverName=org.h2.Driver

datanucleus.ConnectionURL=jdbc:h2:'db-name'

datanucleus.ConnectionUserName=sa

datanucleus.ConnectionPassword=

15.1.9 Informix

Informix is supported as an RDBMS datastore by DataNucleus

To specify Informix as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=com.informix.jdbc.IfxDriver

datanucleus.ConnectionURL=jdbc:informix-sqli://[{ip|host}:port][/dbname]:

 INFORMIXSERVER=servername[;name=value[;name=value]...]

datanucleus.ConnectionUserName=informix

datanucleus.ConnectionPassword=password

e.g.

datanucleus.ConnectionDriverName=com.informix.jdbc.IfxDriver

datanucleus.ConnectionURL=jdbc:informix-sqli://192.168.254.129:9088:

 informixserver=demo_on;database=buf_log_db

datanucleus.ConnectionUserName=informix

datanucleus.ConnectionPassword=password

Note that some database logging options in Informix do not allow changing autoCommit dinamically.
You need to rebuild the database to support it. To rebuild the database refer to Informix documention,
but as example, run $INFORMIXDIR\bin\dbaccess and execute the command "CREATE
DATABASE mydb WITH BUFFERED LOG".

INDEXOF: Informix 11.x does not have a function to search a string in another string. DataNucleus
defines a user defined function, DATANUCLEUS_STRPOS, which is automatically created on
startup. The SQL for the UDF function is:

1 5 R D B M S 86

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

create function DATANUCLEUS_STRPOS(str char(40),search char(40),from smallint) returning smallint

 define i,pos,lenstr,lensearch smallint;

 let lensearch = length(search);

 let lenstr = length(str);

 if lenstr=0 or lensearch=0 then return 0; end if;

 let pos=-1;

 for i=1+from to lenstr

 if substr(str,i,lensearch)=search then

 let pos=i;

 exit for;

 end if;

 end for;

 return pos;

end function;

15.1.10 PostgreSQL

To specify PostgreSQL as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=org.postgresql.Driver

datanucleus.ConnectionURL=jdbc:postgresql://'host':'port'/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

15.1.11 PostgreSQL with PostGIS extension

To specify PostGIS as your datastore, you will need to decide first which geometry library you want
to use and then set the connection url accordingly.

For the PostGIS JDBC geometries you will need something like the following specifying (replacing
'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=org.postgresql.Driver

datanucleus.ConnectionURL=jdbc:postgresql://'host':'port'/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

For Oracle's JGeometry you will need something like the following specifying (replacing 'db-name'
with name of your database etc)

http://www.postgresql.org
http://www.postgis.org

1 5 R D B M S 87

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.ConnectionDriverName=org.postgresql.Driver

datanucleus.ConnectionURL=jdbc:postgres_jgeom://'host':'port'/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

For the JTS (Java Topology Suite) geometries you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=org.postgresql.Driver

datanucleus.ConnectionURL=jdbc:postgres_jts://'host':'port'/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

15.1.12 Apache Derby

To specify Apache Derby as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=org.apache.derby.jdbc.EmbeddedDriver

datanucleus.ConnectionURL=jdbc:derby:'db-name';create=true

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

Above settings are used together with the Apache Derby in embedded mode. The below settings are
used in network mode, where the default port number is 1527.

datanucleus.ConnectionDriverName=org.apache.derby.jdbc.ClientDriver

datanucleus.ConnectionURL=jdbc:derby://'hostname':'portnumber'/'db-name';create=true

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

org.apache.derby.jdbc.ClientDriver

ASCII: Derby 10.1 does not have a function to convert a char into ascii code. DataNucleus needs
such function to converts chars to int values when performing queries converting chars to ints.
DataNucleus defines a user defined function, DataNucleus_ASCII, which is automatically created on
startup. The SQL for the UDF function is:

DROP FUNCTION NUCLEUS_ASCII;

CREATE FUNCTION NUCLEUS_ASCII(C CHAR(1)) RETURNS INTEGER

EXTERNAL NAME 'org.datanucleus.store.rdbms.adapter.DerbySQLFunction.ascii'

CALLED ON NULL INPUT

LANGUAGE JAVA PARAMETER STYLE JAVA;

http://db.apache.org/derby/

1 5 R D B M S 88

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

String.matches(pattern): When pattern argument is a column, DataNucleus defines a function that
allows Derby 10.1 to perform the matches function. The SQL for the UDF function is:

DROP FUNCTION NUCLEUS_MATCHES;

CREATE FUNCTION NUCLEUS_MATCHES(TEXT VARCHAR(8000), PATTERN VARCHAR(8000)) RETURNS INTEGER

EXTERNAL NAME 'org.datanucleus.store.rdbms.adapter.DerbySQLFunction.matches'

CALLED ON NULL INPUT

LANGUAGE JAVA PARAMETER STYLE JAVA;

15.1.13 Firebird

Firebird is supported as an RDBMS datastore by DataNucleus with the proviso that

• Auto-table creation is severely limited with Firebird. In Firebird, DDL statements are not auto-
committed and are executed at the end of a transaction, after any DML statements. This makes
"on the fly" table creation in the middle of a DML transaction not work. You must make sure
that "autoStartMechanism" is NOT set to "SchemaTable" since this will use DML. You must
also make sure that nobody else is connected to the database at the same time. Don't ask us why
such limitations are in a RDBMS, but then it was you that chose to use it ;-)

To specify Firebird as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=org.firebirdsql.jdbc.FBDriver

datanucleus.ConnectionURL=jdbc:firebirdsql://localhost/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

15.1.14 NuoDB

To specify NuoDB as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=com.nuodb.jdbc.Driver

datanucleus.ConnectionURL=jdbc:com.nuodb://localhost/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

datanucleus.Schema={my-schema-name}

15.1.15 SAPDB/MaxDB

To specify SAPDB/MaxDB as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

http://www.firebirdsql.org

1 5 R D B M S 89

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.ConnectionDriverName=com.sap.dbtech.jdbc.DriverSapDB

datanucleus.ConnectionURL=jdbc:sapdb://localhost/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

15.1.16 SQLite

SQLite is supported as an RDBMS datastore by DataNucleus with the proviso that

• When using sequences, you must set the persistence property
datanucleus.valuegeneration.transactionAttribute to UsePM

To specify SQLite as your datastore, you will need something like the following specifying (replacing
'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=org.sqlite.JDBC

datanucleus.ConnectionURL=jdbc:sqlite:'db-name'

datanucleus.ConnectionUserName=

datanucleus.ConnectionPassword=

15.1.17 Virtuoso

To specify Virtuoso as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=virtuoso.jdbc.Driver

datanucleus.ConnectionURL=jdbc:virtuoso://127.0.0.1/{dbname}

datanucleus.ConnectionUserName=

datanucleus.ConnectionPassword=

15.1.18 Pointbase

To specify Pointbase as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=com.pointbase.jdbc.jdbcUniversalDriver

datanucleus.ConnectionURL=jdbc:pointbase://127.0.0.1/{dbname}

datanucleus.ConnectionUserName=

datanucleus.ConnectionPassword=

http://www.sqlite.org/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
http://docs.oracle.com/cd/E13218_01/wlp/docs92/db/pointbase.html#wp1058500

1 5 R D B M S 90

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

15.1.19 McKoi

McKoi is supported as an RDBMS datastore by DataNucleus with the following proviso

• McKoi doesn't provide full information to allow correct validation of tables/constraints.
To specify McKoi as your datastore, you will need something like the following specifying (replacing
'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=com.mckoi.JDBCDriver

datanucleus.ConnectionURL=jdbc:mckoi://'host':'port'/'db-name'

datanucleus.ConnectionUserName='user-name'

datanucleus.ConnectionPassword='password'

15.1.20 JDBC Driver parameters

If you need to pass additional parameters to the JDBC driver you can append these to the end of the
datanucleus.ConnectionURL. For example,

datanucleus.ConnectionURL=jdbc:mysql://localhost?useUnicode=true&characterEncoding=UTF-8

http://www.mckoi.com/database

1 6 J a v a T y p e s (S p a t i a l) 91

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

16 Java Types (Spatial)
...

16.1 RDBMS : Spatial Types Support
DataNucleus supports by default a large number of Java types. DataNucleus Spatial supports the
storage and query of a number of different spatial data types, like points, polygons or lines. Spatial
types like these are used to store geographic information like locations, rivers, cities, roads, etc. The
datanucleus-geospatial plugin allows using spatial and traditional types simultaneously in persistent
objects making DataNucleus a single interface to read and manipulate any business data.

The table below shows the currently supported Spatial SCO Java types in DataNucleus

Java Type Spec. DFG? Persistent? Proxied? PK? Plugin

oracle.spatial.geometry.JGeometry
[1]

datanucleus-
geospatial

com.vividsolutions.jts.geom.Geometry
[1]

datanucleus-
geospatial

com.vividsolutions.jts.geom.GeometryCollection
[1]

datanucleus-
geospatial

com.vividsolutions.jts.geom.LinearRing
[1]

datanucleus-
geospatial

com.vividsolutions.jts.geom.LineString
[1]

datanucleus-
geospatial

com.vividsolutions.jts.geom.MultiLineString
[1]

datanucleus-
geospatial

com.vividsolutions.jts.geom.MultiPoint
[1]

datanucleus-
geospatial

com.vividsolutions.jts.geom.MultiPolygon
[1]

datanucleus-
geospatial

com.vividsolutions.jts.geom.Point
[1]

datanucleus-
geospatial

com.vividsolutions.jts.geom.Polygon
[1]

datanucleus-
geospatial

org.postgis.Geometry
[1]

datanucleus-
geospatial

org.postgis.GeometryCollection
[1]

datanucleus-
geospatial

org.postgis.LinearRing
[1]

datanucleus-
geospatial

org.postgis.LineString
[1]

datanucleus-
geospatial

org.postgis.MultiLineString
[1]

datanucleus-
geospatial

org.postgis.MultiPoint
[1]

datanucleus-
geospatial

1 6 J a v a T y p e s (S p a t i a l) 92

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

org.postgis.MultiPolygon
[1]

datanucleus-
geospatial

org.postgis.Point
[1]

datanucleus-
geospatial

org.postgis.Polygon
[1]

datanucleus-
geospatial

org.postgis.PGbox2d
[1]

datanucleus-
geospatial

org.postgis.PGbox3d
[1]

datanucleus-
geospatial

• Dirty check mechanism is limited to immutable mode, it means, if you change a field of one
of these spatial objects, you must reassign it to the owner object field to make sure changes are
propagated to the database.

The implementation of these spatial types follows the OGC Simple Feature specification, but adds
further types where the datastores support them.

16.1.1 Mapping Scenarios

DataNucleus supports different combinations of geometry libraries and spatially enabled databases.
These combinations are called mapping scenarios. Each of these scenarios has a different set of
advantages (and drawbacks), some have restrictions that apply. The table below tries to give as much
information as possible about the different scenarios.

One such mapping scenario, is to use the Java geometry types from JTS (Java Topology Suite) and
PostGIS as datastore. The short name for this mapping scenario is jts2postgis. The following table
lists all supported mapping scenarios.

Geometry Libraries MySQL [1] Oracle [2] [4]
PostgreSQL with
PostGIS [3] [4] [5]

Oracle's JGeometry

jgeom2mysql jgeom2oracle

Java Topology Suite
(JTS)

jts2mysql jts2oracle jts2postgis

PostGIS JDBC
Geometries

pg2mysql pg2postgis

• [1] - MySQL doesn't support 3-dimensional geometries. Trying to persist them anyway results
in undefined behaviour, there may be an exception thrown or the z-ordinate might just get
stripped.

• [2] - Oracle Spatial supports additional data types like circles and curves that are not defined in
the OGC SF specification. Any attempt to read or persist one of those data types, if you're not
using jgeom2oracle, will result in failure!

• [3] - PostGIS added support for curves in version 1.2.0, but at the moment the JDBC driver
doesn't support them yet. Any attempt to read curves geometries will result in failure, for every
mapping scenario!

http://www.opengeospatial.org/standards/sfa

1 6 J a v a T y p e s (S p a t i a l) 93

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• [4] - Both PostGIS and Oracle have a system to add user data to specific points of a geometry. In
PostGIS these types are called measure types and the z-coordinate of every 2d-point can be used
to store arbitrary (numeric) data of double precision associated with that point. In Oracle this
user data is called LRS. DataNucleus-Spatial tries to handle these types as gracefully as possible.
But the recommendation is to not use them, unless you have a mapping scenario that is known to
support them, i.e. pg2postgis for PostGIS and jgeom2oracle for Oracle.

• [5] - PostGIS supports two additional types called box2d and box3d, that are not defined in
OGC SF. There are only mappings available for these types in pg2postgis, any attempt to read or
persist one of those data types in another mapping scenario will result in failure!

16.1.2 Spatial types

This table lists all the spatial Java types that are currently supported. The JDBC type is the same for
every Java type in a given database. It's SDO_GEOMETRY for Oracle, OTHER for PostGIS and BINARY for
MySQL. When a type is supported by a database, the column type that is used for it, is listed after the
icon. None of the types are proxied, this means that if you change an object field, you must reassign it
to the owner object field to make sure changes are propagated to the database.

Geometry
Library Java Type MySQL Oracle PostGIS

JGeometry oracle.spatial.geometry.JGeometry

geometry SDO_GEOMETRY

JTS com.vividsolutions.jts.geom.Geometry

geometry SDO_GEOMETRY geometry

JTS com.vividsolutions.jts.geom.GeometryCollection

geometry SDO_GEOMETRY geometry

JTS com.vividsolutions.jts.geom.LinearRing

geometry SDO_GEOMETRY geometry

JTS com.vividsolutions.jts.geom.LineString

geometry SDO_GEOMETRY geometry

JTS com.vividsolutions.jts.geom.MultiLineString

geometry SDO_GEOMETRY geometry

JTS com.vividsolutions.jts.geom.MultiPoint

geometry SDO_GEOMETRY geometry

JTS com.vividsolutions.jts.geom.MultiPolygon

geometry SDO_GEOMETRY geometry

JTS com.vividsolutions.jts.geom.Point

geometry SDO_GEOMETRY geometry

JTS com.vividsolutions.jts.geom.Polygon

geometry SDO_GEOMETRY geometry

PostGIS-JDBC org.postgis.Geometry

geometry geometry

1 6 J a v a T y p e s (S p a t i a l) 94

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PostGIS-JDBC org.postgis.GeometryCollection

geometry geometry

PostGIS-JDBC org.postgis.LinearRing

geometry geometry

PostGIS-JDBC org.postgis.LineString

geometry geometry

PostGIS-JDBC org.postgis.MultiLineString

geometry geometry

PostGIS-JDBC org.postgis.MultiPoint

geometry geometry

PostGIS-JDBC org.postgis.MultiPolygon

geometry geometry

PostGIS-JDBC org.postgis.Point

geometry geometry

PostGIS-JDBC org.postgis.Polygon

geometry geometry

PostGIS-JDBC org.postgis.PGbox2d

box2d

PostGIS-JDBC org.postgis.PGbox3d

box3d

16.1.3 Metadata

DataNucleus-Spatial has defined some metadata extensions that can be used to give additional
information about the geometry types in use. The position of these tags in the meta-data determines
their scope. If you use them inside a <field>-tag the values are only used for that field specifically, if
you use them inside the <package>-tag the values are in effect for all (geometry) fields of all classes
inside that package, etc.

1 6 J a v a T y p e s (S p a t i a l) 95

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="org.datanucleus.samples.jtsgeometry">

 <extension vendor-name="datanucleus" key="spatial-dimension" value="2"/> [1]

 <extension vendor-name="datanucleus" key="spatial-srid" value="4326"/> [1]

 <class name="SampleGeometry" detachable="true">

 <field name="id"/>

 <field name="name"/>

 <field name="geom" persistence-modifier="persistent">

 <extension vendor-name="datanucleus" key="mapping" value="no-userdata"/> [2]

 </field>

 </class>

 <class name="SampleGeometryCollectionM" table="samplejtsgeometrycollectionm" detachable="true">

 <extension vendor-name="datanucleus" key="postgis-hasMeasure" value="true"/> [3]

 <field name="id"/>

 <field name="name"/>

 <field name="geom" persistence-modifier="persistent"/>

 </class>

 <class name="SampleGeometryCollection3D" table="samplejtsgeometrycollection3d" detachable="true">

 <extension vendor-name="datanucleus" key="spatial-srid" value="-1"/> [1]

 <extension vendor-name="datanucleus" key="spatial-dimension" value="3"/> [1]

 <field name="id"/>

 <field name="name"/>

 <field name="geom" persistence-modifier="persistent"/>

 </class>

</package>

• [1] - The srid & dimension values are used in various places. One of them is schema creation,
when using PostGIS, another is when you query the SpatialHelper.

• [2] - Every JTS geometry object can have a user data object attached to it. The default behaviour
is to serialize that object and store it in a separate column in the database. If for some reason
this isn't desired, the mapping extension can be used with value "no-mapping" and DataNucleus-
Spatial will ignore the user data objects.

• [3] - If you want to use measure types in PostGIS you have to define that using the postgis-
hasMeasure extension.

16.1.4 Querying Spatial types

DataNucleus-Spatial defines a set of functions that can be applied to spatial types in JDOQL queries.
These functions follow the definitions in the OGC Simple Feature specification and are translated
into appropriate SQL statements, provided the underlying database system implements the functions
and the geometry object model accordingly. There are also some additional functions that are not
defined OGC SF, most of them are database specific.

This set of more than eighty functions contains:

• Basic methods on geometry objects like IsSimple() and Boundary().
• Methods for testing spatial relations between geometric objects like Intersects() and Touches()
• Methods that support spatial analysis like Union() and Difference()
• Methods to create geometries from WKB/WKT (Well Known Binary/Text) like GeomFromText()

and GeomFromWKB()
For a compelete list of all supported functions and usage examples, please see JDOQL : Spatial
Methods.

http://www.opengeospatial.org/standards/sfa

1 6 J a v a T y p e s (S p a t i a l) 96

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

16.1.5 Dependencies

Depending on the mapping scenario you want to use, there is a different set of JARs that need to be in
your classpath.

1 7 D a t a s t o r e T y p e s 97

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

17 Datastore Types
...

17.1 RDBMS : Datastore Types
As we saw in the Types Guide DataNucleus supports the persistence of a large range of Java field
types. With RDBMS datastores, we have the notion of tables/columns in the datastore and so each
Java type is mapped across to a column or a set of columns in a table. It is important to understand
this mapping when mapping to an existing schema for example. In RDBMS datastores a java type is
stored using JDBC types. DataNucleus supports the use of the vast majority of the available JDBC
types.

17.1.1 JDBC types used when persisting Java types

When persisting a Java type in general it is persisted into a single column. For example a String will
be persisted into a VARCHAR column by default. Some types (e.g Color) have more information to
store than we can conveniently persist into a single column and so use multiple columns. Other types
(e.g Collection) store their information in other ways, such as foreign keys.

This table shows the Java types we saw earlier and whether they can be queried using JDOQL
queries, and what JDBC types can be used to store them in your RDBMS datastore. Not all RDBMS
datastores support all of these options. While DataNucleus always tries to provide a complete list
sometimes this is impossible due to limitations in the underlying JDBC driver

Java Type
Number
Columns Queryable JDBC Type(s)

boolean 1 BIT, CHAR ('Y','N'),
BOOLEAN, TINYINT,
SMALLINT, NUMERIC

byte 1 TINYINT, SMALLINT,
NUMERIC

char 1 CHAR, INTEGER,
NUMERIC

double 1 DOUBLE, DECIMAL,
FLOAT

float 1 FLOAT, REAL, DOUBLE,
DECIMAL

int 1 INTEGER, BIGINT,
NUMERIC

1 7 D a t a s t o r e T y p e s 98

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

long 1 BIGINT, NUMERIC,
DOUBLE, DECIMAL,
INTEGER

short 1 SMALLINT, INTEGER,
NUMERIC

boolean[] 1

[5]

LONGVARBINARY,
BLOB

byte[] 1

[5]

LONGVARBINARY,
BLOB

char[] 1

[5]

LONGVARBINARY,
BLOB

double[] 1

[5]

LONGVARBINARY,
BLOB

float[] 1

[5]

LONGVARBINARY,
BLOB

int[] 1

[5]

LONGVARBINARY,
BLOB

long[] 1

[5]

LONGVARBINARY,
BLOB

short[] 1

[5]

LONGVARBINARY,
BLOB

java.lang.Boolean 1 BIT, CHAR('Y','N'),
BOOLEAN, TINYINT,
SMALLINT

java.lang.Byte 1 TINYINT, SMALLINT,
NUMERIC

java.lang.Character 1 CHAR, INTEGER,
NUMERIC

java.lang.Double 1 DOUBLE, DECIMAL,
FLOAT

java.lang.Float 1 FLOAT, REAL, DOUBLE,
DECIMAL

java.lang.Integer 1 INTEGER, BIGINT,
NUMERIC

java.lang.Long 1 BIGINT, NUMERIC,
DOUBLE, DECIMAL,
INTEGER

java.lang.Short 1 SMALLINT, INTEGER,
NUMERIC

java.lang.Boolean[] 1

[5]

LONGVARBINARY,
BLOB

1 7 D a t a s t o r e T y p e s 99

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.lang.Byte[] 1

[5]

LONGVARBINARY,
BLOB

java.lang.Character[] 1

[5]

LONGVARBINARY,
BLOB

java.lang.Double[] 1

[5]

LONGVARBINARY,
BLOB

java.lang.Float[] 1

[5]

LONGVARBINARY,
BLOB

java.lang.Integer[] 1

[5]

LONGVARBINARY,
BLOB

java.lang.Long[] 1

[5]

LONGVARBINARY,
BLOB

java.lang.Short[] 1

[5]

LONGVARBINARY,
BLOB

java.lang.Number 1

java.lang.Object 1 LONGVARBINARY,
BLOB

java.lang.String [8] 1 VARCHAR, CHAR,
LONGVARCHAR, CLOB,
BLOB, DATALINK [6],
UNIQUEIDENTIFIER [7],
XMLTYPE [9]

java.lang.StringBuffer [8] 1 VARCHAR, CHAR,
LONGVARCHAR, CLOB,
BLOB, DATALINK [6],
UNIQUEIDENTIFIER [7],
XMLTYPE [9]

java.lang.String[] 1

[5]

LONGVARBINARY,
BLOB

java.lang.Enum 1 LONGVARBINARY,
BLOB, VARCHAR,
INTEGER

java.lang.Enum[] 1

[5]

LONGVARBINARY,
BLOB

java.math.BigDecimal 1 DECIMAL, NUMERIC

java.math.BigInteger 1 NUMERIC, DECIMAL

java.math.BigDecimal[] 1

[5]

LONGVARBINARY,
BLOB

1 7 D a t a s t o r e T y p e s 100

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.math.BigInteger[] 1

[5]

LONGVARBINARY,
BLOB

java.sql.Date 1 DATE, TIMESTAMP

java.sql.Time 1 TIME, TIMESTAMP

java.sql.Timestamp 1 TIMESTAMP

java.util.ArrayList 0

java.util.BitSet 0 LONGVARBINARY,
BLOB

java.util.Calendar [3] 1 or 2 INTEGER, VARCHAR,
CHAR

java.util.Collection 0

java.util.Currency 1 VARCHAR, CHAR

java.util.Date 1 TIMESTAMP, DATE,
CHAR, BIGINT

java.util.Date[] 1

[5]

LONGVARBINARY,
BLOB

java.util.GregorianCalendar
[2]

1 or 2 INTEGER, VARCHAR,
CHAR

java.util.HashMap 0

java.util.HashSet 0

java.util.Hashtable 0

java.util.LinkedHashMap 0

java.util.LinkedHashSet 0

java.util.LinkedList 0

java.util.List 0

java.util.Locale [8] 1 VARCHAR, CHAR,
LONGVARCHAR, CLOB,
BLOB, DATALINK [6],
UNIQUEIDENTIFIER [7],
XMLTYPE [9]

java.util.Locale[] 1

[5]

LONGVARBINARY,
BLOB

java.util.Map 0

1 7 D a t a s t o r e T y p e s 101

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.util.Properties 0

java.util.PriorityQueue 0

java.util.Queue 0

java.util.Set 0

java.util.SortedMap 0

java.util.SortedSet 0

java.util.Stack 0

java.util.TimeZone [8] 1 VARCHAR, CHAR,
LONGVARCHAR, CLOB,
BLOB, DATALINK [7],
UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.util.TreeMap 0

java.util.TreeSet 0

java.util.UUID [8] 1 VARCHAR, CHAR,
LONGVARCHAR, CLOB,
BLOB, DATALINK [7],
UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.util.Vector 0

java.awt.Color [1] 4 INTEGER

java.awt.Point [2] 2 INTEGER

java.awt.image.BufferedImage
[4]

1 LONGVARBINARY,
BLOB

java.net.URI [8] 1 VARCHAR, CHAR,
LONGVARCHAR, CLOB,
BLOB, DATALINK [7],
UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.net.URL [8] 1 VARCHAR, CHAR,
LONGVARCHAR, CLOB,
BLOB, DATALINK [7],
UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.io.Serializable 1 LONGVARBINARY,
BLOB

javax.jdo.spi.PersistenceCapable1 [embedded]

1 7 D a t a s t o r e T y p e s 102

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

javax.jdo.spi.PersistenceCapable[]1

[5]

• [1] - java.awt.Color - stored in 4 columns (red, green, blue, alpha). ColorSpace is not persisted.
• [2] - java.awt.Point - stored in 2 columns (x and y).
• [3] - java.util.Calendar - stored in 2 columns (milliseconds and timezone).
• [4] - java.awt.image.BufferedImage is stored using JPG image format
• [5] - Array types are queryable if not serialised, but stored to many rows
• [6] - DATALINK JDBC type supported on DB2 only. Uses the SQL function

DLURLCOMPLETEONLY to fetch from the datastore. You can override this using the select-
function extension. See the JDO MetaData reference.

• [7] - UNIQUEIDENTIFIER JDBC type supported on MSSQL only.
• [8] - Oracle treats an empty string as the same as NULL. To workaround this limitation

DataNucleus replaces the empty string with the character \u0001.
• [9] - XMLTYPE JDBC type supported on Oracle only, and is included in the "datanucleus-

rdbms" plugin.

If you need to extend the provided DataNucleus capabilities in terms of its datastore types support you
can utilise a plugin point.

17.1.2 Supported JDBC types

DataNucleus provides support for the majority of the JDBC types. The support is shown below.

JDBC Type Supported Restrictions

ARRAY

BIGINT

BINARY Only for spatial types on MySQL

BIT

BLOB

BOOLEAN

CHAR

CLOB

DATALINK Only on DB2

DATE

DECIMAL

1 7 D a t a s t o r e T y p e s 103

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

DISTINCT

DOUBLE

FLOAT

INTEGER

JAVA_OBJECT

LONGVARBINARY

LONGVARCHAR

NCHAR

NULL

NUMERIC

NVARCHAR

OTHER

REAL

REF

SMALLINT

STRUCT Only for spatial types on Oracle

TIME

TIMESTAMP

TINYINT

VARBINARY

VARCHAR

1 8 F a i l o v e r 104

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

18 Failover
...

18.1 RDBMS : Failover
In the majority of production situations it is desirable to have a level of failover between the
underlying datastores used for persistence. You have at least 2 options available to you here. These
are shown below

18.1.1 Sequoia

Sequoia is a transparent middleware solution offering clustering, load balancing and failover services
for any database. Sequoia is the continuation of the C-JDBC project. The database is distributed and
replicated among several nodes and Sequoia balances the queries among these nodes. Sequoia handles
node and network failures with transparent failover. It also provides support for hot recovery, online
maintenance operations and online upgrades.

Sequoia can be used with DataNucleus by just providing the Sequoia datastore URLs as input to
DataNucleus. There is a problem outstanding in Sequoia itself in that its JDBC driver doesnt
provide DataNucleus with the correct major/minor versions of the underlying datastore. Until
Sequoia fix this issue, use of Sequoia will be unreliable

18.1.2 DataNucleus Failover capability

DataNucleus has the capability to switch to between DataSources upon failure of one while obtaining
a datastore connection. The failover mechanism is useful for applications with multiple database
nodes when the data is actually replicated/synchronized by the underlying database. There are 2 things
to be aware of before utilising this functionality.

• DataNucleus doesn't replicate changes to all database nodes, and for this reason, this feature is
suggested to be used only for reading objects or if the database is capable to replicate the changes
to all nodes.

• If a connection breaks while in use the failover mechanism will not handle it, thus the user
application must take care of restarting the transaction and execute the operations.

Several failover algorithm are allowed to be used, one at time, as for example round-robin,
ordered list or random. The default algorithm, ordered list, is described below and is provided by
DataNucleus. You can also implement and plug your own algorithm. See Connection Provider.

To use failover, each datastore connection must be provided through DataSources. The
datanucleus.ConnectionFactoryName property must be declared with a list of JNDI names pointing to
DataSources, in the form of <JNDINAME> [,<JNDINAME>]. See the example:

datanucleus.ConnectionFactoryName=JNDINAME1,JNDINAME2

At least one least one JNDI name must be declared.

The Ordered List Algorithm (default) allows you to switch to slave DataSources upon failure of a
master DataSource while obtaining a datastore connection. This is shown below.

http://sequoia.continuent.org/

1 8 F a i l o v e r 105

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Each time DataNucleus needs to obtain a connection to the datastore, it takes the first DataSource,
the Master, and tries, on failure to obtain the connection goes to the next on the list until it obtains a
connection to the datastore or the end of the list is reached.

The first JNDI name in the datanucleus.ConnectionFactoryName property is the Master DataSource
and the following JNDI names are the Slave DataSources.

1 9 Q u e r i e s 106

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

19 Queries
...

19.1 RDBMS : Queries
Using an RDBMS datastore DataNucleus allows you to query the objects in the datastore using the
following

• JDOQL - language based around the objects that are persisted and using Java-type syntax
• SQL - language found on alomst all RDBMS.
• JPQL - language defined in the JPA1 specification for JPA persistence which closely mirrors

SQL.
When using queries with RDBMS there are some specific situations where it can be useful to benefit
from special treatment. These are listed here.

19.1.1 Result Set : Type

java.sql.ResultSet defines three possible result set types.
• forward-only : the result set is navegable forwards only
• scroll-sensitive : the result set is scrollable in both directions and is sensitive to changes in the

datastore
• scroll-insensitive : the result set is scrollable in both directions and is insensitive to changes in

the datastore
DataNucleus allows specification of this type as a query extension
datanucleus.rdbms.query.resultSetType.

To do this on a per query basis for JDO you would do

query.addExtension("datanucleus.rdbms.query.resultSetType", "scroll-insensitive");

To do this on a per query basis for JPA you would do

query.setHint("datanucleus.rdbms.query.resultSetType", "scroll-insensitive");

The default is forward-only. The benefit of the other two is that the result set will be scrollable and
hence objects will only be read in to memory when accessed. So if you have a large result set you
should set this to one of the scrollable values.

19.1.2 Result Set : Caching of Results

When using a "scrollable" result set (see above for datanucleus.rdbms.query.resultSetType)
by default the query result will cache the rows that have been read. You can control this
caching to optimise it for your memory requirements. You can set the query extension
datanucleus.query.resultCacheType and it has the following possible values

• weak : use a weak hashmap for caching (default)

1 9 Q u e r i e s 107

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• soft : use a soft reference map for caching
• hard : use a HashMap for caching (objects not garbage collected)
• none : no caching (hence uses least memory)

To set this on a per query basis for JDO you would do

query.addExtension("datanucleus.query.resultCacheType", "weak");

To do this on a per query basis for JPA you would do

query.setHint("datanucleus.query.resultCacheType", "weak");

19.1.3 Large Result Sets : Size

If you have a large result set you clearly don't want to instantiate all objects since this would hit the
memory footprint of your application. To get the number of results many JDBC drivers will load all
rows of the result set. This is to be avoided so DataNucleus provides control over the mechanism
for getting the size of results. The persistence property datanucleus.query.resultSizeMethod has a
default of last (which means navigate to the last object - hence hitting the JDBC driver problem). If
you set this to count then it will use a simple "count()" query to get the size.

To do this on a per query basis for JDO you would do

query.addExtension("datanucleus.query.resultSizeMethod", "count");

To do this on a per query basis for JPA you would do

query.setHint("datanucleus.query.resultSizeMethod", "count");

19.1.4 Large Result Sets : Loading Results at Commit()

When a transaction is committed by default all remaining results for a query are loaded so that the
query is usable thereafter. With a large result set you clearly don't want this to happen. So in this case
you should set the extension datanucleus.query.loadResultsAtCommit to false.

To do this on a per query basis for JDO you would do

query.addExtension("datanucleus.query.loadResultsAtCommit", "false");

To do this on a per query basis for JPA you would do

query.setHint("datanucleus.query.loadResultsAtCommit", "false");

1 9 Q u e r i e s 108

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

19.1.5 Result Set : Control

DataNucleus provides a useful extension allowing control over the ResultSet's that are created by
queries. You have at your convenience some properties that give you the power to control whether the
result set is read only, whether it can be read forward only, the direction of fetching etc.

To do this on a per query basis for JDO you would do

query.addExtension("datanucleus.rdbms.query.fetchDirection", "forward");

query.addExtension("datanucleus.rdbms.query.resultSetConcurrency", "read-only");

To do this on a per query basis for JPA you would do

query.setHint("datanucleus.rdbms.query.fetchDirection", "forward");

query.setHint("datanucleus.rdbms.query.resultSetConcurrency", "read-only");

Alternatively you can specify these as persistence properties so that they apply to all queries for that
PMF/EMF. Again, the properties are

• datanucleus.rdbms.query.fetchDirection - controls the direction that the ResultSet is
navigated. By default this is forwards only. Use this property to change that.

• datanucleus.rdbms.query.resultSetConcurrency - controls whether the ResultSet is read only
or updateable.

Bear in mind that not all RDBMS support all of the possible values for these options. That said, they
do add a degree of control that is often useful.

19.1.6 JDOQL : SQL Generation

When using the method contains on a collection (or containsKey, containsValue on a map) this will
either add an EXISTS subquery (if there is a NOT or OR present in the query) or will add an INNER
JOIN across to the element table. Let's take an example

SELECT FROM org.datanucleus.samples.A

WHERE (elements.contains(b1) && b1.name == 'Jones')

VARIABLES org.datanucleus.samples.B b1

Note that we add the contains first that binds the variable "b1" to the element table, and then add
the condition on the variable. The order is important here. If we instead had put the condition on the
variable first we would have had to do a CROSS JOIN to the variable table and then try to repair the
situation and change it to INNER JOIN if possible. In this case the generated SQL will be like

SELECT `A0`.`ID`

FROM `A` `A0`

INNER JOIN `B` `B0` ON `A0`.ID = `B`.ELEMENT

WHERE `B0`.NAME = 'Jones'

1 9 Q u e r i e s 109

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

19.1.7 JDOQL : Use of variables and joining

In all situations we aim for DataNucleus JDOQL implementation to work out the right way of linking
a variable into the query, whether this is via a join (INNER, LEFT OUTER), or via a subquery. As
you can imagine this can be complicated to work out the optimum for all situations so with that in
mine we allow (for a limited number of situations) the option of specifying the join type. This is
achieved by setting the query extension datanucleus.query.jdoql.{varName}.join to the required
type. For 1-1 relations this would be either "INNERJOIN" or "LEFTOUTERJOIN", and for 1-N
relations this would be either "INNERJOIN" or "SUBQUERY".

Please, if you find a situation where the optimum join type is not chosen then report it in JIRA
for project "NUCRDBMS" as priority "Minor" so it can be registered for future work

19.1.8 JPQL : SQL Generation

With a JPQL query running on an RDBMS the query is compiled into SQL. Here we give a few
examples of what SQL is generated. You can of course try this for yourself observing the content of
the DataNucleus log.

In JPQL you specify a candidate class and its alias (identifier). In addition you can specify joins with
their respective alias. The DataNucleus implementation of JPQL will preserve these aliases in the
generated SQL.

JPQL:

SELECT Object(P) FROM mydomain.Person P INNER JOIN P.bestFriend AS B

SQL:

SELECT P.ID

FROM PERSON P INNER JOIN PERSON B ON B.ID = P.BESTFRIEND_ID

With the JPQL MEMBER OF syntax this is typically converted into an EXISTS query.

JPQL:

SELECT DISTINCT Object(p) FROM mydomain.Person p WHERE :param MEMBER OF p.friends

SQL:

SELECT DISTINCT P.ID FROM PERSON P

WHERE EXISTS (

 SELECT 1 FROM PERSON_FRIENDS P_FRIENDS, PERSON P_FRIENDS_1

 WHERE P_FRIENDS.PERSON_ID = P.ID

 AND P_FRIENDS_1.GLOBAL_ID = P_FRIENDS.FRIEND_ID

 AND 101 = P_FRIENDS_1.ID)

2 0 J D O Q L : S p a t i a l M e t h o d s 110

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

20 JDOQL : Spatial Methods
...

20.1 RDBMS : JDOQL Spatial Methods

When querying spatial data you can make use of a set of spatial methods on the various Java
geometry types. The list contains all of the functions detailed in Section 3.2 of the OGC Simple
Features specification. Additionally DataNucleus provides some commonly required methods like
bounding box test and datastore specific functions. The following tables list all available functions as
well as information about which RDBMS implement them. An entry in the "Result" column indicates,
whether the funcion may be used in the result part of a JDOQL query.

Functions for Constructing a Geometry Value given its Well-known Text Representation (OGC
SF 3.2.6)

Method Description Specification Result [1] PostGIS MySQL
Oracle
Spatial

Spatial.geomFromText(String,
Integer)

Construct a
Geometry
value given
its well-
known textual
representation.

OGC SF

Spatial.pointFromText(String,
Integer)

Construct a
Point.

OGC SF

Spatial.lineFromText(String,
Integer)

Construct a
LineString.

OGC SF

Spatial.polyFromText(String,
Integer)

Construct a
Polygon.

OGC SF

Spatial.mPointFromText(String,
Integer)

Construct a
MultiPoint.

OGC SF

Spatial.mLineFromText(String,
Integer)

Construct a
MultiLineString.

OGC SF

Spatial.mPolyFromText(String,
Integer)

Construct a
MultiPolygon.

OGC SF

Spatial.geomCollFromText(String,
Integer)

Construct a
GeometryCollection.

OGC SF

[1] These functions can't be used in the return part because it's not possible to determine the return
type from the parameters.

Functions for Constructing a Geometry Value given its Well-known Binary Representation
(OGC SF 3.2.7)

Method Description Specification Result [1] PostGIS MySQL
Oracle
Spatial

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

2 0 J D O Q L : S p a t i a l M e t h o d s 111

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Spatial.geomFromWKB(String,
Integer)

Construct a
Geometry
value given
its well-
known binary
representation.

OGC SF

Spatial.pointFromWKB(String,
Integer)

Construct a
Point.

OGC SF

Spatial.lineFromWKB(String,
Integer)

Construct a
LineString.

OGC SF

Spatial.polyFromWKB(String,
Integer)

Construct a
Polygon.

OGC SF

Spatial.mPointFromWKB(String,
Integer)

Construct a
MultiPoint.

OGC SF

Spatial.mLineFromWKB(String,
Integer)

Construct a
MultiLineString.

OGC SF

Spatial.mPolyFromWKB(String,
Integer)

Construct a
MultiPolygon.

OGC SF

Spatial.geomCollFromWKB(String,
Integer)

Construct a
GeometryCollection.

OGC SF

[1] These functions can't be used in the return part because it's not possible to determine the return
type from the parameters.

Functions on Type Geometry
(OGC SF 3.2.10)

Method Description Specification Result PostGIS MySQL
Oracle
Spatial

Spatial.dimension(Geometry)Returns the
dimension
of the
Geometry.

OGC SF

Spatial.geometryType(Geometry)Returns the
name of the
instantiable
subtype of
Geometry.

OGC SF

Spatial.asText(Geometry)Returns
the well-
known textual
representation.

OGC SF

Spatial.asBinary(Geometry)Returns
the well-
known binary
representation.

OGC SF

2 0 J D O Q L : S p a t i a l M e t h o d s 112

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Spatial.srid(Geometry)Returns
the Spatial
Reference
System
ID for this
Geometry.

OGC SF

Spatial.isEmpty(Geometry)TRUE if this
Geometry
corresponds
to the empty
set.

OGC SF

[1] [2]

Spatial.isSimple(Geometry)TRUE if this
Geometry is
simple, as
defined in the
Geometry
Model.

OGC SF

[1] [2]

Spatial.boundary(Geometry)Returns a
Geometry
that is the
combinatorial
boundary
of the
Geometry.

OGC SF

[2]

Spatial.envelope(Geometry)Returns the
rectangle
bounding
Geometry as
a Polygon.

OGC SF

[1] Oracle does not allow boolean expressions in the SELECT-list.
[2] MySQL does not implement these functions.

Functions on Type Point
(OGC SF 3.2.11)

Method Description Specification Result PostGIS MySQL
Oracle
Spatial

Spatial.x(Point) Returns the x-
coordinate of
the Point as a
Double.

OGC SF

Spatial.y(Point) Returns the y-
coordinate of
the Point as a
Double.

OGC SF

Functions on Type Curve
(OGC SF 3.2.12)

Method Description Specification Result PostGIS MySQL
Oracle
Spatial

2 0 J D O Q L : S p a t i a l M e t h o d s 113

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Spatial.startPoint(Curve))Returns the
first point of
the Curve.

OGC SF

Spatial.endPoint(Curve))Returns the
last point of
the Curve.

OGC SF

Spatial.isRing(Curve)Returns
TRUE if
Curve is
closed and
simple. .

OGC SF

[1] [2]

[1] Oracle does not allow boolean expressions in the SELECT-list.
[2] MySQL does not implement these functions.

Functions on Type Curve and Type MultiCurve
(OGC SF 3.2.12, 3.2.17)

Method Description Specification Result PostGIS MySQL
Oracle
Spatial

Spatial.isClosed(Curve)
Spatial.isClosed(MultiCurve)

Returns
TRUE if
Curve is
closed, i.e., if
StartPoint(Curve)
=
EndPoint(Curve).

OGC SF

[1]

Spatial.length(Curve)
Spatial.length(MultiCurve)

Returns the
length of the
Curve.

OGC SF

[1] Oracle does not allow boolean expressions in the SELECT-list.

Functions on Type LineString
(OGC SF 3.2.13)

Method Description Specification Result PostGIS MySQL
Oracle
Spatial

Spatial.numPoints(LineString)Returns the
number of
points in the
LineString.

OGC SF

Spatial.pointN(LineString,
Integer)

Returns Point
n.

OGC SF

Functions on Type Surface and Type MultiSurface
(OGC SF 3.2.14, 3.2.18)

Method Description Specification Result PostGIS MySQL
Oracle
Spatial

2 0 J D O Q L : S p a t i a l M e t h o d s 114

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Spatial.centroid(Surface)
centroid(MultiSurface)

Returns the
centroid of
Surface,
which may lie
outside of it.

OGC SF

[1]

Spatial.pointOnSurface(Surface)
pointOnSurface(MultiSurface)

Returns
a Point
guaranteed
to lie on the
surface.

OGC SF

[1]

Spatial.area(Surface)
area(MultiSurface)

Returns
the area of
Surface.

OGC SF

[1] MySQL does not implement these functions.

Functions on Type Polygon
(OGC SF 3.2.15)

Method Description Specification Result PostGIS MySQL
Oracle
Spatial

Spatial.exteriorRing(Polygon)Returns the
exterior ring
of Polygon.

OGC SF

Spatial.numInteriorRing(Polygon)Returns the
number of
interior rings.

OGC SF

Spatial.interiorRingN(Polygon,
Integer)

Returns the
nth interior
ring.

OGC SF

Functions on Type GeomCollection
(OGC SF 3.2.16)

Method Description Specification Result PostGIS MySQL
Oracle
Spatial

Spatial.numGeometries(GeomCollection)Returns the
number of
geometries in
the collection.

OGC SF

Spatial.geometryN(GeomCollection,
Integer)

Returns
the nth
geometry in
the collection.

OGC SF

Functions that test Spatial Relationships
(OGC SF 3.2.19)

Method Description Specification Result [1] PostGIS MySQL
Oracle
Spatial

2 0 J D O Q L : S p a t i a l M e t h o d s 115

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Spatial.equals(Geometry,
Geometry)

TRUE if
the two
geometries
are spatially
equal.

OGC SF

[2]

Spatial.disjoint(Geometry,
Geometry)

TRUE if
the two
geometries
are spatially
disjoint.

OGC SF

[2]

Spatial.touches(Geometry,
Geometry)

TRUE if the
first Geometry
spatially
touches
the other
Geometry.

OGC SF

[2]

Spatial.within(Geometry,
Geometry)

TRUE if first
Geometry is
completely
contained
in second
Geometry.

OGC SF

[2]

Spatial.overlaps(Geometry,
Geometry)

TRUE if first
Geometries
is spatially
overlapping
the other
Geometry.

OGC SF

[2]

Spatial.crosses(Geometry,
Geometry)

TRUE if first
Geometry
crosses
the other
Geometry.

OGC SF

[3]

Spatial.intersects(Geometry,
Geometry)

TRUE if first
Geometry
spatially
intersects
the other
Geometry.

OGC SF

[2]

Spatial.contains(Geometry,
Geometry)

TRUE if
second
Geometry is
completely
contained
in first
Geometry.

OGC SF

[2]

Spatial.relate(Geometry,
Geometry,
String)

TRUE if
the spatial
relationship
specified
by the
patternMatrix
holds.

OGC SF

[3]

2 0 J D O Q L : S p a t i a l M e t h o d s 116

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

[1] Oracle does not allow boolean expressions in the SELECT-list.
[2] MySQL does not implement these functions according to the specification.They return the same
result as the corresponding MBR-based functions.
[3] MySQL does not implement these functions.

Function on Distance Relationships
(OGC SF 3.2.20)

Method Description Specification Result PostGIS MySQL
Oracle
Spatial

Spatial.distance(Geometry,
Geometry)

Returns the
distance
between
the two
geometries.

OGC SF

[1]

[1] MySQL does not implement this function.

Functions that implement Spatial Operators
(OGC SF 3.2.21)

Method Description Specification Result PostGIS MySQL [1]
Oracle
Spatial

Spatial.intersection(Geometry,
Geometry)

Returns a
Geometry
that is the set
intersection
of the two
geometries.

OGC SF

Spatial.difference(Geometry,
Geometry)

Returns a
Geometry
that is the
closure of the
set difference
of the two
geometries.

OGC SF

Spatial,union(Geometry,
Geometry)

Returns a
Geometry
that is the
set union
of the two
geometries.

OGC SF

Spatial.symDifference(Geometry,
Geometry)

Returns a
Geometry
that is the
closure of the
set symmetric
difference
of the two
geometries.

OGC SF

2 0 J D O Q L : S p a t i a l M e t h o d s 117

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Spatial.buffer(Geometry,
Double)

Returns as
Geometry
defined by
buffering
a distance
around the
Geometry.

OGC SF

Spatial.convexHull(Geometry)Returns a
Geometry
that is the
convex
hull of the
Geometry.

OGC SF

[1] These functions are currently not implemented in MySQL.They may appear in future releases.

Test whether the bounding box of one geometry intersects the bounding box of another

Method Description Result PostGIS MySQL Oracle Spatial

Spatial.bboxTest(Geometry,
Geometry)

Returns TRUE if
if the bounding
box of the
first Geometry
overlaps second
Geometry's
bounding box

[1]

[1] Oracle does not allow boolean expressions in the SELECT-list.

PostGIS Spatial Operators

These functions are only supported on PostGIS.

Method Description Result

PostGIS.bboxOverlapsLeft(Geometry,
Geometry)

The PostGIS &< operator returns
TRUE if the bounding box of the
first Geometry overlaps or is to the
left of second Geometry's bounding
box

PostGIS.bboxOverlapsRight(Geometry,
Geometry)

The PostGIS &> operator returns
TRUE if the bounding box of the
first Geometry overlaps or is to
the right of second Geometry's
bounding box

PostGIS.bboxLeft(Geometry,
Geometry)

The PostGIS << operator returns
TRUE if the bounding box of the
first Geometry overlaps or is strictly
to the left of second Geometry's
bounding box

2 0 J D O Q L : S p a t i a l M e t h o d s 118

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PostGIS.bboxRight(Geometry,
Geometry)

The PostGIS >> operator returns
TRUE if the bounding box of the
first Geometry overlaps or is strictly
to the right of second Geometry's
bounding box

PostGIS.bboxOverlapsBelow(Geometry,
Geometry)

The PostGIS &<@ operator returns
TRUE if the bounding box of the
first Geometry overlaps or is below
second Geometry's bounding box

PostGIS.bboxOverlapsAbove(Geometry,
Geometry)

The PostGIS |&> operator returns
TRUE if the bounding box of the
first Geometry overlaps or is above
second Geometry's bounding box

PostGIS.bboxBelow(Geometry,
Geometry)

The PostGIS <<| operator returns
TRUE if the bounding box of the
first Geometry is strictly below
second Geometry's bounding box

PostGIS.bboxAbove(Geometry,
Geometry)

The PostGIS |>> operator returns
TRUE if the bounding box of the
first Geometry is strictly above
second Geometry's bounding box

PostGIS.sameAs(Geometry,
Geometry)

The PostGIS ~= operator returns
TRUE if the two geometries are
vertex-by-vertex equal.

PostGIS.bboxWithin(Geometry,
Geometry)

The PostGIS @ operator returns
TRUE if the bounding box of
the first Geometry overlaps or is
completely contained by second
Geometry's bounding box

PostGIS.bboxContains(Geometry,
Geometry)

The PostGIS ~ operator returns
TRUE if the bounding box of the
first Geometry completely contains
second Geometry's bounding box

MySQL specific Functions for Testing Spatial Relationships between Minimal Bounding Boxes

These functions are only supported on MySQL.

Method Result

MySQL.mbrEqual(Geometry, Geometry)

MySQL.mbrDisjoint(Geometry, Geometry)

MySQL.mbrIntersects(Geometry, Geometry)

MySQL.mbrTouches(Geometry, Geometry)

MySQL.mbrWithin(Geometry, Geometry)

MySQL.mbrContains(Geometry, Geometry)

2 0 J D O Q L : S p a t i a l M e t h o d s 119

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

MySQL.mbrOverlaps(Geometry, Geometry)

Oracle specific Functions for Constructing SDO_GEOMETRY types

These functions are only supported on Oracle Spatial.

Method Desription

Oracle.sdo_geometry(
Integer gtype,
Integer srid,
SDO_POINT point,
SDO_ELEM_INFO_ARRAY elem_info,
SDO_ORDINATE_ARRAY ordinates)

Creates a SDO_GEOMETRY geometry from the
passed geometry type, srid, point, element infos and
ordinates.

Oracle.sdo_point_type(
Double x, Double y, Double z)

Creates a SDO_POINT geometry from the passed
ordinates.

Oracle.sdo_elem_info_array(
String numbers)

Creates a SDO_ELEM_INFO_ARRAY from the
passed comma-separeted integers.

Oracle.sdo_ordinate_array(
String ordinates)

Creates a SDO_ORDINATE_ARRAY from the passed
comma-separeted doubles.

Examples

The following sections provide some examples of what can be done using spatial methods in JDOQL
queries. In the examples we use a class from the test suite. Here's the source code for reference:

package org.datanucleus.samples.pggeometry;

import org.postgis.LineString;

public class SampleLineString {

 private long id;

 private String name;

 private LineString geom;

 public SampleLineString(long id, String name, LineString lineString) {

 this.id = id;

 this.name = name;

 this.geom = lineString;

 }

 public long getId() {

 return id;

 }

}

2 0 J D O Q L : S p a t i a l M e t h o d s 120

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="org.datanucleus.samples.pggeometry">

 <extension vendor-name="datanucleus" key="spatial-dimension" value="2"/>

<extension vendor-name="datanucleus" key="spatial-srid" value="4326"/>

<class name="SampleLineString" table="samplepglinestring" detachable="true">

<field name="id"/>

<field name="name"/>

<field name="geom" persistence-modifier="persistent"/>

</class>

</package>

</jdo>

20.1.1 Example 1 - Spatial Function in the Filter of a Query

This example shows how to use spatial functions in the filter of a query. The query returns a list of
SampleLineStrings whose line string has a length less than the given limit.

Double limit = new Double(100.0);

Query query = pm.newQuery(SampleLineString.class, "geom != null && Spatial.length(geom) < :limit");

List list = (List) query.execute(limit);

20.1.2 Example 2 - Spatial Function in the Result Part of a Query

This time we use a spatial function in the result part of a query. The query returns the length of the
line string from the selected SampleLineString

query = pm.newQuery(SampleLineString.class, "id == :id");

query.setResult("Spatial.pointN(geom, 2)");

query.setUnique(true);

Geometry point = (Geometry) query.execute(new Long(1001));

20.1.3 Example 3 - Nested Functions

You may want to use nested functions in your query. This example shows how to do that. The query
returns a list of SampleLineStrings, whose end point spatially equals a given point.

Point point = new Point("SRID=4326;POINT(110 45)");

Query query = pm.newQuery(SampleLineString.class, "geom != null && Spatial.equals(Spatial.endPoint(geom), :point)");

List list = (List) query.execute(point);

2 1 S t a t e m e n t B a t c h i n g 121

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

21 Statement Batching
...

21.1 RDBMS : Statement Batching

When changes are required to be made to an underlying RDBMS datastore, statements are sent
via JDBC. A statement is, in general, a single SQL command, and is then executed. In some
circumstances the statements due to be sent to the datastore are the same JDBC statement several
times. In this case the statement can be batched. This means that a statement is created for the
SQL, and it is passed to the datastore with multiple sets of values before being executed. When it is
executed the SQL is executed for each of the sets of values. DataNucleus allows statement batching
under certain circumstances.

The maximum number of statements that can be included in a batch can be set via a persistence
property datanucleus.rdbms.statementBatchLimit. This defaults to 50. If you set it to -1 then there
is no maximum limit imposed. Setting it to 0 means that batching is turned off.

It should be noted that while batching sounds essential, it is only of any possible use when the
exact same SQL is required to be executed more than 1 times in a row. If a different SQL needs
executing between 2 such statements then no batching is possible anyway.. Let's take an example

INSERT INTO MYTABLE VALUES(?,?,?,?)

INSERT INTO MYTABLE VALUES(?,?,?,?)

SELECT ID, NAME FROM MYOTHERTABLE WHERE VALUE=?

INSERT INTO MYTABLE VALUES(?,?,?,?)

SELECT ID, NAME FROM MYOTHERTABLE WHERE VALUE=?

In this example the first two statements can be batched together since they are identical and nothing
else separates them. All subsequent statements cannot be batched since no two identical statements
follow each other.

The statements that DataNucleus currently allows for batching are

• Insert of objects. This is not enabled when objects being inserted are using identity value
generation strategy

• Delete of objects
• Insert of container elements/keys/values
• Delete of container elements/keys/values

Please note that if using MySQL, you should also specify the connection URL with the argument
rewriteBatchedStatements=true since MySQL won't actually batch without this

2 2 V i e w s 122

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

22 Views
...

22.1 RDBMS : Views

DataNucleus supports persisting objects to RDBMS datastores, persisting to Tables. The majority
of RDBMS also provide support for Views, providing the equivalent of a read-only SELECT across
various tables. DataNucleus also provides support for querying such Views. This provides more
flexibility to the user where they have data and need to display it in their application. Support for
Views is described below.

When you want to access data according to a View, you are required to provide a class that
will accept the values from the View when queried, and Meta-Data for the class that defines
the View and how it maps onto the provided class. Let's take an example. We have a View
SALEABLE_PRODUCT in our database as follows, defined based on data in a PRODUCT table.

CREATE VIEW SALEABLE_PRODUCT (ID, NAME, PRICE, CURRENCY) AS

 SELECT ID, NAME, CURRENT_PRICE AS PRICE, CURRENCY FROM PRODUCT

 WHERE PRODUCT.STATUS_ID = 1

So we define a class to receive the values from this View.

package org.datanucleus.samples.views;

public class SaleableProduct

{

 String id;

 String name;

 double price;

 String currency;

 public String getId()

 {

 return id;

 }

 public String getName()

 {

 return name;

 }

 public double getPrice()

 {

 return price;

 }

 public String getCurrency()

 {

 return currency;

 }

}

2 2 V i e w s 123

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

and then we define how this class is mapped to the View

<?xml version="1.0"?>

<!DOCTYPE jdo SYSTEM "file:/javax/jdo/jdo.dtd">

<jdo>

 <package name="org.datanucleus.samples.views">

 <class name="SaleableProduct" identity-type="nondurable" table="SALEABLE_PRODUCT">

 <field name="id"/>

 <field name="name"/>

 <field name="price"/>

 <field name="currency"/>

 <!-- This is the "generic" SQL92 version of the view. -->

 <extension vendor-name="datanucleus" key="view-definition" value="

CREATE VIEW SALEABLE_PRODUCT

(

 {this.id},

 {this.name},

 {this.price},

 {this.currency}

) AS

SELECT ID, NAME, CURRENT_PRICE AS PRICE, CURRENCY FROM PRODUCT

WHERE PRODUCT.STATUS_ID = 1"/>

 </class>

 </package>

</jdo>

Please note the following

• We've defined our class as using "nondurable" identity. This is an important step since rows
of the View typically don't operate in the same way as rows of a Table, not mapping onto a
persisted updateable object as such

• We've specified the "table", which in this case is the view name - otherwise DataNucleus would
create a name for the view based on the class name.

• We've defined a DataNucleus extension view-definition that defines the view for this class.
If the view doesn't already exist it doesn't matter since DataNucleus (when used with
autoCreateSchema) will execute this construction definition.

• The view-definition can contain macros utilising the names of the fields in the class, and hence
borrowing their column names (if we had defined column names for the fields of the class).

• You can also utilise other classes in the macros, and include them via a DataNucleus MetaData
extension view-imports (not shown here)

• If your View already exists you are still required to provide a view-definition even though
DataNucleus will not be utilising it, since it also uses this attribute as the flag for whether it is a
View or a Table - just make sure that you specify the "table" also in the MetaData.

We can now utilise this class within normal DataNucleus querying operation.

2 2 V i e w s 124

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Extent e = pm.getExtent(SaleableProduct.class);

Iterator iter = e.iterator();

while (iter.hasNext())

{

 SaleableProduct product = (SaleableProduct)iter.next();

}

Hopefully that has given enough detail on how to create and access views from with a DataNucleus-
enabled application.

2 3 D a t a s t o r e A P I 125

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

23 Datastore API
...

23.1 RDBMS : Datastore Schema API

JDO/JPA are APIs for persisting and retrieving objects to/from datastores. They don't provide a way
of accessing the schema of the datastore itself (if it has one). In the case of RDBMS it is useful to
be able to find out what columns there are in a table, or what data types are supported for example.
DataNucleus Access Platform provides an API for this.

The first thing to do is get your hands on the DataNucleus StoreManager and from that the
StoreSchemaHandler. You do this as follows

import org.datanucleus.api.jdo.JDOPersistenceManagerFactory;

import org.datanucleus.store.StoreManager;

import org.datanucleus.store.schema.StoreSchemaHandler;

[assumed to have "pmf"]

...

StoreManager storeMgr = ((JDOPersistenceManagerFactory)pmf).getStoreManager();

StoreSchemaHandler schemaHandler = storeMgr.getSchemaHandler();

So now we have the StoreSchemaHandler what can we do with it? Well
start with the javadoc for the implementation that is used for RDBMS

23.1.1 Datastore Types Information

So we now want to find out what JDBC/SQL types are supported for our RDBMS. This is simple.

import org.datanucleus.store.rdbms.schema.RDBMSTypesInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();

RDBMSTypesInfo typesInfo = schemaHandler.getSchemaData(conn, "types");

As you can see from the javadocs for RDBMSTypesInfo

we can access the JDBC types information via the "children". They are keyed by the JDBC type
number of the JDBC type (see java.sql.Types). So we can just iterate it

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSSchemaHandler.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSSchemaHandler.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTypesInfo.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTypesInfo.html

2 3 D a t a s t o r e A P I 126

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Iterator jdbcTypesIter = typesInfo.getChildren().values().iterator();

while (jdbcTypesIter.hasNext())

{

 JDBCTypeInfo jdbcType = (JDBCTypeInfo)jdbcTypesIter.next();

 // Each JDBCTypeInfo contains SQLTypeInfo as its children, keyed by SQL name

 Iterator sqlTypesIter = jdbcType.getChildren().values().iterator();

 while (sqlTypesIter.hasNext())

 {

 SQLTypeInfo sqlType = (SQLTypeInfo)sqlTypesIter.next();

 ... inspect the SQL type info

 }

}

23.1.2 Column information for a table

Here we have a table in the datastore and want to find the columns present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();

RDBMSTableInfo tableInfo = schemaHandler.getSchemaData(conn, "columns",

 new Object[] {catalogName, schemaName, tableName});

As you can see from the javadocs for RDBMSTableInfo

we can access the columns information via the "children".

Iterator columnsIter = tableInfo.getChildren().iterator();

while (columnsIter.hasNext())

{

 RDBMSColumnInfo colInfo = (RDBMSColumnInfo)columnsIter.next();

 ...

}

23.1.3 Index information for a table

Here we have a table in the datastore and want to find the indices present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();

RDBMSTableIndexInfo tableInfo = schemaHandler.getSchemaData(conn, "indices",

 new Object[] {catalogName, schemaName, tableName});

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableInfo.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableInfo.html

2 3 D a t a s t o r e A P I 127

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

As you can see from the javadocs for RDBMSTableIndexInfo

we can access the index information via the "children".

Iterator indexIter = tableInfo.getChildren().iterator();

while (indexIter.hasNext())

{

 IndexInfo idxInfo = (IndexInfo)indexIter.next();

 ...

}

23.1.4 ForeignKey information for a table

Here we have a table in the datastore and want to find the FKs present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();

RDBMSTableFKInfo tableInfo = schemaHandler.getSchemaData(conn, "foreign-keys",

 new Object[] {catalogName, schemaName, tableName});

As you can see from the javadocs for RDBMSTableFKInfo

we can access the foreign-key information via the "children".

Iterator fkIter = tableInfo.getChildren().iterator();

while (fkIter.hasNext())

{

 ForeignKeyInfo fkInfo = (ForeignKeyInfo)fkIter.next();

 ...

}

23.1.5 PrimaryKey information for a table

Here we have a table in the datastore and want to find the PK present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();

RDBMSTablePKInfo tableInfo = schemaHandler.getSchemaData(conn, "primary-keys",

 new Object[] {catalogName, schemaName, tableName});

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableIndexInfo.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableIndexInfo.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableFKInfo.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableFKInfo.html

2 3 D a t a s t o r e A P I 128

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

As you can see from the javadocs for RDBMSTablePKInfo

we can access the foreign-key information via the "children".

Iterator pkIter = tableInfo.getChildren().iterator();

while (pkIter.hasNext())

{

 PrimaryKeyInfo pkInfo = (PrimaryKeyInfo)pkIter.next();

 ...

}

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTablePKInfo.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTablePKInfo.html

2 4 O D F 129

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

24 ODF
...

24.1 ODF Documents

DataNucleus supports persisting/retrieving objects to/from ODF documents (using the datanucleus-
odf plugin, which makes use of the ODFDOM project). Simply specify your "connectionURL" as
follows

datanucleus.ConnectionURL=odf:file:myfile.ods

replacing "myfile.ods" with your filename, which can be absolute or relative. This connects to a file
on your local machine. You then create your PMF/EMF as normal and use JDO/JPA as normal.

The jars required to use DataNucleus ODF persistence are datanucleus-core, datanucleus-api-jdo/
datanucleus-api-jpa, datanucleus-odf and odftoolkit

There are tutorials available for use of DataNucleus with ODF for JDO and for JPA

Things to bear in mind with ODF usage :-

• Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

• Relations : A spreadsheet cannot store related objects directly, since each object
is a row of a particular worksheet. DataNucleus gets around this by storing
the String-form of the identity of the related object in the relation cell. See

24.1.1 Worksheet Headers

A typical spreadsheet has many rows of data. It contains no names of columns tying the data back
to the input object (field names). DataNucleus allows an extension specified at class level called
include-column-headers (should be set to true). When the table is then created it will include an
extra row (the first row) with the column names from the metadata (or field names if no column
names were defined). For example

https://github.com/datanucleus/datanucleus-odf
https://github.com/datanucleus/datanucleus-odf

2 4 O D F 130

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

2 5 E x c e l (X L S) 131

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

25 Excel (XLS)
...

25.1 Excel Documents

DataNucleus supports persisting/retrieving objects to/from Excel documents (using the datanucleus-
excel plugin, which makes use of the Apache POI project). Simply specify your "connectionURL" as
follows

datanucleus.ConnectionURL=excel:file:myfile.xls

replacing "myfile.xls" with your filename, which can be absolute or relative. This connects to a file on
your local machine. You then create your PMF/EMF as normal and use JDO/JPA as normal.

The jars required to use DataNucleus Excel persistence are datanucleus-core, datanucleus-api-jdo/
datanucleus-api-jpa, datanucleus-excel and apache-poi

There are tutorials available for use of DataNucleus with Excel for JDO and for JPA

Things to bear in mind with Excel usage :-

• Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

• Relations : A spreadsheet cannot store related objects directly, since each object is a row of a
particular worksheet. DataNucleus gets around this by storing the String-form of the identity of
the related object in the relation cell.

25.1.1 References

Some references that may be of some use

• A JDO With DataNucleus AccessPlatform using Excel and Eclipse Tutorial That Actually
Works

https://github.com/datanucleus/datanucleus-excel
https://github.com/datanucleus/datanucleus-excel
http://www.peternewhook.com/2011/01/jdo-datanucleus-excel-eclipse/
http://www.peternewhook.com/2011/01/jdo-datanucleus-excel-eclipse/

2 6 E x c e l (O O X M L) 132

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

26 Excel (OOXML)
...

26.1 Excel (OOXML) Documents

DataNucleus supports persisting/retrieving objects to/from OOXML documents (using the
datanucleus-excel plugin) which makes use of the Apache POI project. Simply specify your
"connectionURL" as follows

datanucleus.ConnectionURL=excel:file:myfile.xlsx

replacing "myfile.xlsx" with your filename, which can be absolute or relative. This connects to a file
on your local machine. You then create your PMF/EMF as normal and use JDO/JPA as normal.

The jars required to use DataNucleus OOXML persistence are datanucleus-core, datanucleus-api-jdo/
datanucleus-api-jpa, datanucleus-excel and apache-poi

There are tutorials available for use of DataNucleus with Excel for JDO and for JPA

Things to bear in mind with OOXML usage :-

• Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

• Relations : A spreadsheet cannot store related objects directly, since each object is a row of a
particular worksheet. DataNucleus gets around this by storing the String-form of the identity of
the related object in the relation cell.

https://github.com/datanucleus/datanucleus-excel
https://github.com/datanucleus/datanucleus-excel

2 7 X M L 133

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

27 XML
...

27.1 XML Documents

DataNucleus supports persisting/retrieving objects to/from XML documents (using the datanucleus-
xml plugin). Simply specify your "connectionURL" as follows

datanucleus.ConnectionURL=xml:file:myfile.xml

replacing myfile.xml with your filename, which can be absolute or relative.

It makes use of JAXB, and the jars required to use DataNucleus XML persistence are datanucleus-
core, datanucleus-api-jdo/ datanucleus-api-jpa, datanucleus-xml and JAXB API, JAXB Reference
Implementation. If you wish to help out in this effort either by contributing or by sponsoring particular
functionality please contact us via the DataNucleus Forum.

Things to bear in mind with XML usage :-

• Indentation of XML : the persistence property datanucleus.xml.indentSize defaults to 4 but you
can set it to the desired indent size

• Querying using JDOQL/JPQL will operate in-memory currently.
• Application identity is supported but can only have 1 PK field and must be a String. This is a

limitation of JAXB
• Persistent properties are not supported, only persistent fields
• Out of the box it will use the JAXB reference implementation. You could, in

principle, provide support for other JAXB implementations by implementing
org.datanucleus.store.xml.JAXBHandler and then specify the persistence property
datanucleus.xml.jaxbHandlerClass to the JAXBHandler implementation. If you do manage
to write a JAXBHandler for other JAXB implementations please consider contributing it to the
project

27.1.1 Mapping : XML Datastore Mapping

When persisting a Java object to an XML datastore clearly the user would like some control over the
structure of the XML document. Here's an example using JDO XML MetaData

<jdo>

 <package name="org.datanucleus.samples.models.company">

 <class name="Person" detachable="true" schema="/myproduct/people" table="person">

 <field name="personNum">

 <extension vendor-name="datanucleus" key="XmlAttribute" value="true"/>

 </field>

 <field name="firstName" primary-key="true"/> <!-- PK since JAXB requires String -->

 <field name="lastName"/>

 <field name="bestFriend"/>

 </class>

 </package>

</jdo>

Things to note :

https://github.com/datanucleus/datanucleus-xml
https://github.com/datanucleus/datanucleus-xml
http://forum.datanucleus.org

2 7 X M L 134

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• schema on class is used to define the "XPath" to the root of the class in XML. You can also use
the extension "xpath" to specify the same thing.

• table on class is used to define the name of the element for an object of the particular class.
• column on field is used to define the name of the element for a field of the particular class.
• XmlAttribute : when set to true denotes that this will appear in the XML file as an attribute of

the overall element for the object
• When a field is primary-key it will gain a JAXB "XmlID" attribute.
• When a field is a relation to another object (and the field is not embedded) then it will gain a

JAXB "XmlIDREF" attribute as a link to the other object.
• Important : JAXB has a limitation for primary keys : there can only be a single PK field, and

it must be a String!
What is generated with the above is as follows

<?xml version="1.0" encoding="UTF-8"?>

<myproduct>

 <people>

 <person personNum="1">

 <firstName>Bugs</firstName>

 <lastName>Bunny</lastName>

 <bestFriend>My</bestFriend>

 </person>

 </people>

</myproduct>

Here's the same example using JDO Annotations

@PersistenceCapable(schema="/myproduct/people", table="person")

public class Person

{

 @XmlAttribute

 private long personNum;

 @PrimaryKey

 private String firstName;

 private String lastName;

 private Person bestFiend;

 @XmlElementWrapper(name="phone-numbers")

 @XmlElement(name="phone-number")

 @Element(types=String.class)

 private Map phoneNumbers = new HashMap();

 ...

Here's the same example using JPA Annotations (with DataNucleus @Extension/@Extensions
annotations)

2 7 X M L 135

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

TODO Add this example

2 8 H B a s e 136

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

28 HBase
...

28.1 HBase Datastores

DataNucleus supports persisting/retrieving objects to/from HBase datastores (using the datanucleus-
hbase plugin, which makes use of the HBase/Hadoop jars). Simply specify your "connectionURL" as
follows

datanucleus.ConnectionURL=hbase[:{server}:{port}]

datanucleus.ConnectionUserName=

datanucleus.ConnectionPassword=

If you just specify the URL as hbase then you have a local HBase datastore, otherwise it tries to
connect to the datastore at {server}:{port}. Alternatively just put "hbase" as the URL and set the
zookeeper details in "hbase-site.xml" as normal. You then create your PMF/EMF as normal and use
JDO/JPA as normal.

The jars required to use DataNucleus HBase persistence are datanucleus-core, datanucleus-api-jdo/
datanucleus-api-jpa, datanucleus-hbase and hbase, hadoop-core, zookeeper.

There are tutorials available for use of DataNucleus with HBase for JDO and for JPA

Things to bear in mind with HBase usage :-

• Creation of a PMF/EMF will create an internal HBaseConnectionPool
• Creation of a PM/EM will create/use a HConnection.
• Querying can be performed using JDOQL or JPQL. Some components of a filter are handled

in the datastore, and the remainder in-memory. Currently any expression of a field (in the same
table), or a literal are handled in-datastore, as are the operators &&, ||, >, >=, <, <=, ==, and !=.

• The "row key" will be the PK field(s) when using "application-identity", and the generated id
when using "datastore-identity"

28.1.1 Field/Column Naming

By default each field is mapped to a single column in the datastore, with the family name being the
name of the table, and the column name using the name of the field as its basis (but following JDO/
JPA naming strategies for the precise column name). You can override this as follows

@Column(name="{familyName}:{qualifierName}")

String myField;

replacing {familyName} with the family name you want to use, and {qualifierName} with the column
name (qualifier name in HBase terminology) you want to use. Alternatively if you don't want to
override the default family name (the table name), then you just omit the "{familyName}:" part and
simply specify the column name.

https://github.com/datanucleus/datanucleus-hbase
https://github.com/datanucleus/datanucleus-hbase

2 8 H B a s e 137

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

28.1.2 MetaData Extensions

Some metadata extensions (@Extension) have been added to DataNucleus to support some of HBase
particular table creation options. The supported attributes at Table creation for a column family are:

• bloomFilter : An advanced feature available in HBase is Bloom filters, allowing you to improve
lookup times given you have a specific access pattern. Default is NONE. Possible values are:
ROW -> use the row key for the filter, ROWKEY -> use the row key and column key (family
+qualifier) for the filter.

• inMemory : The in-memory flag defaults to false. Setting it to true is not a guarantee that all
blocks of a family are loaded into memory nor that they stay there. It is an elevated priority, to
keep them in memory as soon as they are loaded during a normal retrieval operation, and until
the pressure on the heap (the memory available to the Java-based server processes)is too high, at
which time they need to be discarded by force.

• maxVersions : Per family, you can specify how many versions of each value you want to
keep.The default value is 3, but you may reduce it to 1, for example, in case you know for sure
that you will never want to look at older values.

• keepDeletedCells : ColumnFamilies can optionally keep deleted cells. That means deleted cells
can still be retrieved with Get or Scan operations, as long these operations have a time range
specified that ends before the timestamp of any delete that would affect the cells. This allows for
point in time queries even in the presence of deletes. Deleted cells are still subject to TTL and
there will never be more than "maximum number of versions" deleted cells. A new "raw" scan
options returns all deleted rows and the delete markers.

• compression : HBase has pluggable compression algorithm, default value is NONE. Possible
values GZ, LZO, SNAPPY.

• blockCacheEnabled : As HBase reads entire blocks of data for efficient I/O usage, it retains
these blocks in an in-memory cache so that subsequent reads do not need any disk operation.
The default of true enables the block cache for every read operation. But if your use case only
ever has sequential reads on a particular column family, it is advisable that you disable it from
polluting the block cache by setting it to false.

• timeToLive : HBase supports predicate deletions on the number of versions kept for each value,
but also on specific times. The time-to-live (or TTL) sets a threshold based on the timestamp of a
value and the internal housekeeping is checking automatically if a value exceeds its TTL. If that
is the case, it is dropped during major compactions

To express these options, a format similar to a properties file is used such as:

hbase.columnFamily.[family name to apply property on].[attribute] = {value}

where:

• attribute: One of the above defined attributes (inMemory, bloomFilter,...)
• family name to apply property on: The column family affected.
• value: Associated value for this attribute.

An example that would apply to the "meta" column family, that would set the bloom filter option to
ROWKEY, and the in memory flag to true would look like:

2 8 H B a s e 138

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

@Extensions({

 @Extension(vendorName = "datanucleus", key = "hbase.columnFamily.meta.bloomFilter", value = "ROWKEY"),

 @Extension(vendorName = "datanucleus", key = "hbase.columnFamily.meta.inMemory", value = "true")

})

public class MyClass

{

 @PrimaryKey

 private long id;

 // column family data, name of attribute blob

 @Column(name = "data:blob")

 private String blob;

 // column family meta, name of attribute firstName

 @Column(name = "meta:firstName")

 private String firstName;

 // column family meta, name of attribute firstName

 @Column(name = "meta:lastName")

 private String lastName;

 [... getter and setter ...]

28.1.3 References

Below are some references using this support

• Apache Hadoop HBase plays nicely with JPA
• HBase with JPA and Spring Roo
• Value Generator plugin for HBase and DataNucleus

http://www.nofluffjuststuff.com/blog/matthias__wessendorf_/2010/03/apache_hadoop_hbase_plays_nice_with_jpa
http://rainerpeter.wordpress.com/2011/01/11/hbase-with-jpa-and-spring-roo/
http://rainerpeter.wordpress.com/2011/01/12/value-generator-plugin-datanucleus-hbase/

2 9 M o n g o D B 139

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

29 MongoDB
...

29.1 MongoDB Datastores

DataNucleus supports persisting/retrieving objects to/from MongoDB datastores (using the
datanucleus-mongodb plugin, which utilises the Mongo Java driver). Simply specify your
"connectionURL" as follows

datanucleus.ConnectionURL=mongodb:[{server}][/{dbName}] [,{server2}[,server3}]]

For example, to connect to a local server, with database called "myMongoDB"

datanucleus.ConnectionURL=mongodb:/myMongoDB

If you just specify the URL as mongodb then you have a local MongoDB datastore called
"DataNucleus", otherwise it tries to connect to the datastore {dbName} at {server}. The multiple
{server} option allows you to run against MongoDB replica sets. You then create your PMF/EMF as
normal and use JDO/JPA as normal.

The jars required to use DataNucleus MongoDB persistence are datanucleus-core, datanucleus-api-
jdo/ datanucleus-api-jpa, datanucleus-mongodb and mongo-java-driver

There are tutorials available for use of DataNucleus with MongoDB for JDO and for JPA

Things to bear in mind with MongoDB usage :-

• Creation of a PMF/EMF will create a MongoClient. This will be closed then the PMF/EMF is
closed.

• Creation of a PM/EM and performing an operation will obtain a DB object from the
MongoClient. This is pooled by the MongoClient so is managed by MongoDB. Closing the PM/
EM will stop using that DB

• You can set the number of connections per host with the persistence property
datanucleus.mongodb.connectionsPerHost

• Querying can be performed using JDOQL or JPQL. Some components of a filter are handled
in the datastore, and the remainder in-memory. Currently any expression of a field (in the same
table), or a literal are handled in-datastore, as are the operators &&, ||, >, >=, <, <=, ==, and !=.
Note that if something falls back to being evaluated in-memory then it can be much slower, and
this will be noted in the log, so people are advised to design their models and queries to avoid
that happening if performance is a top priority.

• If you want a query to be runnable on a slave MongoDB instance then you should set the query
extension (JDO) / hint (JPA) slave-ok as true, and when executed it can be run on a slave
instance.

• All objects of a class are persisted to a particular "document" (specifiable with the "table" in
metadata), and a field of a class is persisted to a particular "field" ("column" in the metadata).

• Relations : DataNucleus stores the id of the related object(s) in a field of the owning object.
When a relation is bidirectional both ends of the relation will store the relation information.

https://github.com/datanucleus/datanucleus-mongodb
https://github.com/datanucleus/datanucleus-mongodb
http://www.mongodb.org/display/DOCS/Replica+Sets

2 9 M o n g o D B 140

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Capped collections : you can specify the extension metadata key mongodb.capped.size as the
number of bytes of the size of the collection for the class in question.

• If you want to specify the max number of connections per host with MongoDB then set the
persistence property datanucleus.mongodb.connectionsPerHost

• If you want to specify the MongoDB threadsAllowedToBlockForConnectionMultiplier, then set
the persistence property
datanucleus.mongodb.threadsAllowedToBlockForConnectionMultiplier

29.1.1 Mapping : Embedded Persistable fields

When you have a field in a class that is of a persistable type you sometimes want to store it with the
owning object. In this case you can use JDO / JPA embedding of the field. DataNucleus offers two
ways of performing this embedding

• The default is to store the object in the field as a sub-document (nested) of the owning document.
Similarly if that sub-object has a field of a persistable type then that can be further nested.

• The alternative is to store each field of the sub-object as a field of the owning document (flat
embedding). Similarly if that sub-object has a field of a persistable type then it can be flat
embedded in the same way

For JDO this would be defined as follows (for JPA just swap @PersistenceCapable for @Entity)

@PersistenceCapable

public class A

{

 @Embedded

 B b;

 ...

}

This example uses the default embedding, using a nested document within the owner document, and
could look something like this

{ "name" : "A Name" ,

 "id" : 1 ,

 "b" : { "b_name" : "B name" ,

 "b_description" : "the description"}

}

The alternative for JDO would be as follows (for JPA just swap @PersistenceCapable for @Entity)

@PersistenceCapable

public class A

{

 @Embedded

 @Extension(vendorName="datanucleus", key="nested", value="false")

 B b;

 ...

}

and this will use flat embedding, looking something like this

http://www.mongodb.org/display/DOCS/Capped+Collections

2 9 M o n g o D B 141

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

{ "name" : "A Name" ,

 "id" : 1 ,

 "b_name" : "B name" ,

 "b_description" : "the description"

}

29.1.2 Mapping : Embedded Collection elements

When you have a field in a class that is of a Collection type you sometimes want to store it with the
owning object. In this case you can use JDO/ JPA embedding of the field. So if we have

@PersistenceCapable

public class A

{

 @Element(embedded="true")

 Collection bs;

 ...

}

and would look something like this

{ "name" : "A Name" ,

 "id" : 1 ,

 "bs" :

 [

 { "name" : "B Name 1" ,

 "description" : "desc 1"} ,

 { "name" : "B Name 2" ,

 "description" : "desc 2"} ,

 { "name" : "B Name 3" ,

 "description" : "desc 3"}

]

}

29.1.3 References

Below are some references using this support

• Sasa Jovancic - Use JPA with MongoDb and Datanucleus

http://sasajovancic.blogspot.com/2011/06/use-jpa-with-mongodb-and-datanucleus.html

3 0 C a s s a n d r a 142

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

30 Cassandra
...

30.1 Cassandra Datastores

DataNucleus supports a limited for of persisting/retrieving objects to/from Cassandra datastores
(using the datanucleus-cassandra plugin, which utilises the DataStax Java driver). Simply specify
your "connectionURL" as follows

datanucleus.ConnectionURL=cassandra:[{host1}[:{port}] [,{host2} [,{host3}]]]

where it will create a Cassandra cluster with contact points of host1 (host2, host3 etc), and if the port
is specified on the first host then will use that as the port (no port specified on alternate hosts).

For example, to connect to a local server

datanucleus.ConnectionURL=cassandra:

The jars required to use DataNucleus Cassandra persistence are datanucleus-core, datanucleus-api-
jdo/ datanucleus-api-jpa, datanucleus-cassandra and cassandra-driver-core

There are tutorials available for use of DataNucleus with Cassandra for JDO and for JPA

Things to bear in mind with Cassandra usage :-

• Creation of a PMF/EMF will create a Cluster. This will be closed then the PMF/EMF is closed.
• Any PM/EM will use a single Session, by default, shared amongst all PM/EMs.
• If you specify the persistence property datanucleus.cassandra.sessionPerManager to true then

each PM/EM will have its own Session object.
• You can set the number of connections per host with the persistence property

datanucleus.mongodb.connectionsPerHost
• Cassandra doesn't use transactions, so any JDO/JPA transaction operation is a no-op (i.e will be

ignored).
• This uses Cassandra 2.x (and CQL v3.x), not Thrift (like the previous unofficial attempts at a

datanucleus-cassandra plugin used)
• You need to specify the "schema" (datanucleus.mapping.Schema)
• Queries are evaluated in-datastore when they only have (indexed) members and literals and using

the operators ==, !=, >, >=, <, <=, &&, ||.
• You can query the datastore using JDOQL, JPQL, or CQL

30.1.1 Queries : Cassandra CQL Queries

Note that if you choose to use Cassandra CQL Queries then these are not portable to any other datastore. Use
JDOQL/JPQL for portability

Cassandra provides the CQL query language. To take a simple example using the JDO API

https://github.com/datanucleus/datanucleus-cassandra

3 0 C a s s a n d r a 143

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

// Find all employees

PersistenceManager persistenceManager = pmf.getPersistenceManager();

Query q = pm.newQuery("CQL", "SELECT * FROM schema1.Employee");

// Fetch 10 Employee rows at a time

query.getFetchPlan().setFetchSize(10);

query.setResultClass(Employee.class);

List<Employee> results = (List)q.execute();

You can also query results as List<Object[]> without specifying a specific result type as shown
below.

// Find all employees

PersistenceManager persistenceManager = pmf.getPersistenceManager();

Query q = pm.newQuery("CQL", "SELECT * FROM schema1.Employee");

// Fetch all Employee rows as Object[] at a time.

query.getFetchPlan().setFetchSize(-1);

List<Object[]> results = (List)q.execute();

So we are utilising the JDO API to generate a query and passing in the Cassandra "CQL".

If you wanted to use CQL with the JPA API, you would do

// Find all employees

Query q = em.createNativeQuery("SELECT * FROM schema1.Employee", Employee.class);

List<Employee> results = q.getResultList();

Note that the last argument to createNativeQuery is optional and you would get List<Object[]>
returned otherwise.

3 1 N e o 4 j 144

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

31 Neo4j
...

31.1 Neo4j Datastores

DataNucleus supports persisting/retrieving objects to/from embedded Neo4j graph datastores
(using the datanucleus-neo4j plugin, which utilises the Neo4j Java driver). Simply specify your
"connectionURL" as follows

datanucleus.ConnectionURL=neo4j:{db_location}

For example

datanucleus.ConnectionURL=neo4j:myNeo4jDB

You then create your PMF/EMF as normal and use JDO/JPA as normal.

The jars required to use DataNucleus Neo4j persistence are datanucleus-core, datanucleus-api-jdo/
datanucleus-api-jpa, datanucleus-neo4j and neo4j

Note that this is for embedded Neo4j. This is because at the time of writing there is no binary
protocol for connecting Java clients to the server with Neo4j. When that is available we would
hope to support it.

There are tutorials available for use of DataNucleus with Neo4j for JDO and for JPA

Things to bear in mind with Neo4j usage :-

• Creation of a PMF/EMF will create a GraphDatabaseService and this is shared by all PM/EM
instances. Since this is for an embedded graph datastore then this is the only logical way to
provide this. Should this plugin be updated to connect to a Neo4J server then this will change.

• Querying can be performed using JDOQL or JPQL. Some components of a filter are handled
in the datastore, and the remainder in-memory. Currently any expression of a field (in the same
'table'), or a literal are handled in-datastore, as are the operators &&, ||, >, >=, <, <=, ==, and !=.
Also the majority of ordering and result clauses are evaluatable in the datastore, as well as query
result range restrictions.

• When an object is persisted it becomes a Node in Neo4j. You define the names of the properties
of that node by specifying the "column" name using JDO/JPA metadata

• Any 1-1, 1-N, M-N, N-1 relation is persisted as a Relationship object in Neo4j and any
positioning of elements in a List or array is preserved via a property on the Relationship.

• If you wanted to specify some neo4j.properties file for use of your embedded database then
specify the persistence property datanucleus.ConnectionPropertiesFile set to the filename.

• This plugin is in prototype stage so would welcome feedback and, better still, some contributions
to fully exploit the power of Neo4j. Register your interest on the DataNucleus Forum

31.1.1 Persistence Implementation

Let's take some example classes, and then describe how these are persisted in Neo4j.

http://www.neo4j.org
https://github.com/datanucleus/datanucleus-neo4j
http://forum.datanucleus.org

3 1 N e o 4 j 145

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Store

{

 @Persistent(primaryKey="true", valueStrategy="identity")

 long id;

 Inventory inventory;

 ...

}

public class Inventory

{

 @Persistent(primaryKey="true", valueStrategy="identity")

 long id;

 Set<Product> products;

 ...

}

public class Product

{

 @Persistent(primaryKey="true", valueStrategy="identity")

 long id;

 String name;

 double value;

 ...

}

When we persist a Store object, which has an Inventory, which has three Product objects, then we get
the following

• Node for the Store, with the "id" is represented as the node id
• Node for the Inventory, with the "id" is represented as the node id
• Relationship between the Store Node and the Inventory Node, with the relationship type as

"SINGLE_VALUED", and with the property DN_FIELD_NAME as "inventory"
• Node for Product #1, with properties for "name" and "value" as well as the "id" represented as

the node id
• Node for Product #2, with properties for "name" and "value" as well as the "id" represented as

the node id
• Node for Product #3, with properties for "name" and "value" as well as the "id" represented as

the node id
• Relationship between the Inventory Node and the Product #1 Node, with the relationship type

"MULTI_VALUED" and the property DN_FIELD_NAME as "products"
• Relationship between the Inventory Node and the Product #2 Node, with the relationship type

"MULTI_VALUED" and the property DN_FIELD_NAME as "products"
• Relationship between the Inventory Node and the Product #3 Node, with the relationship type

"MULTI_VALUED" and the property DN_FIELD_NAME as "products"

3 1 N e o 4 j 146

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Index in "DN_TYPES" for the Store Node with "class" as "mydomain.Store"
• Index in "DN_TYPES" for the Inventory Node with "class" as "mydomain.Inventory"
• Index in "DN_TYPES" for the Product Node with "class" as "mydomain.Product"

Note that, to be able to handle polymorphism more easily, if we also have a class Book that extends
Product then when we persist an object of this type we will have two entries in "DN_TYPES" for this
Node, one with "class" as "mydomain.Book" and one with "class" as "mydomain.Product" so we can
interrogate the Index to find the real inheritance level of this Node.

31.1.2 Query Implementation

In terms of querying, a JDOQL/JPQL query is converted into a generic query compilation, and
then this is attempted to be converted into a Neo4j "Cypher" query. Not all syntaxis are convertable
currently and the query falls back to in-memory evauation in that case.

3 2 J S O N 147

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

32 JSON
...

32.1 JSON Datastores

DataNucleus supports persisting/retrieving objects to/from JSON documents (using the datanucleus-
json plugin). Simply specify your "connectionURL" as follows

datanucleus.ConnectionURL=json:{url}

replacing "{url}" with some URL of your choice (e.g "http://www.mydomain.com/somepath/"). You
then create your PMF/EMF as normal and use JDO/JPA as normal.

Things to bear in mind with JSON usage :-

• Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

• Relations : DataNucleus stores the id of the related object(s) in the element of the field. If a
relation is bidirectional then it will be stored at both ends of the relation; this facilitates easy
access to the related object with no need to do a query to find it.

32.1.1 Mapping : HTTP Mapping

The persistence to JSON datastore is performed via HTTP methods. HTTP response codes are used
to validate the success or failure to perform the operations. The JSON datastore must respect the
following:

Method Operation URL format HTTP response code

PUT update objects /{primary key} HTTP Code 201
(created), 200 (ok) or 204
(no content)

HEAD locate objects /{primary key} HTTP 404 if the object
does not exist

POST insert objects / HTTP Code 201
(created), 200 (ok) or 204
(no content)

GET fetch objects /{primary key} HTTP Code 200 (ok) or
404 if object does not
exist

GET retrieve extent of classes
(set of objects)

/ HTTP Code 200 (ok) or
404 if no objects exist

DELETE delete objects /{primary key} HTTP Code 202
(accepted), 200 (ok) or
204 (no content)

https://github.com/datanucleus/datanucleus-json
https://github.com/datanucleus/datanucleus-json

3 2 J S O N 148

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

32.1.2 Mapping : Persistent Classes

Metadata API
Extension Element
Attachment Extension Description

JDO /jdo/package/class/
extension

url Defines the location of the
resources/objects for the
class

<jdo>

 <package name="org.datanucleus.samples.models.company">

 <class name="Person" detachable="true">

 <extension vendor-name="datanucleus" key="url" value="/Person"/>

 </class>

 </package>

</jdo>

In this example, the url extension identifies the Person resources/objects as /Person. The persistence
operations will be relative to this path. e.g /Person/{primary key} will be used for PUT (update), GET
(fetch) and DELETE (delete) methods.

3 3 A m a z o n S 3 149

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

33 Amazon S3
...

33.1 Amazon Simple Storage Service Datastores

DataNucleus supports persisting/retrieving objects to/from Amazon Simple Storage Service (using the
datanucleus-json plugin). Simply specify your connection details as follows

datanucleus.ConnectionURL=amazons3:http://s3.amazonaws.com/

datanucleus.ConnectionUserName={Access Key ID}

datanucleus.ConnectionPassword={Secret Access Key}

datanucleus.cloud.storage.bucket={bucket}

You then create your PMF/EMF as normal and use JDO/JPA as normal.

Things to bear in mind with Amazon S3 usage :-

• Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

33.1.1 References

Below are some references using this support

• Simple Integration of Datanucleus 2.0.0 + AmazonS3

https://github.com/datanucleus/datanucleus-json
http://www.den-4.com/?p=113

3 4 G o o g l e S t o r a g e 150

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

34 GoogleStorage
...

34.1 Google Storage Datastore
DataNucleus supports persisting/retrieving objects to/from Google Storage (using the datanucleus-
json plugin). Simply specify your connection details as follows

datanucleus.ConnectionURL=googlestorage:http://commondatastorage.googleapis.com/

datanucleus.ConnectionUserName={Access Key ID}

datanucleus.ConnectionPassword={Secret Access Key}

datanucleus.cloud.storage.bucket={bucket}

You then create your PMF/EMF as normal and use JDO/JPA as normal.

Things to bear in mind with GoogleStorage usage :-

• Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

https://github.com/datanucleus/datanucleus-json
https://github.com/datanucleus/datanucleus-json

3 5 L D A P 151

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

35 LDAP
...

35.1 LDAP Datastores

DataNucleus supports persisting/retrieving objects to/from LDAP datastores (using the datanucleus-
ldap plugin). If you wish to help out development of this plugin either by contributing or by
sponsoring particular functionality please contact us via the DataNucleus Forum.

35.1.1 Datastore Connection

The following persistence properties will connect to an LDAP running on your local machine

datanucleus.ConnectionDriverName=com.sun.jndi.ldap.LdapCtxFactory

datanucleus.ConnectionURL=ldap://localhost:10389

datanucleus.ConnectionUserName=uid=admin,ou=system

datanucleus.ConnectionPassword=secret

So you create your PersistenceManagerFactory or EntityManagerFactory with these properties.
Thereafter you have the full power of the JDO or JPA APIs at your disposal, for your LDAP
datastore.

35.1.2 Queries

Access Platform allows you to query the objects in the datastore using the following

• JDOQL - language based around the objects that are persisted and using Java-type syntax
• JPQL - language based around the objects that are persisted and using SQL-like syntax

Queries are evaluated in-memory.

35.1.3 Mapping : LDAP Datastore Mapping

When persisting a Java object to an LDAP datastore clearly the user would like some control over
where and how in the LDAP DIT (directory information tree) we are persisting the object. In general
Java objects are mapped to LDAP entries and fields of the Java objects are mapped to attributes of the
LDAP entries.

The following Java types are supported and stored as single-valued attribute to the LDAP entry:

• String, primitives (like int and double), wrappers of primitives (like java.util.Long),
java.util.BigDecimal, java.util.BigInteger, java.util.UUID

• boolean and java.lang.Boolean are converted to RFC 4517 "boolean" syntax (TRUE or FALSE)
• java.util.Date and java.util.Calendar are converted to RFC 4517 "generalized time" syntax

Arrays, Collections, Sets and Lists of these data types are stored as multi-valued attributes. Please
note that when using Arrays and Lists no order could be guaranteed and no duplicate values are
allowed!

https://github.com/datanucleus/datanucleus-ldap
https://github.com/datanucleus/datanucleus-ldap
http://forum.datanucleus.org

3 5 L D A P 152

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

35.1.4 Mapping : Relationships

By default persistable objects are stored as separate LDAP entries. There are some options how to
persist relationship references between persistable objects:

• DN matching
• Attribute matching
• LDAP hierarchies (deprecated)

It is also possible to store persistable objects embedded. Note that there is inbuilt logic for deciding
which of these mapping strategies to use for a relationship. You can explicitly set this with the
metadata extension for the field/property mapping-strategy and it can be set to dn or attribute.

35.1.5 Examples

Here's an example using JDO XML MetaData:

 <jdo>

 <package name="org.datanucleus.samples.models.company">

 <class name="Group" table="ou=Groups,dc=example,dc=com" schema="top,groupOfNames" detachable="true">

 <field name="name" column="cn" primary-key="true" />

 <field name="users" column="member" />

 </class>

 <class name="Person" table="ou=Users,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson" detachable="true">

 <field name="personNum" column="cn" primary-key="true" />

 <field name="firstName" column="givenMame" />

 <field name="lastName" column="sn" />

 </class>

 </package>

 </jdo>

For the class as a whole we use the table attribute to set the distinguished name of the container
under which to store objects of a type. So, for example, we are mapping all objects of class Group as
subordinates to "ou=Groups,dc=example,dc=com". You can also use the extension "dn" to specify the
same thing.

For the class as a whole we use the schema attribute to define the object classes of the
LDAP entry. So, for example, all objects of type Person are mapped to the common
"top,person,organizationalPerson,inetOrgPerson" object classes in LDAP. You can also use the
extension "objectClass" to specify the same thing.

For each field we use the column attribute to define the LDAP attribute that we are mapping this field
to. So, for example, we map the Group "name" to "cn" in our LDAP. You can also use the extension
"attribute" to specify the same thing.

Some resulting LDAP entries would look like this:

3 5 L D A P 153

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

dn: cn=Sales,ou=Groups,dc=example,dc=com

objectClass: top

objectClass: groupOfNames

cn: Sales

member: cn=1,ou=Users,dc=example,dc=com

dn: cn=1,ou=Users,dc=example,dc=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: 1

givenName: Bugs

sn: Bunny

Here's the same example using JDO Annotations:

@PersistenceCapable(table="ou=Groups,dc=example,dc=com", schema="top,groupOfNames")

public class Group

{

 @PrimaryKey

 @Column(name = "cn")

 String name;

 @Column(name = "member")

 protected Set<Person> users = new HashSet<Person>();

}

@PersistenceCapable(table="ou=Users,dc=example,dc=com", schema="top,person,organizationalPerson,inetOrgPerson")

public class Person

{

 @PrimaryKey

 @Column(name = "cn")

 private long personNum;

 @Column(name = "givenName")

 private String firstName;

 @Column(name = "sn")

 private String lastName;

}

Here's the same example using JPA Annotations:

3 5 L D A P 154

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

@Table(name="ou=Groups,dc=example,dc=com", schema="top,groupOfNames")

public class Group

{

 @Id

 @Extension(key="attribute", value="cn")

 String name;

 @OneToMany

 @Extension(key="attribute", value="member")

 protected Set users = new HashSet();

}

@Entity

@Table(name="ou=Groups,dc=example,dc=com", schema="top,person,organizationalPerson,inetOrgPerson")

public class Person

{

 @Id

 @Extension(key="attribute", value="roomNumber")

 private long personNum;

 @Extension(key="attribute", value="cn")

 private String firstName;

 @Extension(key="attribute", value="sn")

 private String lastName;

}

35.1.6 Known Limitations

The following are known limitations of the current implementation

• Datastore Identity is not currently supported
• Optimistic checking of versions is not supported
• Identity generators that operate using the datastore are not supported
• Cannot map inherited classes to the same LDAP type

3 6 R e l a t i o n s b y D N 155

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

36 Relations by DN
...

36.1 LDAP : Relationship Mapping by DN
A common way to model relationships between LDAP entries is to put the LDAP distinguished name
of the referenced LDAP entry to an attribute of the referencing LDAP entry. For example entries with
object class groupOfNames use the attribute member which contains distinguished names of the group
members.

We just describe 1-N relationship mapping here and distinguish between unidirectional and
bidirectional relationships. The metadata for 1-1, N-1 and M-N relationship mapping looks identical,
the only difference is whether single-valued or multi-valued attributes are used in LDAP to store the
relationships.

• Unidirectional
• Bidirectional

36.2 1-N Unidirectional

We use the following example LDAP tree and Java classes:

dc=example,dc=com public class Department {

| String name;

|-- ou=Departments Set<Employee> employees;

| |-- cn=Sales }

| |-- cn=Engineering

| |-- ... public class Employee {

| String firstName;

|-- ou=Employees String lastName;

| |-- cn=Bugs Bunny String fullName;

| |-- cn=Daffy Duck }

| |-- cn=Speedy Gonzales

| |-- ...

We have a flat LDAP tree with one container for all the departments and one container for all the
employees. We have two Java classes, Department and Employee. The Department class contains a
Collection of type Employee. The Employee knows nothing about the Department it belongs to.

There are 2 ways that we can persist this relationship in LDAP because the DN reference could be
stored at the one or at the other LDAP entry.

36.2.1 Owner Object Side

The obious way is to store the reference at the owner object side, in our case at the department entry.
This is possible since LDAP allows multi-valued attributes. The example department entry looks like
this:

3 6 R e l a t i o n s b y D N 156

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

dn: cn=Sales,ou=Departments,dc=example,dc=com

objectClass: top

objectClass: groupOfNames

cn: Sales

member: cn=Bugs Bunny,ou=Employees,dc=example,dc=com

member: cn=Daffy Duck,ou=Employees,dc=example,dc=com

Our JDO metadata looks like this:

<jdo>

 <package name="com.example">

 <class name="Department" table="ou=Departments,dc=example,dc=com" schema="top,groupOfNames">

 <field name="name" primary-key="true" column="cn" />

 <field name="employees" column="member">

 <extension vendor-name="datanucleus" key="empty-value" value="uid=admin,ou=system"/>

 </field>

 </class>

 <class name="Employee" table="ou=Employees,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 </class>

 </package>

</jdo>

So we define that the attribute member should be used to persist the relationship of field employees.

Note: We use the extension empty-value here. The groupOfNames object class defines the member
attribute as mandatory attribute. In case where you remove all the employees from a department
would delete all member attributes which isn't allowed. In that case DataNucleus adds this empty
value to the member attribute. This value is also filtered when DataNucleus reads the object from
LDAP.

36.2.2 Non-Owner Object Side

Another possible way is to store the reference at the non-owner object side, in our case at the
employee entry. The example employee entry looks like this:

dn: cn=Bugs Bunny,ou=Employees,dc=example,dc=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: Bugs Bunny

givenName: Bugs

sn: Bunny

departmentNumber: cn=Sales,ou=Departments,dc=example,dc=com

Our JDO metadata looks like this:

3 6 R e l a t i o n s b y D N 157

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.example">

 <class name="Department" table="ou=Departments,dc=example,dc=com" schema="top,groupOfNames">

 <field name="name" primary-key="true" column="cn" />

 <field name="employees">

 <element column="departmentNumber" />

 </field>

 </class>

 <class name="Employee" table="ou=Employees,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 </class>

 </package>

</jdo>

We need to define the relationship at the department metadata because the employee doesn't know
about the department it belongs to. With the <element> tag we specify that the relationship should
be persisted at the other side, the column attribute defines the LDAP attribute to use. In this case the
relationship is persisted in the departmentNumber attribute at the employee entry.

36.3 1-N Bidirectional

We use the following example LDAP tree and Java classes:

dc=example,dc=com public class Department {

| String name;

|-- ou=Departments Set<Employee> employees;

| |-- cn=Sales }

| |-- cn=Engineering

| |-- ... public class Employee {

| String firstName;

|-- ou=Employees String lastName;

| |-- cn=Bugs Bunny String fullName;

| |-- cn=Daffy Duck Department department;

| |-- cn=Speedy Gonzales }

| |-- ...

We have a flat LDAP tree with one container for all the departments and one container for all the
employees. We have two Java classes, Department and Employee. The Department class contains a
Collection of type Employee. Now each Employee has a reference to its Department.

It is possible to persist this relationship on both sides.

dn: cn=Sales,ou=Departments,dc=example,dc=com

objectClass: top

objectClass: groupOfNames

cn: Sales

member: cn=Bugs Bunny,ou=Employees,dc=example,dc=com

member: cn=Daffy Duck,ou=Employees,dc=example,dc=com

3 6 R e l a t i o n s b y D N 158

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.example">

 <class name="Department" table="ou=Departments,dc=example,dc=com" schema="top,groupOfNames">

 <field name="name" primary-key="true" column="cn" />

 <field name="employees" column="member">

 <extension vendor-name="datanucleus" key="empty-value" value="uid=admin,ou=system"/>

 </field>

 </class>

 <class name="Employee" table="ou=Employees,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 <field name="department" mapped-by="employees" />

 </class>

 </package>

</jdo>

In this case we store the relation at the department entry side in a multi-valued attribute member.
Now the employee metadata contains a department field that is mapped-by the employees field of
department.

Note: We use the extension empty-value here. The groupOfNames object class defines the member
attribute as mandatory attribute. In case where you remove all the employees from a department
would delete all member attributes which isn't allowed. In that case DataNucleus adds this empty
value to the member attribute. This value is also filtered when DataNucleus reads the object from
LDAP.

3 7 R e l a t i o n s b y A t t r i b u t e 159

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

37 Relations by Attribute
...

37.1 LDAP : Relationship Mapping by Attribute
Another way to model relationships between LDAP entries is to use attribute matching. This
means two entries have the same attribute values. An example of this type of relationship is
used by posixGroup and posixAccount object classes were posixGroup.memberUid points to
posicAccount.uid.

We just describe 1-N relationship mapping here and distinguish between unidirectional and
bidirectional relationships. The metadata for 1-1, N-1 and M-N relationship mapping looks identical,
the only difference is whether single-valued or multi-valued attributes are used in LDAP to store the
relationships.

• Unidirectional
• Bidirectional

37.2 1-N Unidirectional

We use the following example LDAP tree and Java classes:

dc=example,dc=com public class Department {

| String name;

|-- ou=Departments Set<Employee> employees;

| |-- ou=Sales }

| |-- ou=Engineering

| |-- ... public class Employee {

| String firstName;

|-- ou=Employees String lastName;

| |-- uid=bbunny String fullName;

| |-- uid=dduck String uid;

| |-- uid=sgonzales }

| |-- ...

We have a flat LDAP tree with one container for all the departments and one container for all the
employees. We have two Java classes, Department and Employee. The Department class contains a
Collection of type Employee. The Employee knows nothing about the Department it belongs to.

There are 2 ways that we can persist this relationship in LDAP because the reference could be stored
at the one or at the other LDAP entry.

37.2.1 Owner Object Side

One way is to store the reference at the owner object side, in our case at the department entry. This is
possible since LDAP allows multi-valued attributes. The example department entry looks like this:

3 7 R e l a t i o n s b y A t t r i b u t e 160

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

dn: ou=Sales,ou=Departments,dc=example,dc=com

objectClass: top

objectClass: organizationalUnit

objectClass: extensibleObject

ou: Sales

memberUid: bbunny

memberUid: dduck

Our JDO metadata looks like this:

<jdo>

 <package name="com.example">

 <class name="Department" table="ou=Departments,dc=example,dc=com" schema="top,organizationalUnit,extensibleObject">

 <field name="name" primary-key="true" column="ou" />

 <field name="employees" column="memberUid">

 <join column="uid" />

 </field>

 </class>

 <class name="Employee" table="ou=Employees,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 <field name="uid" column="uid" />

 </class>

 </package>

</jdo>

So we define that the attribute memberUid at the department entry should be used to persist the
relationship of field employees

The important thing here is the <join> tag and its column. Firstly it signals DataNucleus to use
attribute mapping. Secondly it specifies the attribute at the other side that should be used for
relationship mapping. In our case, when we establish a relationship between a Department and an
Employee, the uid value of the employee entry is stored in the memberUid attribute of the department
entry.

37.2.2 Non-Owner Object Side

Another possible way is to store the reference at the non-owner object side, in our case at the
employee entry. The example employee entry looks like this:

3 7 R e l a t i o n s b y A t t r i b u t e 161

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

dn: uid=bbunny,ou=Employees,dc=example,dc=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

uid: bbunny

cn: Bugs Bunny

givenName: Bugs

sn: Bunny

departmentNumber: Sales

Our JDO metadata looks like this:

<jdo>

 <package name="com.example">

 <class name="Department" table="ou=Departments,dc=example,dc=com" schema="top,organizationalUnit">

 <field name="name" primary-key="true" column="ou" />

 <field name="employees">

 <element column="departmentNumber" />

 <join column="ou" />

 </field>

 </class>

 <class name="Employee" table="ou=Employees,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 <field name="uid" column="uid" />

 </class>

 </package>

</jdo>

We need to define the relationship at the department metadata because the employee doesn't know
about the department it belongs to.

With the <element> tag we specify that the relationship should be persisted at the other side and the
column attribute defines the LDAP attribute to use. In this case the relationship is persisted in the
departmentNumber attribute at the employee entry.

The important thing here is the <join> tag and its column. As before it signals DataNucleus to use
attribute mapping. Now, as the relation is persisted at the other side, it specifies the attribute at this
side that should be used for relationship mapping. In our case, when we establish a relationship
between a Department and an Employee, the ou value of the department entry is stored in the
departmentNumber attribute of the employee entry.

37.3 1-N Bidirectional

We use the following example LDAP tree and Java classes:

3 7 R e l a t i o n s b y A t t r i b u t e 162

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

dc=example,dc=com public class Department {

| String name;

|-- ou=Departments Set<Employee> employees;

| |-- ou=Sales }

| |-- ou=Engineering

| |-- ... public class Employee {

| String firstName;

|-- ou=Employees String lastName;

| |-- uid=bbunny String fullName;

| |-- uid=dduck String uid;

| |-- uid=sgonzales Department department;

| |-- ... }

We have a flat LDAP tree with one container for all the departments and one container for all the
employees. We have two Java classes, Department and Employee. The Department class contains a
Collection of type Employee. Now each Employee has a reference to its Department.

It is possible to persist this relationship on both sides.

dn: uid=bbunny,ou=Employees,dc=example,dc=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

uid: bbunny

cn: Bugs Bunny

givenName: Bugs

sn: Bunny

departmentNumber: Sales

<jdo>

 <package name="com.example">

 <class name="Department" table="ou=Departments,dc=example,dc=com" schema="top,organizationalUnit">

 <field name="name" primary-key="true" column="ou" />

 <field name="employees" mapped-by="department" />

 </class>

 <class name="Employee" table="ou=Employees,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 <field name="uid" column="uid" />

 <field name="department" column="departmentNumber">

 <join column="ou" />

 </field>

 </class>

 </package>

</jdo>

In this case we store the relation at the employee entry side in a single-valued attribute
departmentNumber. With the <join> tag and its column we specify that the ou value of the

3 7 R e l a t i o n s b y A t t r i b u t e 163

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

department entry should be used as join value. Also note that employee field of Department is
mapped-by the department field of the Employee.

3 8 R e l a t i o n s b y H i e r a r c h y 164

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

38 Relations by Hierarchy
...

38.1 LDAP : Relationship Mapping by Hierarchy
As LDAP is a hierarchical data store it is possible to model relationships between LDAP entries
using hierarchies. For example organisational structures like departments and their employees are
often modeled hierarchical in LDAP. It is possible to map 1-1 and N-1/1-N relationships using LDAP
hierarchies.

The main challenge with hierarchical mapping is that the distinguished name (DN) of children
depends on the DN of their parent. Therefore each child class needs a reference to the parent class.
The parent class metadata defines a (fixed) LDAP DN that is used as container for all objects of the
parent type. The child class metadata contains a dynamic part in its DN definition. This dynamic part
contains the name of the field holding the reference to the parent object, the name is surrounded by
curly braces. This dynamic DN is the indicator for DataNucleus to use hierarchical mapping. The
reference field itself won't be persisted as attribute because it is used as dynamic parameter. If you
query for child objects DataNucleus starts a larger LDAP search to find the objects (the container DN
of the parent class as search base and subtree scope).

Note: Child objects are automatically dependent. If you delete the parent object all child objects are
automatically deleted. If you null out the child object reference in the parent object or if you remove
the child object from the parents collection, the child object is automatically deleted.

38.2 N-1 Unidirectional
This kind of mapping could be used if your LDAP tree has a huge number of child objects and you
only work with these child objects.

We use the following example LDAP tree and Java classes:

dc=example,dc=com public class Department {

| String name;

|-- ou=Sales }

| |-- cn=Bugs Bunny

| |-- cn=Daffy Duck public class Employee {

| |-- ... String firstName;

| String lastName;

|-- ou=Engineering String fullName;

| |-- cn=Speedy Gonzales Department department;

| |-- ... }

|

|-- ...

In the LDAP tree we have departments (Sales and Engineering) and each department holds some
associated employees. In our Java classes each Employee object knows its Department but not vice-
versa.

The JDO metadata looks like this:

3 8 R e l a t i o n s b y H i e r a r c h y 165

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.example">

 <class name="Department" table="dc=example,dc=com" schema="top,organizationalUnit">

 <field name="name" primary-key="true" column="ou" />

 </class>

 <class name="Employee" table="{department}" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 <field name="department"/>

 </class>

 </package>

</jdo>

The Department objects are persisted directly under dc=example,dc=com. The Employee class has
a dynamic DN definition {department}. So the DN of the Department instance is used as container for
Employee objects.

38.3 N-1 (1-N) Bidirectional
If you need a reference from the parent object to the child objects you need to define a bidirectional
relationship.

The example LDAP tree and Java classes looks like this:

dc=example,dc=com public class Department {

| String name;

|-- ou=Sales Set<Employee> employees;

| |-- cn=Bugs Bunny }

| |-- cn=Daffy Duck

| |-- ... public class Employee {

| String firstName;

|-- ou=Engineering String lastName;

| |-- cn=Speedy Gonzales String fullName;

| |-- ... Department department;

| }

|-- ...

Now the Department class has a Collection containing references to its Employees.

The JDO metadata looks like this:

3 8 R e l a t i o n s b y H i e r a r c h y 166

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.example">

 <class name="Department" table="dc=example,dc=com" schema="top,organizationalUnit">

 <field name="name" primary-key="true" column="ou" />

 <field name="employees" mapped-by="department"/>

 </class>

 <class name="Employee" table="{department}" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 <field name="department"/>

 </class>

 </package>

</jdo>

We added a new employees field to the Department class that is mapped-by the department field of the
Employee class.

Please note: When loading the parent object all child object are loaded immediately. For a large
number of child entries this may lead to performance and/or memory problems.

38.4 1-1 Unidirectional
1-1 unidirectional mapping is very similar to N-1 unidirectional mapping.

We use the following example LDAP tree and Java classes:

dc=example,dc=com public class Person {

| String firstName;

|-- ou=People String lastName;

| |-- cn=Bugs Bunny String fullName;

| | |-- uid=bbunny }

| |

| |-- cn=Daffy Duck public class Account {

| | |-- uid=dduck String uid;

| | String password;

| |-- ... Person person;

 }

In the LDAP tree we have persons and each person has one account. Each Account object knows to
which Person it belongs to, but not vice-versa.

The JDO metadata looks like this:

3 8 R e l a t i o n s b y H i e r a r c h y 167

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.example">

 <class name="Person" table="ou=People,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 </class>

 <class name="Account" table="{person}" schema="top,account,simpleSecurityObject">

 <field name="uid" primary-key="true column="uid" />

 <field name="password" column="userPasword" />

 <field name="person" />

 </class>

 </package>

</jdo>

The Person objects are persisted directly under ou=People,dc=example,dc=com. The Account class
has a dynamic DN definition {person}. So the DN of the Person instance is used as container for the
Account object.

38.5 1-1 Bidirectional
If you need a reference from the parent class to the child class you need to define a bidirectional
relationship.

The example LDAP tree and Java classes looks like this:

dc=example,dc=com public class Person {

| String firstName;

|-- ou=People String lastName;

| | String fullName;

| |-- cn=Bugs Bunny Account account;

| | |-- uid=bbunny }

| |

| |-- cn=Daffy Duck public class Account {

| | |-- uid=dduck String uid;

| | String password;

| |-- ... Person person;

 }

Now the Person class has a reference to its Account.

The JDO metadata looks like this:

3 8 R e l a t i o n s b y H i e r a r c h y 168

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.example">

 <class name="Person" table="ou=People,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 <field name="account" mapped-by="person" />

 </class>

 <class name="Account" table="{person}" schema="top,account,simpleSecurityObject">

 <field name="uid" primary-key="true column="uid" />

 <field name="password" column="userPasword" />

 <field name="person" />

 </class>

 </package>

</jdo>

We added a new account field to the Person class that is mapped-by the person field of the Account
class.

3 9 E m b e d d e d O b j e c t s 169

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

39 Embedded Objects
...

39.1 LDAP : Embedded Objects
With JDO it is possible to persist field as embedded. This may be useful for LDAP datastores where
often many attributes are stored within one entry however logically they describe different objects.

Let's assume we have the following entry in our directory:

dn: cn=Bugs Bunny,ou=Employees,dc=example,dc=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: Bugs Bunny

givenName: Bugs

sn: Bunny

postalCode: 3578

l: Hollywood

street: Sunset Boulevard

uid: bbunny

userPassword: secret

This entry contains multiple type of information: a person, its address and its account data. So we will
create the following Java classes:

public class Employee {

 String firstName;

 String lastName;

 String fullName;

 Address address;

 Account account;

}

public class Address {

 int zip;

 String city

 String street;

}

public class Account {

 String id;

 String password;

}

The JDO metadata to map these objects to one LDAP entry would look like this:

3 9 E m b e d d e d O b j e c t s 170

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.example">

 <class name="Person" table="ou=Employees,dc=example,dc=com" schema="top,person,organizationalPerson,inetOrgPerson">

 <field name="fullName" primary-key="true" column="cn" />

 <field name="firstName" column="givenName" />

 <field name="lastName" column="sn" />

 <field name="account">

 <embedded null-indicator-column="uid">

 <field name="id" column="uid" />

 <field name="password" column="userPassword" />

 </embedded>

 </field>

 <field name="address">

 <embedded null-indicator-column="l">

 <field name="zip" column="postalCode" />

 <field name="city" column="l" />

 <field name="street" column="street" />

 </embedded>

 </field>

 </class>

 <class name="Account" embedded-only="true">

 <field name="uid" />

 <field name="password" />

 </class>

 <class name="Address" embedded-only="true">

 <field name="zip" />

 <field name="city" />

 <field name="street" />

 </class>

 </package>

</jdo>

4 0 N e o D a t i s 171

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

40 NeoDatis
...

40.1 Neodatis Datastores
NeoDatis is an object-oriented database for Java and .Net. It is simple and fast and supports various
query mechanisms.

DataNucleus supports persisting/retrieving objects to Neodatis datastores (using the datanucleus-
neodatis plugin). If you wish to help out in this effort either by contributing or by sponsoring
particular functionality please contact us via the DataNucleus Forum.

The jars required to use DataNucleus NeoDatis persistence are datanucleus-core, datanucleus-api-
jdo/ datanucleus-api-jpa, datanucleus-neodatis and neodatis

40.1.1 Datastore Connection

DataNucleus supports 2 modes of operation of neodatis - file-based, and client-server based. In order
to do so and to fit in with the JDO/JPA APIs we have defined the following means of connection.

The following persistence properties will connect to a file-based Neodatis running on your local
machine

datanucleus.ConnectionURL=neodatis:file:neodatisdb.odb

Replacing "neodatis.odb" by your filename for the datastore, and can be absolute OR relative.

The following persistence properties will connect to embedded-server-based NeoDatis running with
a local file

datanucleus.ConnectionURL=neodatis:server:{my_neodatis_file}

datanucleus.ConnectionUserName=

datanucleus.ConnectionPassword=

The filename {my_neodatis_file} can be absolute OR relative.

The following persistence properties will connect as a client to a TCP/IP NeoDatis Server

datanucleus.ConnectionURL=neodatis:{neodatis_host}:{neodatis_port}/{identifier}

datanucleus.ConnectionUserName=

datanucleus.ConnectionPassword=

Neodatis doesn't itself use such URLs so it was necessary to define this DataNucleus-specific way of
addressing Neodatis.

So you create your PersistenceManagerFactory or EntityManagerFactory with these properties.
Thereafter you have the full power of the JDO or JPA APIs at your disposal, for your NeoDatis
datastore.

40.1.2 Queries

AccessPlatform allows you to query the objects in the datastore using the following

• JDOQL - language based around the objects that are persisted and using Java-type syntax
• JPQL - language based around the objects that are persisted and using SQL-like syntax

http://www.neodatis.org
https://github.com/datanucleus/datanucleus-neodatis
https://github.com/datanucleus/datanucleus-neodatis
http://forum.datanucleus.org

4 0 N e o D a t i s 172

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Native - NeoDatis' own type-safe query language
• Criteria - NeoDatis' own Criteria query language

40.1.3 Queries : NeoDatis Native Queries

Note that if you choose to use NeoDatis Native Queries then these are not portable to any other datastore. Use
JDOQL/JPQL for portability

NeoDatis provides its own "native" query interface, and if you are using the JDO API you can utilise
this for querying. To take a simple example

// Find all employees older than 31

Query q = pm.newQuery("Native", new NativeQuery()

 {

 public boolean match(Object e)

 {

 if (!(e instanceof Employee))

 {

 return false;

 }

 return ((Employee)e).getAge() >= 32;

 }

 public Class getObjectType()

 {

 return Employee.class;

 }

 });

List results = (List)q.execute();

So we are utilising the JDO API to generate a query and passing in the NeoDatis "NativeQuery".

40.1.4 Queries : NeoDatis Criteria Queries

Note that if you choose to use NeoDatis Criteria Queries then these are not portable to any other datastore.
Use JDOQL/JPQL for portability

NeoDatis provides its own "criteria" query interface, and if you are using the JDO API you can utilise
this for querying. To take a simple example

// Find all employees older than 31

Query q = pm.newQuery("Criteria", new CriteriaQuery(Employee.class, Where.ge("age", 32)));

List results = (List)q.execute();

So we are utilising the JDO API to generate a query and passing in the NeoDatis "CriteriaQuery".

4 0 N e o D a t i s 173

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

40.1.5 Known Limitations

The following are known limitations of the current implementation

• NeoDatis doesn't have the concept of an "unloaded" field and so when you request an object
from the datastore it comes with its graph of objects. Consequently there is no "lazy loading" and
the consequent impact that can have on memory utilisation.

4 1 J D O A P I 174

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

41 JDO API
...

41.1 JDO : API

Java Data Objects (JDO) defines an interface (or API) to persist normal Java objects (or POJO's in
some peoples terminology) to a datastore. JDO doesn't define the type of datastore; it is datastore-
agnostic. You would use the same interface to persist your Java object to RDBMS, or OODBMS, or
XML, or whatever form of data storage. The JDO API itself is provided by the jdo-api (or javax.jdo)
JAR. The whole point of using such a standard interface is that users can, in principle, swap between
implementations of JDO without changing their code. DataNucleus provides an implementation of
JDO, embodied in the datanucleus-api-jdo JAR, so make sure you have datanucleus-api-jdo.jar in
your CLASSPATH for using this API.

Note that this version of DataNucleus requires the JDO 3.1 API

The process of mapping a class can be split into the following areas
• JDO categorises classes into 3 types. so you firstly decide which type your class is, and mark

the class in that category
• JDO allows fields/properties to be defined for persistence, and you can control which of these

are persisted, and how they are persisted.
• Some datastores allow a level of mapping between the object-oriented world and the structure of

the datastore, and for this you can define (a level of) Object-Relational Mapping (ORM)
Note that with DataNucleus, you can map your classes using JDO MetaData (XML/ Annotations)
OR using JPA MetaData (XML/ Annotations) and still use the JDO API with these classes.

At runtime with JDO you start with the creation of a PersistenceManagerFactory (PMF) which
provides the connectivity to the datastore. The connection to the datastore is dependent on a set of
persistence properties defining the datastore location, URL etc as well as behaviour of the persistence
process.

With JDO, to persist/retrieve objects you require a PersistenceManager (PM) that provides the
interface to persistence and querying of the datastore. You can perform persistence and querying
within a transaction if required, or just use it non-transactionally.

JDO allows querying of the datastore using a range of query languages. The most utilised is JDOQL
providing an object-oriented form of querying, whereas some datastores also permit SQL.

If in doubt about how things fit together, please make use of the JDO Tutorial

If you just want to get the JDO API javadocs, then you can access those here (Apache JDO)

41.1.1 JDO References

• Apache JDO
• JDO 3.1 RC1 Specification
• JDO 3.1 Javadocs

http://db.apache.org/jdo/class_types.html
http://db.apache.org/jdo/api30/apidocs/index.html
http://db.apache.org/jdo/
http://www.datanucleus.org/downloads/documents/jdo-3.1-rc1.pdf
http://db.apache.org/jdo/api31/jdo-api-3.1-rc1-javadoc/

4 1 J D O A P I 175

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• JDO1 PDF book by Robin Roos
• Apache JDO mailing lists
• ORM comparison : JDO .v. JPA

http://www.datanucleus.org/downloads/documents/jdo-robinroos-1.0.pdf
http://db.apache.org/jdo/mail-lists.html
http://db.apache.org/jdo/jdo_v_jpa.html

4 2 C l a s s M a p p i n g 176

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

42 Class Mapping
...

42.1 JDO : Class Mapping
The first thing to decide when implementing your persistence layer is which classes are to be
persisted. Let's take a sample class (Hotel) as an example We can define a class as persistable using
either annotations in the class, or XML metadata.

To achieve the above aim with XML metadata, we do this

<class name="Hotel">

 ...

</class>

Alternatively, using JDO Annotations, like this

@PersistenceCapable

public class Hotel

{

 ...

}

See also :-

• MetaData reference for <class> element
• Annotations reference for @PersistenceCapable

42.1.1 Persistence-Aware Classes

With JDO persistence all classes that are persisted have to be identified in XML or annotations as
shown above. In addition, if any of your other classes access the fields of these persistable classes
directly then these other classes should be defined as PersistenceAware. You do this as follows

<class name="MyClass" persistence-modifier="persistence-aware">

 ...

</class>

or with annotations

@PersistenceAware

public class MyClass

{

 ...

}

See also :-

• Annotations reference for @PersistenceAware

4 2 C l a s s M a p p i n g 177

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

42.1.2 Read-Only

You can, if you wish, make a class read-only. This is a DataNucleus extension and you set it as
follows

<class name="MyClass">

 <extension vendor-name="datanucleus" key="read-only" value="true"/>

or with annotations

@PersistenceCapable

@Extension(vendorName="datanucleus", key="read-only", value="true")

public class MyClass

{

 ...

}

4 3 D a t a s t o r e I d e n t i t y 178

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

43 Datastore Identity
...

43.1 JDO : Datastore Identity
With datastore identity you are leaving the assignment of id's to DataNucleus and your class will not
have a field for this identity - it will be added to the datastore representation by DataNucleus. It is, to
all extents and purposes a surrogate key that will have its own column in the datastore. To specify that
a class is to use datastore identity with JDO, you add the following to the MetaData for the class.

<class name="MyClass" identity-type="datastore">

...

</class>

or using JDO annotations

@PersistenceCapable(identityType=IdentityType.DATASTORE)

public class MyClass

{

 ...

}

So you are specifying the identity-type as datastore. You don't need to add this because datastore is
the default, so in the absence of any value, it will be assumed to be 'datastore'.

When you have an inheritance hierarchy, you should specify the identity type in the base class for the
inheritance tree. This is then used for all persistent classes in the tree.

43.1.1 Generating identities

By choosing datastore identity you are handing the process of identity generation to the JDO
implementation. This does not mean that you haven't got any control over how it does this. JDO 2
defines many ways of generating these identities and DataNucleus supports all of these and provides
some more of its own besides.

Defining which one to use is a simple matter of adding a MetaData element to your classes definition,
like this

<class name="MyClass" identity-type="datastore">

 <datastore-identity strategy="sequence" sequence="MY_SEQUENCE"/>

 ...

</class>

<class name="MyClass" identity-type="datastore">

 <datastore-identity strategy="identity"/>

 ...

</class>

4 3 D a t a s t o r e I d e n t i t y 179

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

or using annotations, for example

@PersistenceCapable

@DatastoreIdentity(strategy="sequence", sequence="MY_SEQUENCE")

public class MyClass

{

 ...

}

Some of the datastore identity strategies require additional attributes, but the specification is
straightforward.

See also :-

• Identity Generation Guide - strategies for generating ids
• MetaData reference for <datastore-identity> element
• Annotations reference for @DatastoreIdentity

43.1.2 Accessing the Identity

When using datastore identity, the class has no associated field so you can't just access a field of the
class to see its identity - if you need a field to be able to access the identity then you should be using
application identity. There are, however, ways to get the identity for the datastore identity case, if you
have the object.

Object id = pm.getObjectId(obj);

Object id = JDOHelper.getObjectId(obj);

You should be aware however that the "identity" is in a complicated form, and is not available as a
simple integer value for example. Again, if you want an identity of that form then you should use
application identity

43.1.3 DataNucleus Implementation

When implementing datastore identity all JDO implementations have to provide a public class that
represents this identity. If you call pm.getObjectId(...) for a class using datastore identity you will be
passed an object which, in the case of DataNucleus will be of type org.datanucleus.identity.OIDImpl.
If you were to call "toString()" on this object you would get something like

1[OID]mydomain.MyClass

This is made up of :-

 1 = identity number of this object

 class-name

The definition of this datastore identity is JDO implementation dependent. As a result you
should not use the org.datanucleus.identity.OID class in your application if you want to remain
implementation independent

DataNucleus allows you the luxury of being able to provide your own datastore identity class so you
can have whatever formatting you want for identities.

4 3 D a t a s t o r e I d e n t i t y 180

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

43.1.4 Accessing objects by Identity

If you have the JDO identity then you can access the object with that identity like this

Object obj = pm.getObjectById(id);

You can also access the object from the object class name and the toString() form of the datastore
identity (e.g "1[OID]mydomain.MyClass") like this

Object obj = pm.getObjectById(MyClass.class, mykey);

4 4 A p p l i c a t i o n I d e n t i t y 181

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

44 Application Identity
...

44.1 JDO : Application Identity
With application identity you are taking control of the specification of id's to DataNucleus.
Application identity requires a primary key class (unless you have a single primary-key field in which
case the PK class is provided for you), and each persistent capable class may define a different class
for its primary key, and different persistent capable classes can use the same primary key class, as
appropriate. With application identity the field(s) of the primary key will be present as field(s) of
the class itself. To specify that a class is to use application identity, you add the following to the
MetaData for the class.

<class name="MyClass" objectid-class="MyIdClass">

 <field name="myPrimaryKeyField" primary-key="true"/>

 ...

</class>

For JDO we specify the primary-key and objectid-class. The objectid-class is optional, and is the
class defining the identity for this class (again, if you have a single primary-key field then you can
omit it). Alternatively, if we are using annotations

@PersistenceCapable(objectIdClass=MyIdClass.class)

public class MyClass

{

 @Persistent(primaryKey="true")

 private long myPrimaryKeyField;

}

When you have an inheritance hierarchy, you should specify the identity type in the base instantiable
class for the inheritance tree. This is then used for all persistent classes in the tree. This means that you
can have superclass(es) using application-identity without any identity fields/properties but using subclass-table
inheritance, and then the base instantiable class is the first persistable class which has the identity field(s).

See also :-

• MetaData reference for <field> element
• Annotations reference for @Persistent

44.1.1 Primary Key

Using application identity requires the use of a Primary Key class. When you have a single primary-
key field a built-in class is available meaning you don't need to define this class. This is referred to as
SingleFieldIdentity. We strongly recommend not to specify the PK class when you have a single
PK field since these built-in classes are likely more optimised. Where the class has multiple fields
that form the primary key a Primary Key class must be provided.

See also :-

• Primary Key Guide - user-defined and built-in primary keys

4 4 A p p l i c a t i o n I d e n t i t y 182

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

44.1.2 Compound Identity

Where one of the fields that is primary-key of your class is a persistable object you have something
known as compound identity since the identity of this class contains the identity of a related class.
Please refer to the docs for Compound Identity

44.1.3 Generating identities

By choosing application identity you are controlling the process of identity generation for this class.
This does not mean that you have a lot of work to do for this. JDO defines many ways of generating
these identities and DataNucleus supports all of these and provides some more of its own besides.

See also :-

• Identity Generation Guide - strategies for generating ids

44.1.4 Accessing the Identity

When using application identity, the class has associated field(s) that equate to the identity. As a
result you can simply access the values for these field(s). Alternatively you could use a JDO identity-
independent way

Object id = pm.getObjectId(obj);

Object id = JDOHelper.getObjectId(obj);

44.1.5 Changing Identities

JDO allows implementations to support the changing of the identity of a persisted object. This is an
optional feature and DataNucleus doesn't currently support it.

44.1.6 Accessing objects by Identity

If you have the JDO identity then you can access the object with that identity like this

Object obj = pm.getObjectById(id);

If you are using SingleField identity then you can access it from the object class name and the key
value like this

Object obj = pm.getObjectById(MyClass.class, mykey);

If you are using your own PK class then the mykey value is the toString() form of the identity of your
PK class.

44.2 JDO : PrimaryKey Classes

When you choose application identity you are defining which fields of the class are part of the
primary key, and you are taking control of the specification of id's to DataNucleus. Application
identity requires a primary key (PK) class, and each persistent capable class may define a different
class for its primary key, and different persistent capable classes can use the same primary key class,
as appropriate. If you have only a single primary-key field then there are builtin PK classes so you can

4 4 A p p l i c a t i o n I d e n t i t y 183

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

forget this section. Where you have more than 1 primary key field, you would define the PK class like
this

<class name="MyClass" identity-type="application" objectid-class="MyIdClass">

...

</class>

or using annotations

@PersistenceCapable(objectIdClass=MyIdClass.class)

public class MyClass

{

 ...

}

You now need to define the PK class to use. This is simplified for you because if you have only one
PK field then you dont need to define a PK class and you only define it when you have a composite
PK.

An important thing to note is that the PK can only be made up of fields of the following Java types

• Primitives : boolean, byte, char, int, long, short
• java.lang : Boolean, Byte, Character, Integer, Long, Short, String, Enum, StringBuffer
• java.math : BigInteger
• java.sql : Date, Time, Timestamp
• java.util : Date, Currency, Locale, TimeZone, UUID
• java.net : URI, URL
• persistable

Note that the types in bold are JDO standard types. Any others are DataNucleus extensions and, as
always, check the specific datastore docs to see what is supported for your datastore.

44.2.1 Single PrimaryKey field

The simplest way of using application identity is where you have
a single PK field, and in this case you use SingleFieldIdentity

. mechanism. This provides a PrimaryKey and you don't need to specify the objectid-class. Let's take
an example

public class MyClass

{

 long id;

 ...

}

<class name="MyClass" identity-type="application">

 <field name="id" primary-key="true"/>

 ...

</class>

http://db.apache.org/jdo/api20/apidocs/javax/jdo/identity/SingleFieldIdentity.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/identity/SingleFieldIdentity.html

4 4 A p p l i c a t i o n I d e n t i t y 184

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

or using annotations

@PersistenceCapable

public class MyClass

{

 @PrimaryKey

 long id;

 ...

}

So we didnt specify the JDO "objectid-class". You will, of course, have to give the field a value
before persisting the object, either by setting it yourself, or by using a value-strategy on that field.

If you need to create an identity of this form for use in querying via pm.getObjectById() then you can
create the identities in the following way

For a "long" type :

javax.jdo.identity.LongIdentity id = new javax.jdo.identity.LongIdentity(myClass, 101);

For a "String" type :

javax.jdo.identity.StringIdentity id = new javax.jdo.identity.StringIdentity(myClass, "ABCD");

We have shown an example above for type "long", but you can also use this for the following

short, Short - javax.jdo.identity.ShortIdentity

int, Integer - javax.jdo.identity.IntIdentity

long, Long - javax.jdo.identity.LongIdentity

String - javax.jdo.identity.StringIdentity

char, Character - javax.jdo.identity.CharIdentity

byte, Byte - javax.jdo.identity.ByteIdentity

java.util.Date - javax.jdo.identity.ObjectIdentity

java.util.Currency - javax.jdo.identity.ObjectIdentity

java.util.Locale - javax.jdo.identity.ObjectIdentity

44.2.2 Multiple PrimaryKey field

Since there are many possible combinations of primary-key fields it is impossible for JDO to provide
a series of builtin composite primary key classes. However the DataNucleus enhancer provides a
mechanism for auto-generating a primary-key class for a persistable class. It follows the rules listed
below and should work for all cases. Obviously if you want to tailor the output of things like the PK
toString() method then you ought to define your own. The enhancer generation of primary-key class is
only enabled if you don't define your own class.

44.2.3 Rules for User-Defined PrimaryKey classes

If you wish to use application identity and don't want to use the "SingleFieldIdentity" builtin
PK classes then you must define a Primary Key class of your own. You can't use classes like

4 4 A p p l i c a t i o n I d e n t i t y 185

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.lang.String, or java.lang.Long directly. You must follow these rules when defining your primary
key class.

• the Primary Key class must be public
• the Primary Key class must implement Serializable
• the Primary Key class must have a public no-arg constructor, which might be the default

constructor
• the field types of all non-static fields in the Primary Key class must be serializable, and are

recommended to be primitive, String, Date, or Number types
• all serializable non-static fields in the Primary Key class must be public
• the names of the non-static fields in the Primary Key class must include the names of the primary

key fields in the JDO class, and the types of the common fields must be identical
• the equals() and hashCode() methods of the Primary Key class must use the value(s) of all the

fields corresponding to the primary key fields in the JDO class
• if the Primary Key class is an inner class, it must be static
• the Primary Key class must override the toString() method defined in Object, and return a String

that can be used as the parameter of a constructor
• the Primary Key class must provide a String constructor that returns an instance that compares

equal to an instance that returned that String by the toString() method.
• the Primary Key class must be only used within a single inheritence tree.

Please note that if one of the fields that comprises the primary key is in itself a persistable object then
you have Compound Identity and should consult the documentation for that feature which contains its
own example.

44.2.4 PrimaryKey Example - Multiple Field

Here's an example of a composite (multiple field) primary key class

4 4 A p p l i c a t i o n I d e n t i t y 186

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable(objectIdClass=ComposedIdKey.class)

public class MyClass

{

 @PrimaryKey

 String field1;

 @PrimaryKey

 String field2;

 ...

}

public class ComposedIdKey implements Serializable

{

 public String field1;

 public String field2;

 public ComposedIdKey ()

 {

 }

 /**

 * Constructor accepting same input as generated by toString().

 */

 public ComposedIdKey(String value)

 {

 StringTokenizer token = new StringTokenizer (value, "::");

 token.nextToken(); // className

 this.field1 = token.nextToken(); // field1

 this.field2 = token.nextToken(); // field2

 }

 public boolean equals(Object obj)

 {

 if (obj == this)

 {

 return true;

 }

 if (!(obj instanceof ComposedIdKey))

 {

 return false;

 }

 ComposedIdKey c = (ComposedIdKey)obj;

 return field1.equals(c.field1) && field2.equals(c.field2);

 }

 public int hashCode ()

 {

 return this.field1.hashCode() ^ this.field2.hashCode();

 }

 public String toString ()

 {

 // Give output expected by String constructor

 return this.getClass().getName() + "::" + this.field1 + "::" + this.field2;

 }

}

4 5 N o n d u r a b l e I d e n t i t y 187

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

45 Nondurable Identity
...

45.1 JDO : Nondurable Identity
With nondurable identity your objects will not have a unique identity in the datastore. This type of
identity is typically for log files, history files etc where you aren't going to access the object by key,
but instead by a different parameter. In the datastore the table will typically not have a primary key.
To specify that a class is to use nondurable identity with JDO you would add the following to the
MetaData for the class.

<class name="MyClass" identity-type="nondurable">

...

</class>

or using annotations, for example

@PersistenceCapable(identityType=IdentityType.NONDURABLE)

public class MyClass

{

 ...

}

DataNucleus provides support for "nondurable" identity for some datastores only currently (RDBMS,
Excel, ODF, MongoDB, HBase). What this means for something like RDBMS is that the table of the
class will not have a primary-key.

4 6 C o m p o u n d I d e n t i t y 188

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

46 Compound Identity
...

46.1 JDO : Compound Identity Relationships
An identifying relationship (or "compound identity relationship" in JDO) is a relationship between
two objects of two classes in which the child object must coexist with the parent object and where the
primary key of the child includes the persistable object of the parent. So effectively the key aspect of
this type of relationship is that the primary key of one of the classes includes a persistable field (hence
why is is referred to as Compound Identity). This type of relation is available in the following forms

• 1-1 unidirectional
• 1-N collection bidirectional using ForeignKey
• 1-N map bidirectional using ForeignKey (key stored in value)

46.1.1 1-1 Relationship

Lets take the same classes as we have in the 1-1 Relationships. In the 1-1 relationships guide we note
that in the datastore representation of the User and Account the ACCOUNT table has a primary key
as well as a foreign-key to USER. In our example here we want to just have a primary key that is also
a foreign-key to USER. To do this we need to modify the classes slightly and add primary-key fields
and use "application-identity".

In addition we need to define primary key classes for our User and Account classes

4 6 C o m p o u n d I d e n t i t y 189

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class User

{

 long id;

 ... (remainder of User class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public long id;

 public PK()

 {

 }

 public PK(String s)

 {

 this.id = Long.valueOf(s).longValue();

 }

 public String toString()

 {

 return "" + id;

 }

 public int hashCode()

 {

 return (int)id;

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.id == this.id;

 }

 return false;

 }

 }

}

public class Account

{

 User user;

 ... (remainder of Account class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public User.PK user; // Use same name as the real field above

 public PK()

 {

 }

 public PK(String s)

 {

 StringTokenizer token = new StringTokenizer(s,"::");

 this.user = new User.PK(token.nextToken());

 }

 public String toString()

 {

 return "" + this.user.toString();

 }

 public int hashCode()

 {

 return user.hashCode();

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return this.user.equals(otherPK.user);

 }

 return false;

 }

 }

}

4 6 C o m p o u n d I d e n t i t y 190

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

To achieve what we want with the datastore schema we define the MetaData like this

<package name="mydomain">

 <class name="User" identity-type="application" objectid-class="User$PK">

 <field name="id" primary-key="true"/>

 <field name="login" persistence-modifier="persistent">

 <column length="20" jdbc-type="VARCHAR"/>

 </field>

 </class>

 <class name="Account" identity-type="application" objectid-class="Account$PK">

 <field name="user" persistence-modifier="persistent" primary-key="true">

 <column name="USER_ID"/>

 </field>

 <field name="firstName" persistence-modifier="persistent">

 <column length="50" jdbc-type="VARCHAR"/>

 </field>

 <field name="secondName" persistence-modifier="persistent">

 <column length="50" jdbc-type="VARCHAR"/>

 </field>

 </class>

</package>

So now we have the following datastore schema

Things to note :-

• You must use "application-identity" in both parent and child classes
• In the child Primary Key class, you must have a field with the same name as the relationship in

the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes
• You can only have one "Account" object linked to a particular "User" object since the FK to the

"User" is now the primary key of "Account". To remove this restriction you could also add a
"long id" to "Account" and make the "Account.PK" a composite primary-key

46.1.2 1-N Collection Relationship

Lets take the same classes as we have in the 1-N Relationships (FK). In the 1-N relationships guide
we note that in the datastore representation of the Account and Address classes the ADDRESS table
has a primary key as well as a foreign-key to ACCOUNT. In our example here we want to have the

4 6 C o m p o u n d I d e n t i t y 191

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

primary-key to ACCOUNT to include the foreign-key. To do this we need to modify the classes
slightly, adding primary-key fields to both classes, and use "application-identity" for both.

In addition we need to define primary key classes for our Account and Address classes

4 6 C o m p o u n d I d e n t i t y 192

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 long id; // PK field

 Set addresses = new HashSet();

 ... (remainder of Account class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public long id;

 public PK()

 {

 }

 public PK(String s)

 {

 this.id = Long.valueOf(s).longValue();

 }

 public String toString()

 {

 return "" + id;

 }

 public int hashCode()

 {

 return (int)id;

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.id == this.id;

 }

 return false;

 }

 }

}

public class Address

{

 long id;

 Account account;

 .. (remainder of Address class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public long id; // Same name as real field above

 public Account.PK account; // Same name as the real field above

 public PK()

 {

 }

 public PK(String s)

 {

 StringTokenizer token = new StringTokenizer(s,"::");

 this.id = Long.valueOf(token.nextToken()).longValue();

 this.account = new Account.PK(token.nextToken());

 }

 public String toString()

 {

 return "" + id + "::" + this.account.toString();

 }

 public int hashCode()

 {

 return (int)id ^ account.hashCode();

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.id == this.id && this.account.equals(otherPK.account);

 }

 return false;

 }

 }

}

4 6 C o m p o u n d I d e n t i t y 193

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

To achieve what we want with the datastore schema we define the MetaData like this

<package name="mydomain">

 <class name="Account" identity-type="application" objectid-class="Account$PK">

 <field name="id" primary-key="true"/>

 <field name="firstName" persistence-modifier="persistent">

 <column length="50" jdbc-type="VARCHAR"/>

 </field>

 <field name="secondName" persistence-modifier="persistent">

 <column length="50" jdbc-type="VARCHAR"/>

 </field>

 <field name="addresses" persistence-modifier="persistent" mapped-by="account">

 <collection element-type="Address"/>

 </field>

 </class>

 <class name="Address" identity-type="application" objectid-class="Address$PK">

 <field name="id" primary-key="true"/>

 <field name="account" persistence-modifier="persistent" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 <field name="city" persistence-modifier="persistent">

 <column length="50" jdbc-type="VARCHAR"/>

 </field>

 <field name="street" persistence-modifier="persistent">

 <column length="50" jdbc-type="VARCHAR"/>

 </field>

 </class>

</package>

So now we have the following datastore schema

Things to note :-
• You must use "application-identity" in both parent and child classes
• In the child Primary Key class, you must have a field with the same name as the relationship in

the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes
• If we had omitted the "id" field from "Address" it would have only been possible to have one

"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have
the "id" field too.

4 6 C o m p o u n d I d e n t i t y 194

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

46.1.3 1-N Map Relationship

Lets take the same classes as we have in the 1-N Relationships (FK). In this guide we note that in
the datastore representation of the Account and Address classes the ADDRESS table has a primary
key as well as a foreign-key to ACCOUNT. In our example here we want to have the primary-key
to ACCOUNT to include the foreign-key. To do this we need to modify the classes slightly, adding
primary-key fields to both classes, and use "application-identity" for both.

In addition we need to define primary key classes for our Account and Address classes

4 6 C o m p o u n d I d e n t i t y 195

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 long id; // PK field

 Set addresses = new HashSet();

 ... (remainder of Account class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public long id;

 public PK()

 {

 }

 public PK(String s)

 {

 this.id = Long.valueOf(s).longValue();

 }

 public String toString()

 {

 return "" + id;

 }

 public int hashCode()

 {

 return (int)id;

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.id == this.id;

 }

 return false;

 }

 }

}

public class Address

{

 String alias;

 Account account;

 .. (remainder of Address class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public String alias; // Same name as real field above

 public Account.PK account; // Same name as the real field above

 public PK()

 {

 }

 public PK(String s)

 {

 StringTokenizer token = new StringTokenizer(s,"::");

 this.alias = Long.valueOf(token.nextToken()).longValue();

 this.account = new Account.PK(token.nextToken());

 }

 public String toString()

 {

 return alias + "::" + this.account.toString();

 }

 public int hashCode()

 {

 return alias.hashCode() ^ account.hashCode();

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.alias.equals(this.alias) && this.account.equals(otherPK.account);

 }

 return false;

 }

 }

}

4 6 C o m p o u n d I d e n t i t y 196

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

To achieve what we want with the datastore schema we define the MetaData like this

<package name="com.mydomain">

 <class name="Account" objectid-class="Account$PK">

 <field name="id" primary-key="true"/>

 <field name="firstname" persistence-modifier="persistent">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="lastname" persistence-modifier="persistent">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="addresses" persistence-modifier="persistent" mapped-by="account">

 <map key-type="java.lang.String" value-type="com.mydomain.Address"/>

 <key mapped-by="alias"/>

 </field>

 </class>

 <class name="Address" objectid-class="Address$PK>

 <field name="account" persistence-modifier="persistent" primary-key="true"/>

 <field name="alias" null-value="exception" primary-key="true">

 <column name="KEY" length="20" jdbc-type="VARCHAR"/>

 </field>

 <field name="city" persistence-modifier="persistent">

 <column length="50" jdbc-type="VARCHAR"/>

 </field>

 <field name="street" persistence-modifier="persistent">

 <column length="50" jdbc-type="VARCHAR"/>

 </field>

 </class>

</package>

So now we have the following datastore schema

Things to note :-

• You must use "application-identity" in both parent and child classes
• In the child Primary Key class, you must have a field with the same name as the relationship in

the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes

4 6 C o m p o u n d I d e n t i t y 197

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• If we had omitted the "alias" field from "Address" it would have only been possible to have one
"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have
the "alias" field too as part of the PK.

4 7 V e r s i o n i n g 198

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

47 Versioning
...

47.1 JDO : Versioning of Objects
JDO allows objects of classes to be versioned. The version is typically used as a way of detecting
if the object has been updated by another thread or PersistenceManager since retrieval using the
current PersistenceManager - for use by Optimistic Transactions. JDO defines several "strategies" for
generating the version of an object. The strategy has the following possible values

• none stores a number like the version-number but will not perform any optimistic checks.
• version-number stores a number (starting at 1) representing the version of the object.
• date-time stores a Timestamp representing the time at which the object was last updated. Note

that not all RDBMS store milliseconds in a Timestamp!
• state-image stores a Long value being the hash code of all fields of the object. DataNucleus

doesnt currently support this option

47.1.1 Versioning using a surrogate column

JDO2s mechanism for versioning of objects in RDBMS datastores is via a surrogate column in the
table of the class. In the MetaData you specify the details of the surrogate column and the strategy to
be used. For example

<package name="mydomain">

 <class name="User" table="USER">

 <version strategy="version-number" column="VERSION"/>

 <field name="name" column="NAME"/>

 ...

 </class>

</package>

alternatively using annotations

@PersistenceCapable

@Version(strategy=VersionStrategy.VERSION_NUMBER, column="VERSION")

public class MyClass

{

 ...

}

The specification above will create a table with an additional column called "VERSION" that will
store the version of the object.

47.1.2 Versioning using a field of the class

DataNucleus provides a valuable extension to JDO whereby you can have a field of your class store
the version of the object. This equates to JPA's versioning process whereby you have to have a field
present. To do this lets take a class

4 7 V e r s i o n i n g 199

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class User

{

 String name;

 ...

 long myVersion;

}

and we want to store the version of the object in the field "myVersion". So we specify the metadata as
follows

<package name="mydomain">

 <class name="User" table="USER">

 <version strategy="version-number">

 <extension vendor-name="datanucleus" key="field-name" value="myVersion"/>

 </version>

 <field name="name" column="NAME"/>

 ...

 <field name="myVersion" column="VERSION"/>

 </class>

</package>

alternatively using annotations

@PersistenceCapable

@Version(strategy=VersionStrategy.VERSION_NUMBER, column="VERSION",

 extensions={@Extension(vendorName="datanucleus", key="field-name", value="myVersion")})

public class MyClass

{

 protected long myVersion;

 ...

}

and so now objects of our class will have access to the version via the "myVersion" field.

4 8 I n h e r i t a n c e 200

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

48 Inheritance
...

48.1 JDO : Inheritance Strategies
In Java it is a normal situation to have inheritance between classes. With JDO you have choices to
make as to how you want to persist your classes for the inheritance tree. For each class you select how
you want to persist that classes information. You have the following choices.

1. The first and simplest to understand option is where each class has its own table in the datastore.
In JDO this is referred to as new-table.

2. The second way is to select a class to have its fields persisted in the table of its subclass. In JDO
this is referred to as subclass-table

3. The third way is to select a class to have its fields persisted in the table of its superclass. In JDO
this is known as superclass-table.

4. JDO3.1 introduces support for having all classes in an inheritance tree with their own table
containing all fields. This is known as complete-table and is enabled by setting the inheritance
strategy of the root class to use this.

In order to demonstrate the various inheritance strategies we need an example. Here are a few simple
classes representing products in a (online) store. We have an abstract base class, extending this to to
provide something that we can represent any product by. We then provide a few specialisations for
typical products. We will use these classes later when defining how to persistent these objects in the
different inheritance strategies.

4 8 I n h e r i t a n c e 201

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

JDO imposes a "default" inheritance strategy if none is specified for a class. If the class is a base class
and no inheritance strategy is specified then it will be set to new-table for that class. If the class has a
superclass and no inheritance strategy is specified then it will be set to superclass-table. This means
that, when no strategy is set for the classes in an inheritance tree, they will default to using a single
table managed by the base class.

You can control the "default" strategy chosen by way of a

. This is specified by way of a PMF property datanucleus.defaultInheritanceStrategy. The default
is JDO2 which will give the above default behaviour for all classes that have no strategy specified.
The other option is TABLE_PER_CLASS which will use "new-table" for all classes which have no
strategy specified

Please note that at runtime, when you start up your PMF and PM, JDO will only know about the classes that
the PM has been introduced to via method calls. To alleviate this, particularly for subclasses of classes in an
inheritance relationship, you should make use of one of the many available Auto Start Mechanisms.

4 8 I n h e r i t a n c e 202

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Please note that you must specify the identity of objects in the root persistable class of the inheritance
hierarchy. You cannot redefine it down the inheritance tree

See also :-

• MetaData reference for <inheritance> element
• MetaData reference for <discriminator> element
• Annotations reference for @Inheritance
• Annotations reference for @Discriminator

48.1.1 Discriminator

Applicable to RDBMS, HBase, MongoDB

A discriminator is an extra "column" stored alongside data to identify the class of which that
information is part. It is useful when storing objects which have inheritance to provide a quick way of
determining the object type on retrieval. There are two types of discriminator supported by JDO

• class-name : where the actual name of the class is stored as the discriminator
• value-map : where a (typically numeric) value is stored for each class in question, allowing

simple look-up of the class it equates to
You specify a discriminator as follows

<class name="Product">

 <inheritance>

 <discriminator strategy="class-name"/>

 </inheritance>

or with annotations

@PersistenceCapable

@Discriminator(strategy=DiscriminatorStrategy.CLASS_NAME)

public class Product {...}

48.1.2 New Table

Applicable to RDBMS

Here we want to have a separate table for each class. This has the advantage of being the most
normalised data definition. It also has the disadvantage of being slower in performance since multiple
tables will need to be accessed to retrieve an object of a sub type. Let's try an example using the
simplest to understand strategy new-table. We have the classes defined above, and we want to persist
our classes each in their own table. We define the Meta-Data for our classes like this

4 8 I n h e r i t a n c e 203

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="AbstractProduct">

 <inheritance strategy="new-table"/>

 <field name="id" primary-key="true">

 <column name="PRODUCT_ID"/>

 </field>

 <field name="name">

 <column name="NAME"/>

 </field>

 <field name="description">

 <column name="DESCRIPTION"/>

 </field>

</class>

<class name="Product">

 <inheritance strategy="new-table"/>

 <field name="price">

 <column name="PRICE"/>

 </field>

</class>

<class name="Book">

 <inheritance strategy="new-table"/>

 <field name="isbn">

 <column name="ISBN"/>

 </field>

 <field name="author">

 <column name="AUTHOR"/>

 </field>

 <field name="title">

 <column name="TITLE"/>

 </field>

</class>

<class name="TravelGuide">

 <inheritance strategy="new-table"/>

 <field name="country">

 <column name="COUNTRY"/>

 </field>

</class>

<class name="CompactDisc">

 <inheritance strategy="new-table"/>

 <field name="artist">

 <column name="ARTIST"/>

 </field>

 <field name="title">

 <column name="TITLE"/>

 </field>

</class>

or with annotations

4 8 I n h e r i t a n c e 204

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)

public class AbstractProduct {...}

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)

public class Product {...}

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)

public class Book {...}

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)

public class TravelGuide {...}

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)

public class CompactDisc {...}

We use the inheritance element to define the persistence of the inherited classes.

In the datastore, each class in an inheritance tree is represented in its own datastore table (tables
ABSTRACTPRODUCT, PRODUCT, BOOK, TRAVELGUIDE, and COMPACTDISC), with the
subclasses tables' having foreign keys between the primary key and the primary key of the superclass'
table.

4 8 I n h e r i t a n c e 205

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In the above example, when we insert a TravelGuide object into the datastore, a row will be inserted
into ABSTRACTPRODUCT, PRODUCT, BOOK, and TRAVELGUIDE.

48.1.3 Subclass table

Applicable to RDBMS

DataNucleus supports persistence of classes in the tables of subclasses where this is required.
This is typically used where you have an abstract base class and it doesn't make sense having a
separate table for that class. In our example we have no real interest in having a separate table for the
AbstractProduct class. So in this case we change one thing in the Meta-Data quoted above. We now
change the definition of AbstractProduct as follows

4 8 I n h e r i t a n c e 206

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="AbstractProduct">

 <inheritance strategy="subclass-table"/>

 <field name="id" primary-key="true">

 <column name="PRODUCT_ID"/>

 </field>

 <field name="name">

 <column name="NAME"/>

 </field>

 <field name="description">

 <column name="DESCRIPTION"/>

 </field>

</class>

or with annotations

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.SUBCLASS_TABLE)

public class AbstractProduct {...}

This subtle change of use the inheritance element has the effect of using the PRODUCT table for
both the Product and AbstractProduct classes, containing the fields of both classes.

In the above example, when we insert a TravelGuide object into the datastore, a row will be inserted
into PRODUCT, BOOK, and TRAVELGUIDE.

DataNucleus doesn't currently support the use of classes defined with subclass-table strategy as
having relationships where there are more than a single subclass that has a table. If the class has
a single subclass with its own table then there should be no problem.

4 8 I n h e r i t a n c e 207

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

48.1.4 Superclass table

Applicable to RDBMS

DataNucleus supports persistence of classes in the tables of superclasses where this is required.
This has the advantage that retrieval of an object is a single SQL call to a single table. It also has the
disadvantage that the single table can have a very large number of columns, and database readability
and performance can suffer, and additionally that a discriminator column is required. In our example,
lets ignore the AbstractProduct class for a moment and assume that Product is the base class. We
have no real interest in having separate tables for the Book and CompactDisc classes and want
everything stored in a single table PRODUCT. We change our MetaData as follows

<class name="Product">

 <inheritance strategy="new-table">

 <discriminator strategy="class-name">

 <column name="PRODUCT_TYPE"/>

 </discriminator>

 </inheritance>

 <field name="id" primary-key="true">

 <column name="PRODUCT_ID"/>

 </field>

 <field name="price">

 <column name="PRICE"/>

 </field>

</class>

<class name="Book">

 <inheritance strategy="superclass-table"/>

 <field name="isbn">

 <column name="ISBN"/>

 </field>

 <field name="author">

 <column name="AUTHOR"/>

 </field>

 <field name="title">

 <column name="TITLE"/>

 </field>

</class>

<class name="TravelGuide">

 <inheritance strategy="superclass-table"/>

 <field name="country">

 <column name="COUNTRY"/>

 </field>

</class>

<class name="CompactDisc">

 <inheritance strategy="superclass-table"/>

 <field name="artist">

 <column name="ARTIST"/>

 </field>

 <field name="title">

 <column name="DISCTITLE"/>

 </field>

</class>

4 8 I n h e r i t a n c e 208

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

or with annotations

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)

public class AbstractProduct {...}

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.SUPERCLASS_TABLE)

public class Product {...}

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.SUPERCLASS_TABLE)

public class Book {...}

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.SUPERCLASS_TABLE)

public class TravelGuide {...}

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.SUPERCLASS_TABLE)

public class CompactDisc {...}

This change of use of the inheritance element has the effect of using the PRODUCT table for all
classes, containing the fields of Product, Book, CompactDisc, and TravelGuide. You will also note
that we used a discriminator element for the Product class. The specification above will result in an
extra column (called PRODUCT_TYPE) being added to the PRODUCT table, and containing the
class name of the object stored. So for a Book it will have "com.mydomain.samples.store.Book" in
that column. This column is used in discriminating which row in the database is of which type. The
final thing to note is that in our classes Book and CompactDisc we have a field that is identically
named. With CompactDisc we have defined that its column will be called DISCTITLE since both of
these fields will be persisted into the same table and would have had identical names otherwise - this
gets around the problem.

In the above example, when we insert a TravelGuide object into the datastore, a row will be inserted
into the PRODUCT table only.

4 8 I n h e r i t a n c e 209

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

JDO 2 allows two types of discriminators. The example above used a discriminator strategy of class-
name. This inserts the class name into the discriminator column so that we know what the class of
the object really is. The second option is to use a discriminator strategy of value-map. With this we
will define a "value" to be stored in this column for each of our classes. The only thing here is that
we have to define the "value" in the MetaData for ALL classes that use that strategy. So to give the
equivalent example :-

4 8 I n h e r i t a n c e 210

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Product">

 <inheritance strategy="new-table">

 <discriminator strategy="value-map" value="PRODUCT">

 <column name="PRODUCT_TYPE"/>

 </discriminator>

 </inheritance>

 <field name="id" primary-key="true">

 <column name="PRODUCT_ID"/>

 </field>

 <field name="price">

 <column name="PRICE"/>

 </field>

</class>

<class name="Book">

 <inheritance strategy="superclass-table">

 <discriminator value="BOOK"/>

 </inheritance>

 <field name="isbn">

 <column name="ISBN"/>

 </field>

 <field name="author">

 <column name="AUTHOR"/>

 </field>

 <field name="title">

 <column name="TITLE"/>

 </field>

</class>

<class name="TravelGuide">

 <inheritance strategy="superclass-table">

 <discriminator value="TRAVELGUIDE"/>

 </inheritance>

 <field name="country">

 <column name="COUNTRY"/>

 </field>

</class>

<class name="CompactDisc">

 <inheritance strategy="superclass-table">

 <discriminator value="COMPACTDISC"/>

 </inheritance>

 <field name="artist">

 <column name="ARTIST"/>

 </field>

 <field name="title">

 <column name="DISCTITLE"/>

 </field>

</class>

As you can see from the MetaData DTD it is possible to specify the column details for the
discriminator. DataNucleus supports this, but only currently supports the following values of jdbc-
type : VARCHAR, CHAR, INTEGER, BIGINT, NUMERIC. The default column type will be a
VARCHAR.

4 8 I n h e r i t a n c e 211

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

48.1.5 Complete table

Applicable to RDBMS, Neo4j, NeoDatis, Excel, OOXML, ODF, HBase, JSON, AmazonS3, GoogleStorage,
MongoDB, LDAP

With "complete-table" we define the strategy on the root class of the inheritance tree and it applies to
all subclasses. Each class is persisted into its own table, having columns for all fields (of the class in
question plus all fields of superclasses). So taking the same classes as used above

<class name="Product">

 <inheritance strategy="complete-table"/>

 <field name="id" primary-key="true">

 <column name="PRODUCT_ID"/>

 </field>

 <field name="price">

 <column name="PRICE"/>

 </field>

</class>

<class name="Book">

 <field name="isbn">

 <column name="ISBN"/>

 </field>

 <field name="author">

 <column name="AUTHOR"/>

 </field>

 <field name="title">

 <column name="TITLE"/>

 </field>

</class>

<class name="TravelGuide">

 <field name="country">

 <column name="COUNTRY"/>

 </field>

</class>

<class name="CompactDisc">

 <field name="artist">

 <column name="ARTIST"/>

 </field>

 <field name="title">

 <column name="DISCTITLE"/>

 </field>

</class>

or with annotations

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.COMPLETE_TABLE)

public class AbstractProduct {...}

So the key thing is the specification of inheritance strategy at the root only. This then implies a
datastore schema as follows

4 8 I n h e r i t a n c e 212

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So any object of explicit type Book is persisted into the table "BOOK". Similarly any TravelGuide is
persisted into the table "TRAVELGUIDE". In addition if any class in the inheritance tree is abstract
then it won't have a table since there cannot be any instances of that type. DataNucleus currently has
limitations when using a class using this inheritance as the element of a collection.

48.1.6 Retrieval of inherited objects

Applicable to all datastores

JDO provides particular mechanisms for retrieving inheritance trees. These are accessed via the
Extent/Query interface. Taking our example above, we can then do

tx.begin();

Extent e = pm.getExtent(com.mydomain.samples.store.Product.class, true);

Query q = pm.newQuery(e);

Collection c=(Collection)q.execute();

tx.commit();

The second parameter passed to pm.getExtent relates to whether to return subclasses. So if we pass in
the root of the inheritance tree (Product in our case) we get all objects in this inheritance tree returned.
You can, of course, use far more elaborate queries using JDOQL, but this is just to highlight the
method of retrieval of subclasses.

4 9 F i e l d s / P r o p e r t i e s 213

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

49 Fields/Properties
...

49.1 JDO : Persistent Fields or Properties
Now that we have defined the class as persistable we need to define how to persist the different fields/
properties that are to be persisted. Please note that JDO cannot persist static or final fields. There
are two distinct modes of persistence definition. The most common uses fields, whereas an alternative
uses properties.

49.1.1 Persistent Fields

The most common form of persistence is where you have a field in a class and want to persist it to the
datastore. With this mode of operation DataNucleus will persist the values stored in the fields into the
datastore, and will set the values of the fields when extracting it from the datastore.

Requirement : you have a field in the class. This can be public, protected, private or package
access, but cannot be static or final. Almost all Java field types are default persistent (if
DataNucleus knows how to persist a type then it defaults to persistent) so there is no real need to
specify @Persistent to make the field persistent.
An example of how to define the persistence of a field is shown below

@PersistenceCapable

public class MyClass

{

 @Persistent

 Date birthday;

 @NotPersistent

 String someOtherField;

}

So, using annotations, we have marked the field birthday as persistent, whereas field someOtherField
is not persisted. Please note that in this particular case, Date is by default persistent so we could
omit the @Persistent annotation (with non-default-persistent types we would definitely need the
annotation). Using XML MetaData we would have done

<class name="MyClass">

 <field name="birthday" persistence-modifier="persistent"/>

 <field name="someOtherField" persistence-modifier="none"/>

</class>

Please note that the field Java type defines whether it is, by default, persistable. Look at the
Types Guide and if the type has a tick in the column "Persistent?" then you don't need to mark the
persistence-modifier as "persistent".

4 9 F i e l d s / P r o p e r t i e s 214

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

49.1.2 Persistent Properties

A second mode of operation is where you have Java Bean-style getter/setter for a property. In this
situation you want to persist the output from getXXX to the datastore, and use the setXXX to load up
the value into the object when extracting it from the datastore.

Requirement : you have a property in the class with Java Bean getter/setter methods. These
methods can be public, protected, private or package access, but cannot be static. The class
must have BOTH getter AND setter methods.
An example of how to define the persistence of a property is shown below

@PersistenceCapable

public class MyClass

{

 @Persistent

 Date getBirthday()

 {

 ...

 }

 void setBirthday(Date date)

 {

 ...

 }

}

So, using annotations, we have marked this class as persistent, and the getter is marked as persistent.
By default a property is non-persistent, so we have no need in specifying the someOtherField as not
persistent. Using XML MetaData we would have done

<class name="MyClass">

 <property name="birthday" persistence-modifier="persistent"/>

</class>>

49.1.3 Overriding Superclass Field/Property MetaData

If you are using XML MetaData you can also override the MetaData for fields/properties of
superclasses. You do this by adding an entry for {class-name}.fieldName, like this

<class name="Hotel" detachable="true">

 ...

 <field name="HotelSuperclass.someField" default-fetch-group="false"/>

so we have changed the field "someField" specified in the persistent superclass "HotelSuperclass" to
not be part of the DFG.

4 9 F i e l d s / P r o p e r t i e s 215

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

49.1.4 Field/Property positioning

With some datastores (notably spreadsheets) it is desirable to be able to specify the relative position
of a column. The default (for DataNucleus) is just to put them in ascending alphabetical order. JDO
allows definition of this using the position attribute on a column. Here's an example, using XML
metadata

<jdo>

 <package name="mydomain">

 <class name="Person" detachable="true" table="People">

 <field name="personNum">

 <column position="0"/>

 </field>

 <field name="firstName">

 <column position="1"/>

 </field>

 <field name="lastName">

 <column position="2"/>

 </field>

 </class>

 </package>

</jdo>

and with Annotations

@PersistenceCapable(table="People")

public class Person

{

 @Column(position=0)

 long personNum;

 @Column(position=1)

 String firstName;

 @Column(position=2)

 String lastName;

}

5 0 J a v a T y p e s 216

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

50 Java Types
...

50.1 JDO : Persistable Field Types
When persisting a class, a persistence solution needs to know how to persist the types of each field
in the class. Clearly a persistence solution can only support a finite number of Java types; it cannot
know how to persist every possible type creatable. The JDO specification define lists of types that
are required to be supported by all implementations of those specifications. This support can be
conveniently split into two parts

50.1.1 First-Class (FCO) Types

An object that can be referred to (object reference, providing a relation) and that has an "identity" is
termed a First Class Object (FCO). DataNucleus supports the following Java types as FCO

• persistable : any class marked for persistence can be persisted with its own identity in the
datastore

• interface where the field represents a persistable object
• java.lang.Object where the field represents a persistable object

50.1.2 Supported Second-Class (SCO) Types

An object that does not have an "identity" is termed a Second Class Object (SCO). This is something
like a String or Date field in a class, or alternatively a Collection (that contains other objects). The
table below shows the currently supported SCO java types in DataNucleus. The table shows

• Extension? : whether the type is JDO standard, or is a DataNucleus extension
• default-fetch-group (DFG) : whether the field is retrieved by default when retrieving the object

itself
• persistence-modifier : whether the field is persisted by default, or whether the user has to mark

the field as persistent in XML/annotations to persist it
• proxied : whether the field is represented by a "proxy" that intercepts any operations to detect

whether it has changed internally.
• primary-key : whether the field can be used as part of the primary-key

Java Type Extension? DFG? Persistent? Proxied? PK? Plugin

boolean datanucleus-
core

byte datanucleus-
core

char datanucleus-
core

double datanucleus-
core

float datanucleus-
core

int datanucleus-
core

long datanucleus-
core

5 0 J a v a T y p e s 217

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

short datanucleus-
core

boolean[] datanucleus-
core

byte[] datanucleus-
core

char[] datanucleus-
core

double[] datanucleus-
core

float[] datanucleus-
core

int[] datanucleus-
core

long[] datanucleus-
core

short[] datanucleus-
core

java.lang.Boolean datanucleus-
core

java.lang.Byte datanucleus-
core

java.lang.Character datanucleus-
core

java.lang.Double datanucleus-
core

java.lang.Float datanucleus-
core

java.lang.Integer datanucleus-
core

java.lang.Long datanucleus-
core

java.lang.Short datanucleus-
core

java.lang.Boolean[] datanucleus-
core

java.lang.Byte[] datanucleus-
core

java.lang.Character[] datanucleus-
core

java.lang.Double[] datanucleus-
core

java.lang.Float[] datanucleus-
core

java.lang.Integer[] datanucleus-
core

5 0 J a v a T y p e s 218

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.lang.Long[] datanucleus-
core

java.lang.Short[] datanucleus-
core

java.lang.Number
[2]

datanucleus-
core

java.lang.Object datanucleus-
core

java.lang.String datanucleus-
core

java.lang.StringBuffer
[1]

datanucleus-
core

java.lang.String[] datanucleus-
core

java.lang.Class datanucleus-
core

java.math.BigDecimal datanucleus-
core

java.math.BigInteger datanucleus-
core

java.math.BigDecimal[] datanucleus-
core

java.math.BigInteger[] datanucleus-
core

java.sql.Date datanucleus-
core

java.sql.Time datanucleus-
core

java.sql.Timestamp datanucleus-
core

java.util.ArrayList datanucleus-
core

java.util.BitSet datanucleus-
core

java.util.Calendar
[5]

datanucleus-
core

java.util.Collection datanucleus-
core

java.util.Currency datanucleus-
core

java.util.Date datanucleus-
core

java.util.Date[] datanucleus-
core

java.util.GregorianCalendar
[5]

datanucleus-
core

5 0 J a v a T y p e s 219

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.util.HashMap datanucleus-
core

java.util.HashSet datanucleus-
core

java.util.Hashtable datanucleus-
core

java.util.LinkedHashMap
[3]

datanucleus-
core

java.util.LinkedHashSet
[4]

datanucleus-
core

java.util.LinkedList datanucleus-
core

java.util.List datanucleus-
core

java.util.Locale datanucleus-
core

java.util.Locale[] datanucleus-
core

java.util.Map datanucleus-
core

java.util.Properties datanucleus-
core

java.util.PriorityQueue datanucleus-
core

java.util.Queue datanucleus-
core

java.util.Set datanucleus-
core

java.util.SortedMap datanucleus-
core

java.util.SortedSet datanucleus-
core

java.util.Stack datanucleus-
core

java.util.TimeZone datanucleus-
core

java.util.TreeMap datanucleus-
core

java.util.TreeSet datanucleus-
core

java.util.UUID datanucleus-
core

java.util.Vector datanucleus-
core

java.awt.Color datanucleus-
core

5 0 J a v a T y p e s 220

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.awt.image.BufferedImage datanucleus-
core

java.awt.Point datanucleus-
geospatial

java.awt.Rectangle datanucleus-
geospatial

java.net.URI datanucleus-
core

java.net.URL datanucleus-
core

java.io.Serializable datanucleus-
core

java.io.File [6] datanucleus-
rdbms

Persistable datanucleus-
core

Persistable[] datanucleus-
core

java.lang.Enum datanucleus-
core

java.lang.Enum[] datanucleus-
core

java.time.LocalDateTime datanucleus-
java8

java.time.LocalTime datanucleus-
java8

java.time.LocalDate datanucleus-
java8

java.time.MonthDay datanucleus-
java8

java.time.YearMonth datanucleus-
java8

java.time.Year datanucleus-
java8

java.time.Period datanucleus-
java8

java.time.Instant datanucleus-
java8

java.time.Duration datanucleus-
java8

java.time.ZoneId datanucleus-
java8

java.time.ZoneOffset datanucleus-
java8

org.joda.time.DateTime datanucleus-
jodatime

5 0 J a v a T y p e s 221

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

org.joda.time.LocalTime datanucleus-
jodatime

org.joda.time.LocalDate datanucleus-
jodatime

org.joda.time.LocalDateTime datanucleus-
jodatime

org.joda.time.Duration datanucleus-
jodatime

org.joda.time.Interval datanucleus-
jodatime

org.joda.time.Period datanucleus-
jodatime

com.google.common.collect.Multiset datanucleus-
guava

• [1] - java.lang.StringBuffer dirty check mechanism is limited to immutable mode, it means, if
you change a StringBuffer object field, you must reassign it to the owner object field to make
sure changes are propagated to the database.

• [2] - java.lang.Number will be stored in a column capable of storing a BigDecimal, and will
store to the precision of the object to be persisted. On reading back the object will be returned
typically as a BigDecimal since there is no mechanism for determing the type of the object that
was stored.

• [3] - java.util.LinkedHashMap treated as a Map currently. No List-ordering is supported.
• [4] - java.util.LinkedHashSet treated as a Set currently. No List-ordering is supported.
• [5] - java.util.Calendar is, by default, stored in one column (Timestamp - assumes that this stores

the TimeZone) but can be stored into two columns (millisecs, Timezone) if requested.
• [6] - available only for RDBMS, persisted into LONGVARBINARY, and retrieved as

streamable so as not to adversely affect memory utilisation, hence suitable for large files.
Note that support is available for persisting other types depending on the datastore to which you are
persisting

• RDBMS GeoSpatial types via the DataNucleus RDBMS Spatial plugin
If you have support for any additional types and would either like to contribute them, or have them
listed here, let us know

You can add support for other basic Java types quite easily, particularly if you can store it as a String
or Long and then retrieve it back into its object form from that - See the Java Types plugin-point You
can also define more specific support for it with RDBMS datastores - See the RDBMS Java Types
plugin-point

Handling of second-class types uses wrappers and bytecode enhancement with DataNucleus. This
contrasts to what Hibernate uses (proxies), and what Hibernate imposes on you. See this blog entry if
you have doubts about this approach.

50.1.3 SortedSet/SortedMap/Queue/PriorityQueue

SortedSet (and implementations) allow the user to have a comparator to order the elements of the set.
When an object is pulled back from the datastore via query JDO would need to know the class name
of the comparator to use. You specify it like this

http://blog.bolkey.com/2009/05/hibernate-datanucleus-r1/

5 0 J a v a T y p e s 222

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 @Element

 @Extension(vendorName="datanucleus", key="comparator-name", value="mydomain.model.MyComparator")

 SortedSet<MyElementType> elements;

and when instantiating the SortedSet field will create it with a comparator of the specified class
(which must have a default constructor). Same for Queue, PriorityQueue and SortedMap.

50.1.4 Enums

By default an Enum is persisted as either a String form (the name), or as an integer form (the ordinal).
You control which form by specifying the column jdbc-type.

An extension to this for RDBMS is where you have an Enum that defines its own "value"s for the
different enum options.

public enum MyColour

{

 RED((short)1), GREEN((short)3), BLUE((short)5), YELLOW((short)8);

 private short value;

 private MyColour(short value)

 {

 this.value = value;

 }

 public short getValue()

 {

 return value;

 }

 public static MyColour getEnumByValue(short value)

 {

 switch (value)

 {

 case 1:

 return RED;

 case 3:

 return GREEN;

 case 5:

 return BLUE;

 default:

 return YELLOW;

 }

 }

}

With the default persistence it would persist as String-based, so persisting "RED" "GREEN" "BLUE"
etc. With jdbc-type as INTEGER it would persist 0, 1, 2, 3 being the ordinal values. If you define the
metadata as

5 0 J a v a T y p e s 223

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Extensions({

 @Extension(vendorName="datanucleus", key="enum-getter-by-value", value="getEnumByValue"),

 @Extension(vendorName="datanucleus", key="enum-value-getter", value="getValue")

 })

MyColour colour;

this will now persist 1, 3, 5, 8, being the "value" of each of the enum options.

50.1.5 TypeConverters

By default DataNucleus will store the value using its own internal configuration/default for the java
type and for the datastore. The user can, however, change that by making use of a TypeConverter.
You firstly need to define the TypeConverter class (assuming you aren't going to use an internal
DataNucleus converter, and for this you should refer to the TypeConverter plugin-point. Once you
have the converter defined, and registered in a plugin.xml under a name you then mark the field/
property to use it

 @Extension(vendorName="datanucleus", key="type-converter-name", value="kryo-serialise")

 String longString;

In this case we have a String field but we want to serialise it, not using normal Java serialisation but
using the "Kryo" library. When it is stored it will be converted into a serialised form and when read
back in will be deserialised. You can see the example Kryo TypeConverter over on GitHub.

50.1.6 Eclipse EMF models

You could try to persist Eclipse EMF models using the Texo project to generate POJOs

https://github.com/datanucleus/datanucleus-core/tree/master/src/main/java/org/datanucleus/store/types/converters
https://github.com/datanucleus/datanucleus-core/tree/master/src/main/java/org/datanucleus/store/types/converters
https://github.com/datanucleus/datanucleus-typeconverter-kryo
http://wiki.eclipse.org/Texo

5 1 V a l u e G e n e r a t i o n 224

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

51 Value Generation
...

51.1 JDO : Value generation
Fields of a class can either have the values set by you the user, or you can set DataNucleus to generate
them for you. This is of particular importance with identity fields where you want unique identities.
You can use this value generation process with any field in JDO. There are many different "strategies"
for generating values, as defined by the JDO specifications, and also some DataNucleus extensions.
Some strategies are specific to a particular datastore, and some are generic. You should choose the
strategy that best suits your target datastore. The available strategies for JDO are :-

• native - this is the default and allows DataNucleus to choose the most suitable for the datastore.
• sequence - this uses a datastore sequence (if supported by the datastore)
• identity - these use autoincrement/identity/serial features in the datastore (if supported by the

datastore)
• increment - this is datastore neutral and increments a sequence value using a table.
• uuid-string - this is a UUID in string form
• uuid-hex - this is a UUID in hexadecimal form
• uuid - provides a pure UUID utilising the JDK1.5 UUID class

• auid - provides a pure UUID following the OpenGroup standard

• timestamp - creates a java.sql.Timestamp of the current time

• timestamp-value - creates a long (millisecs) of the current time

• max - uses a max(column)+1 method (only in RDBMS)

• datastore-uuid-hex - UUID in hexadecimal form using datastore capabilities (only in RDBMS)

• user-supplied value generators - allows you to hook in your own identity generator

See also :-

• JDO MetaData reference for <class>
• JDO MetaData reference for <datastore-identity>
• JDO MetaData reference for <field>
• JDO Annotation reference for @DatastoreIdentity
• JDO Annotation reference for @Persistent

5 1 V a l u e G e n e r a t i o n 225

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Please note that by defining a value-strategy for a field then it will, by default, always
generate a value for that field on persist. If the field can store nulls and you only want it to
generate the value at persist when it is null (i.e you haven't assigned a value yourself) then
you can add the extension "strategy-when-notnull" as false

51.1.1 native

With this strategy DataNucleus will choose the most appropriate strategy for the datastore being used.
If you define the field as String-based then it will choose uuid-hex. Otherwise the field is numeric in
which case it chooses identity if supported, otherwise sequence if supported, otherwise increment
if supported otherwise throws an exception. On RDBMS you can get the behaviour used up until DN
v3.0 by specifying the persistence property datanucleus.rdbms.useLegacyNativeValueStrategy as
true

51.1.2 sequence

A sequence is a user-defined database function that generates a sequence of unique numeric ids.
The unique identifier value returned from the database is translated to a java type: java.lang.Long.
DataNucleus supports sequences for the following datastores:

• Oracle
• PostgreSQL
• SAP DB
• DB2
• Firebird
• HSQLDB
• H2
• Derby (from v10.6)
• SQLServer (from v2012)
• NuoDB

To configure a class to use either of these generation methods with datastore identity you simply add
this to the class' Meta-Data

<sequence name="yourseq" datastore-sequence="YOUR_SEQUENCE_NAME" strategy="noncontiguous"/>

<class name="myclass" ... >

 <datastore-identity strategy="sequence" sequence="yourseq"/>

 ...

</class>

or using annotations

@PersistenceCapable

@DatastoreIdentity(strategy="sequence", sequence="yourseq"/>

@Sequence(name="yourseq", datastore-sequence="YOUR_SEQUENCE_NAME", strategy=NONCONTIGUOUS/>

public class MyClass

5 1 V a l u e G e n e r a t i o n 226

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

You replace "YOUR_SEQUENCE_NAME" with your sequence name. To configure a class to use
either of these generation methods using application identity you would add the following to the class'
Meta-Data

<sequence name="yourseq" datastore-sequence="YOUR_SEQUENCE_NAME" strategy="noncontiguous"/>

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="sequence" sequence="yourseq"/>

 ...

</class>

or using annotations

@PersistenceCapable

@Sequence(name="yourseq", datastore-sequence="YOUR_SEQUENCE_NAME" strategy=NONCONTIGUOUS/>

public class MyClass

{

 @Persistent(valueStrategy="sequence", sequence="yourseq"/>

 private long myfield;

 ...

}

If the sequence does not yet exist in the database at the time DataNucleus needs a new unique
identifier, a new sequence is created in the database based on the JDO Meta-Data configuration.
Additional properties for configuring sequences are set in the JDO Meta-Data, see the available
properties below. Unsupported properties by a database are silently ignored by DataNucleus.

Property Description Required

key-initial-value the initial value for the sequence.
In JDO3.1 this is specified in the
standard metadata (initialValue)

No

key-cache-size number of unique
identifiers to cache in the
PersistenceManagerFactory
instance. Notes:

1. The keys are pre-allocated,
cached and used on demand.
If key-cache-size is greater
than 1, it may generate holes
in the object keys in the
database, if not all keys are
used.

In JDO3.1 this is specified in the
standard metadata (allocationSize)

No.

key-min-value determines the minimum value a
sequence can generate

No

key-max-value determines the maximum value a
sequence can generate

No

5 1 V a l u e G e n e r a t i o n 227

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

key-database-cache-size specifies how many sequence
numbers are to be preallocated
and stored in memory for faster
access. This is an optimization
feature provided by the database

No

sequence-catalog-name Name of the catalog where the
sequence is.

No.

sequence-schema-name Name of the schema where the
sequence is.

No.

This value generator will generate values unique across different JVMs

51.1.3 identity

Auto-increment/identity/serial are primary key columns that are populated when a row is inserted
in the table. These use the databases own keywords on table creation and so rely on having the table
structure either created by DataNucleus or having the column with the necessary keyword.

DataNucleus supports auto-increment/identity/serial keys for many databases including :

• DB2 (IDENTITY)
• MySQL (AUTOINCREMENT)
• MSSQL (IDENTITY)
• Sybase (IDENTITY)
• HSQLDB (IDENTITY)
• H2 (IDENTITY)
• PostgreSQL (SERIAL)
• Derby (IDENTITY)
• MongoDB - String based
• Neo4j - long based
• NuoDB (IDENTITY)

This generation strategy should only be used if there is a single "root" table for the inheritance
tree. If you have more than 1 root table (e.g using subclass-table inheritance) then you should
choose a different generation strategy

For a class using datastore identity you need to set the strategy attribute. You can configure the Meta-
Data for the class something like this (replacing 'myclass' with your class name) :

<class name="myclass">

 <datastore-identity strategy="identity"/>

 ...

</class>

For a class using application identity you need to set the value-strategy attribute on the primary key
field. You can configure the Meta-Data for the class something like this (replacing 'myclass' and
'myfield' with your class and field names) :

5 1 V a l u e G e n e r a t i o n 228

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="myclass" identity-type="application" objectid-class="myprimarykeyclass">

 <field name="myfield" primary-key="true" value-strategy="identity"/<

 ...

</class>

Please be aware that if you have an inheritance tree with the base class defined as using "identity"
then the column definition for the PK of the base table will be defined as "AUTO_INCREMENT"
or "IDENTITY" or "SERIAL" (dependent on the RDBMS) and all subtables will NOT have this
identifier added to their PK column definitions. This is because the identities are assigned in the base
table (since all objects will have an entry in the base table).

Please note that if using optimistic transactions, this strategy will mean that the value is only set
when the object is actually persisted (i.e at flush() or commit())

This value generator will generate values unique across different JVMs

51.1.4 increment

This method is database neutral and uses a sequence table that holds an incrementing sequence value.
The unique identifier value returned from the database is translated to a java type: java.lang.Long.
This strategy will work with any datastore. This method require a sequence table in the database and
creates one if doesn't exist.

To configure a datastore identity class to use this generation method you simply add this to the classes
Meta-Data.

<class name="myclass" ... >

 <datastore-identity strategy="increment"/>

 ...

</class>

To configure an application identity class to use this generation method you simply add this to the
class' Meta-Data. If your class is in an inheritance tree you should define this for the base class only.

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="increment"/>

 ...

</class>>

Additional properties for configuring this generator are set in the JDO Meta-Data, see the available
properties below. Unsupported properties are silently ignored by DataNucleus.

Property Description Required

key-initial-value First value to be allocated. No. Defaults to 1

5 1 V a l u e G e n e r a t i o n 229

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

key-cache-size number of unique identifiers
to cache. The keys are pre-
allocated, cached and used on
demand. If key-cache-size is
greater than 1, it may generate
holes in the object keys in the
database, if not all keys are used.
Refer to persistence property
datanucleus.valuegeneration.increment.allocationSize

No. Defaults to 10

sequence-table-basis Whether to define uniqueness on
the base class name or the base
table name. Since there is no "base
table name" when the root class
has "subclass-table" this should be
set to "class" when the root class
has "subclass-table" inheritance

No. Defaults to class, but the other
option is table

sequence-name name for the sequence (overriding
the "sequence-table-basis" above).
The row in the table will use this in
the PK column

No

sequence-table-name Table name for storing the
sequence.

No. Defaults to
SEQUENCE_TABLE

sequence-catalog-name Name of the catalog where the
table is.

No.

sequence-schema-name Name of the schema where the
table is.

No.

sequence-name-column-name Name for the column that represent
sequence names.

No. Defaults to
SEQUENCE_NAME

sequence-nextval-column-name Name for the column that represent
incremeting sequence values.

No. Defaults to NEXT_VAL

table-name Name of the table whose column
we are generating the value for
(used when we have no previous
sequence value and want a start
point.

No.

column-name Name of the column we are
generating the value for (used
when we have no previous
sequence value and want a start
point.

No.

This value generator will generate values unique across different JVMs

51.1.5 uuid-string

This generator creates identities with 16 characters in string format. The identity contains the IP
address of the local machine where DataNucleus is running, as well as other necessary components to
provide uniqueness across time. Note that this 'string' contains non-standard characters so is not
usable on all datastores. You are better off with a standard UUID in most situations

This generator can be used in concurrent applications. It is especially useful in situations where
large numbers of transactions within a certain amount of time have to be made, and the additional

5 1 V a l u e G e n e r a t i o n 230

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

overhead of synchronizing the concurrent creation of unique identifiers through the database would
break performance limits. It doesn't require datastore access to generate the identities and so has
performance benefits over some of the other generators.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass" ... >

 <datastore-identity strategy="uuid-string"/>

 ...

</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="uuid-string"/>

 ...

</class>

51.1.6 uuid-hex

This generator creates identities with 32 characters in hexadecimal format. The identity contains the
IP address of the local machine where DataNucleus is running, as well as other necessary components
to provide uniqueness across time.

This generator can be used in concurrent applications. It is especially useful in situations where
large numbers of transactions within a certain amount of time have to be made, and the additional
overhead of synchronizing the concurrent creation of unique identifiers through the database would
break performance limits. It doesn't require datastore access to generate the identities and so has
performance benefits over some of the other generators.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass" ... >

 <datastore-identity strategy="uuid-hex"/>

 ...

</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="uuid-hex"/>

 ...

</class>

5 1 V a l u e G e n e r a t i o n 231

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

51.1.7 datastore-uuid-hex

This method is like the "uuid-hex" option above except that it utilises datastore capabilities to
generate the UUIDHEX code. Consequently this only works on some RDBMS (MSSQL, MySQL).
The disadvantage of this strategy is that it makes a call to the datastore for each new UUID required.
The generated UUID is in the same form as the AUID strategy where identities are generated in
memory and so the AUID strategy is the recommended choice relative to this option.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass" ... >

 <datastore-identity strategy="datastore-uuid-hex"/>

 ...

</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="datastore-uuid-hex"/>

 ...

</class>

51.1.8 max

This method is database neutral and uses the "select max(column) from table" + 1 strategy to create
unique ids. The unique identifier value returned from the database is translated to a java type:
java.lang.Long. It is however not recommended by DataNucleus since it makes a DB call for
every record to be inserted and hence is inefficient. Each DB call will run a scan in all table
contents causing contention and locks in the table. We recommend the use of either Sequence or
Identity based value generators (see below) - which you use would depend on your RDBMS.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass" ... >

 <datastore-identity strategy="max"/>

 ...

</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="max"/>

 ...

</class>

5 1 V a l u e G e n e r a t i o n 232

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

This value generator will NOT guarantee to generate values unique across different JVMs. This is
because it will select the "max+1" and before creating the record another thread may come in and
insert one.

51.1.9 uuid

This generator uses the JDK1.5 UUID class to generate values. The values are 128-bit (36 character)
of the form "0e400c2c-b3a0-4786-a0c6-f2607bf643eb"

This generator can be used in concurrent applications. It is especially useful in situations where large
numbers of transactions within a certain amount of time have to be made, and the additional overhead
of synchronizing the concurrent creation of unique identifiers through the database would break
performance limits.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass" ... >

 <datastore-identity strategy="uuid"/>

 ...

</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="uuid"/>

 ...

</class>

Or using annotations

public class MyClass

{

 @Persistent(customValueStrategy="uuid")

 String myField;

}

This value generator will generate values unique across different JVMs

51.1.10 auid

This generator uses a Java implementation of DCE UUIDs to create unique identifiers without the
overhead of additional database transactions or even an open database connection. The identifiers are
Strings of the form "LLLLLLLL-MMMM-HHHH-CCCC-NNNNNNNNNNNN" where 'L', 'M', 'H',
'C' and 'N' are the DCE UUID fields named time low, time mid, time high, clock sequence and node.

5 1 V a l u e G e n e r a t i o n 233

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

This generator can be used in concurrent applications. It is especially useful in situations where large
numbers of transactions within a certain amount of time have to be made, and the additional overhead
of synchronizing the concurrent creation of unique identifiers through the database would break
performance limits.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass" ... >

 <datastore-identity strategy="auid"/>

 ...

</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="auid"/>

 ...

</class>

This value generator will generate values unique across different JVMs

51.1.11 timestamp

This method will create a java.sql.Timestamp of the current time (at insertion in the datastore).

For a class using datastore identity you need to add metadata something like the following

<class name="myclass" ... >

 <datastore-identity strategy="timestamp"/>

 ...

</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="timestamp"/>

 ...

</class>

51.1.12 timestamp-value

This method will create a long of the current time in millisecs (at insertion in the datastore).

5 1 V a l u e G e n e r a t i o n 234

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

For a class using datastore identity you need to add metadata something like the following

<class name="myclass" ... >

 <datastore-identity strategy="timestamp-value"/>

 ...

</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass" ... >

 <field name="myfield" primary-key="true" value-strategy="timestamp-value"/>

 ...

</class>

51.2 Standalone ID generation

This section describes how to use the DataNucleus Value Generator API for generating unique
keys for objects outside the DataNucleus (JDO) runtime. DataNucleus defines a framework for
identity generation and provides many builtin strategies for identities. You can make use of the same
strategies described above but for generating identities manually for your own use. The process is
described below

The DataNucleus Value Generator API revolves around 2 classes. The entry point for retrieving
generators is the ValueGenerationManager. This manages the appropriate ValueGenerator classes.
Value generators maintain a block of cached ids in memory which avoid reading the database each
time it needs a new unique id. Caching a block of unique ids provides you the best performance but
can cause "holes" in the sequence of ids for the stored objects in the database.

Let's take an example. Here we want to obtain an identity using the TableGenerator ("increment"
above). This stores identities in a datastore table. We want to generate an identity using this. Here is
what we add to our code

5 1 V a l u e G e n e r a t i o n 235

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PersistenceManagerImpl pm = (PersistenceManagerImpl) ... // cast your pm to impl ;

// Obtain a ValueGenerationManager

ValueGenerationManager mgr = new ValueGenerationManager();

// Obtain a ValueGenerator of the required type

Properties properties = new Properties();

properties.setProperty("sequence-name", "GLOBAL"); // Use a global sequence number (for all tables)

ValueGenerator generator = mgr.createValueGenerator("MyGenerator",

 org.datanucleus.store.rdbms.valuegenerator.TableGenerator.class, props, pm.getStoreManager(),

 new ValueGenerationConnectionProvider()

 {

 RDBMSManager rdbmsManager = null;

 ManagedConnection con;

 public ManagedConnection retrieveConnection()

 {

 rdbmsManager = (RDBMSManager) pm.getStoreManager();

 try

 {

 // important to use TRANSACTION_NONE like DataNucleus does

 con = rdbmsManager.getConnection(Connection.TRANSACTION_NONE);;

 return con;

 }

 catch (SQLException e)

 {

 logger.error("Failed to obtain new DB connection for identity generation!");

 throw new RuntimeException(e);

 }

 }

 public void releaseConnection()

 {

 try

 {

 con.close();

 con = null;

 }

 catch (DataNucleusException e)

 {

 logger.error("Failed to close DB connection for identity generation!");

 throw new RuntimeException(e);

 }

 finally

 {

 rdbmsManager = null;

 }

 }

 });

// Retrieve the next identity using this strategy

Long identifier = (Long)generator.next();

5 1 V a l u e G e n e r a t i o n 236

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Some ValueGenerators are specific to RDBMS datastores, and some are generic, so bear this in mind
when selecting and adding your own.

5 2 S e q u e n c e s 237

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

52 Sequences
...

52.1 JDO : Datastore Sequences
Particularly when specifying the identity of an object, sequences are a very useful
facility. DataNucleus supports the automatic assignment of sequence values for
object identities. However such sequences may also have use when a user wishes to
assign such identity values themselves, or for other roles within an application. JDO
2 defines an interface for sequences for use in an application - known as Sequence.

. There are 2 forms of "sequence" available through this interface - the ones that DataNucleus
provides utilising datastore capabilities, and ones that a user provides using something known as a
"factory class".

52.1.1 DataNucleus Sequences

DataNucleus internally provides 2 forms of sequences. When the underlying datastore supports native
sequences, then these can be leveraged through this interface. Alternatively, where the underlying
datastore doesn't support native sequences, then a table-based incrementing sequence can be used. The
first thing to do is to specify the Sequence in the Meta-Data for the package requiring the sequence.
This is done as follows

<jdo>

 <package name="MyPackage">

 <class name="MyClass">

 ...

 </class>

 <sequence name="ProductSequence" datastore-sequence="PRODUCT_SEQ" strategy="contiguous"/>

 <sequence name="ProductSequenceNontrans" datastore-sequence="PRODUCT_SEQ_NONTRANS" strategy="nontransactional"/>

 </package>

</jdo>

So we have defined two Sequences for the package MyPackage. Each sequence has a symbolic name
that is referred to within JDO (within DataNucleus), and it has a name in the datastore. The final
attribute represents whether the sequence is transactional or not.

All we need to do now is to access the Sequence in our persistence code in our application. This is
done as follows

PersistenceManager pm = pmf.getPersistenceManager();

Sequence seq = pm.getSequence("MyPackage.ProductSequence");

and this Sequence can then be used to provide values.

long value = seq.nextValue();

Please be aware that when you have a Sequence declared with a strategy of "contiguous" this means
"transactional contiguous" and that you need to have a Transaction open when you access it.

http://db.apache.org/jdo/api20/apidocs/javax/jdo/datastore/Sequence.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/datastore/Sequence.html

5 2 S e q u e n c e s 238

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

JDO3.1 allows control over the allocation size (default=50) and initial value (default=1) for the
sequence. So we can do

 <sequence name="ProductSequence" datastore-sequence="PRODUCT_SEQ" strategy="contiguous"

 allocation-size="10"/>

which will allocate 10 new sequence values each time the allocated sequence values is exhausted.

52.1.2 Factory Class Sequences

It is equally possible to provide your own Sequence capability using a factory class. This is a class
that creates an implementation of the JDO Sequence. Let's give an example of what you need to
provide. Firstly you need an implementation of the JDO Sequence interface, so we define ours like
this

5 2 S e q u e n c e s 239

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class SimpleSequence implements Sequence

{

 String name;

 long current = 0;

 public SimpleSequence(String name)

 {

 this.name = name;

 }

 public String getName()

 {

 return name;

 }

 public Object next()

 {

 current++;

 return new Long(current);

 }

 public long nextValue()

 {

 current++;

 return current;

 }

 public void allocate(int arg0)

 {

 }

 public Object current()

 {

 return new Long(current);

 }

 public long currentValue()

 {

 return current;

 }

}

So our sequence simply increments by 1 each call to next(). The next thing we need to do is provide a
factory class that creates this Sequence. This factory needs to have a static newInstance method that
returns the Sequence object. We define our factory like this

5 2 S e q u e n c e s 240

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.sequence;

import javax.jdo.datastore.Sequence;

public class SimpleSequenceFactory

{

 public static Sequence newInstance()

 {

 return new SimpleSequence("MySequence");

 }

}

and now we define our MetaData like this

<jdo>

 <package name="MyPackage">

 <class name="MyClass">

 ...

 </class>

 <sequence name="ProductSequenceFactory" strategy="nontransactional"

 factory-class="org.datanucleus.samples.sequence.SimpleSequenceFactory"/>

 </package>

</jdo>

So now we can call

PersistenceManager pm = pmf.getPersistenceManager();

Sequence seq = pm.getSequence("MyPackage.ProductSequenceFactory");

5 3 E m b e d d e d F i e l d s 241

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

53 Embedded Fields
...

53.1 JDO : Embedded Fields
The JDO persistence strategy typically involves persisting the fields of any class into its own table,
and representing any relationships from the fields of that class across to other tables. There are
occasions when this is undesirable, maybe due to an existing datastore schema, or because a more
convenient datastore model is required. JDO allows the persistence of fields as embedded typically
into the same table as the "owning" class.

One important decision when defining objects of a type to be embedded into another type is whether
objects of that type will ever be persisted in their own right into their own table, and have an identity.
JDO provides a MetaData attribute that you can use to signal this.

<jdo>

 <package name="com.mydomain.samples.embedded">

 <class name="MyClass" embedded-only="true">

 ...

 </class>

 </package>

</jdo>

With the above MetaData (using the embedded-only attribute), in our application any objects of the
class MyClass cannot be persisted in their own right. They can only be embedded into other objects.

JDO's definition of embedding encompasses several types of fields. These are described below

• Embedded persistable objects - where you have a 1-1 relationship and you want to embed the
other persistable into the same table as the your object.

• Embedded Nested persistable objects - like the first example except that the other object also has
another persistable object that also should be embedded

• Embedded Collection elements - where you want to embed the elements of a collection into a
join table (instead of persisting them into their own table)

• Embedded Map keys/values - where you want to embed the keys/values of a map into a join
table (instead of persisting them into their own table)

53.1.1 Embedding persistable objects

Applicable to RDBMS, Excel, OOXML, ODF, HBase, MongoDB, Neo4j, Cassandra, JSON.

In a typical 1-1 relationship between 2 classes, the 2 classes in the relationship are persisted to their
own table, and a foreign key is managed between them. With JDO and DataNucleus you can persist
the related persistable object as embedded into the same table. This results in a single table in the
datastore rather than one for each of the 2 classes.

Let's take an example. We are modelling a Computer, and in our simple model our Computer has
a graphics card and a sound card. So we model these cards using a ComputerCard class. So our
classes become

5 3 E m b e d d e d F i e l d s 242

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Computer

{

 private String operatingSystem;

 private ComputerCard graphicsCard;

 private ComputerCard soundCard;

 public Computer(String osName,

 ComputerCard graphics,

 ComputerCard sound)

 {

 this.operatingSystem = osName;

 this.graphicsCard = graphics;

 this.soundCard = sound;

 }

 ...

}

public class ComputerCard

{

 public static final int ISA_CARD = 0;

 public static final int PCI_CARD = 1;

 public static final int AGP_CARD = 2;

 private String manufacturer;

 private int type;

 public ComputerCard(String manufacturer,

 int type)

 {

 this.manufacturer = manufacturer;

 this.type = type;

 }

 ...

}

The traditional (default) way of persisting these classes would be to have a table to represent each
class. So our datastore will look like this

5 3 E m b e d d e d F i e l d s 243

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

However we decide that we want to persist Computer objects into a table called COMPUTER and
we also want to persist the PC cards into the same table. We define our MetaData like this

<jdo>

 <package name="com.mydomain.samples.embedded">

 <class name="Computer" identity-type="datastore" table="COMPUTER">

 <field name="operatingSystem">

 <column name="OS_NAME" length="40" jdbc-type="CHAR"/>

 </field>

 <field name="graphicsCard" persistence-modifier="persistent">

 <embedded null-indicator-column="GRAPHICS_MANUFACTURER">

 <field name="manufacturer" column="GRAPHICS_MANUFACTURER"/>

 <field name="type" column="GRAPHICS_TYPE"/>

 </embedded>

 </field>

 <field name="soundCard" persistence-modifier="persistent">

 <embedded null-indicator-column="SOUND_MANUFACTURER">

 <field name="manufacturer" column="SOUND_MANUFACTURER"/>

 <field name="type" column="SOUND_TYPE"/>

 </embedded>

 </field>

 </class>

 <class name="ComputerCard" table="COMPUTER_CARD">

 <field name="manufacturer"/>

 <field name="type"/>

 </class>

 </package>

</jdo>

So here we will end up with a TABLE called "COMPUTER" with columns
"COMPUTER_ID", "OS_NAME", "GRAPHICS_MANUFACTURER", "GRAPHICS_TYPE",
"SOUND_MANUFACTURER", "SOUND_TYPE". If we call makePersistent() on any objects of
type Computer, they will be persisted into this table.

You will notice in the MetaData our use of the attribute null-indicator-column. This is used
when retrieving objects from the datastore and detecting if it is a NULL embedded object. In
the case we have here, if the column GRAPHICS_MANUFACTURER is null at retrieval, then
the embedded "graphicsCard" field will be set as null. Similarly for the "soundCard" field when
SOUND_MANUFACTURER is null.

5 3 E m b e d d e d F i e l d s 244

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

If the ComputerCard class above has a reference back to the related Computer, JDO defines a
mechanism whereby this will be populated. You would add the XML element owner-field to the
<embedded> tag defining the field within ComputerCard that represents the Computer it relates
to. When this is specified DataNucleus will populate it automatically, so that when you retrieve the
Computer and access the ComputerCard objects within it, they will have the link in place.

It should be noted that in this latter (embedded) case we can still persist objects of type
ComputerCard into their own table - the MetaData definition for ComputerCard is used for the
table definition in this case.

Please note that if, instead of specifying the <embedded> block we had specified embedded in the
field element we would have ended up with the same thing, just that the fields and columns would
have been mapped using their default mappings, and that the <embedded> provides control over how
they are mapped.

Note that by default the embedded objects cannot have inheritance. Inheritance in embedded
objects is only support for RDBMS and MongoDB, and involves defining a discriminator in the
metadata of the embedded type.

See also :-

• MetaData reference for <embedded> element
• Annotations reference for @Embedded

53.1.2 Embedding Nested persistable objects

Applicable to RDBMS, Excel, OOXML, ODF, HBase, MongoDB, Neo4j, Cassandra, JSON.

In the above example we had an embedded persistable object within a persisted object. What if our
embedded persistable object also contain another persistable object. So, using the above example what
if ComputerCard contains an object of type Connector ?

5 3 E m b e d d e d F i e l d s 245

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class ComputerCard

{

 ...

 Connector connector;

 public ComputerCard(String manufacturer,

 int type,

 Connector conn)

 {

 this.manufacturer = manufacturer;

 this.type = type;

 this.connector = conn;

 }

 ...

}

public class Connector

{

 int type;

}

Well we want to store all of these objects into the same record in the COMPUTER table.

5 3 E m b e d d e d F i e l d s 246

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.mydomain.samples.embedded">

 <class name="Computer" identity-type="datastore" table="COMPUTER">

 <field name="operatingSystem">

 <column name="OS_NAME" length="40" jdbc-type="CHAR"/>

 </field>

 <field name="graphicsCard" persistence-modifier="persistent">

 <embedded null-indicator-column="GRAPHICS_MANUFACTURER">

 <field name="manufacturer" column="GRAPHICS_MANUFACTURER"/>

 <field name="type" column="GRAPHICS_TYPE"/>

 <field name="connector">

 <embedded>

 <field name="type" column="GRAPHICS_CONNECTOR_TYPE"/>

 </embedded>

 </field>

 </embedded>

 </field>

 <field name="soundCard" persistence-modifier="persistent">

 <embedded null-indicator-column="SOUND_MANUFACTURER">

 <field name="manufacturer" column="SOUND_MANUFACTURER"/>

 <field name="type" column="SOUND_TYPE"/>

 <field name="connector">

 <embedded>

 <field name="type" column="SOUND_CONNECTOR_TYPE"/>

 </embedded>

 </field>

 </embedded>

 </field>

 </class>

 <class name="ComputerCard" table="COMPUTER_CARD">

 <field name="manufacturer"/>

 <field name="type"/>

 </class>

 <class name="Connector" embedded-only="true">

 <field name="type"/>

 </class>

 </package>

</jdo>

So we simply nest the embedded definition of the Connector objects within the embedded definition
of the ComputerCard definitions for Computer. JDO supports this to as many levels as you
require! The Connector objects will be persisted into the GRAPHICS_CONNECTOR_TYPE, and
SOUND_CONNECTOR_TYPE columns in the COMPUTER table.

5 3 E m b e d d e d F i e l d s 247

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

53.1.3 Embedding Collection Elements

Applicable to RDBMS, MongoDB

In a typical 1-N relationship between 2 classes, the 2 classes in the relationship are persisted to their
own table, and either a join table or a foreign key is used to relate them. With JDO and DataNucleus
you have a variation on the join table relation where you can persist the objects of the "N" side into
the join table itself so that they don't have their own identity, and aren't stored in the table for that
class. This is supported in DataNucleus with the following provisos

• You can have inheritance in embedded keys/values and a discriminator is added (you must
define the discriminator in the metadata of the embedded type).

• When retrieving embedded elements, all fields are retrieved in one call. That is, fetch plans are
not utilised. This is because the embedded element has no identity so we have to retrieve all
initially.

It should be noted that where the collection "element" is not persistable or of a "reference" type
(Interface or Object) it will always be embedded, and this functionality here applies to persistable
elements only. DataNucleus doesn't support the embedding of reference type objects currently.

Let's take an example. We are modelling a Network, and in our simple model our Network has
collection of Devices. So we define our classes as

5 3 E m b e d d e d F i e l d s 248

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Network

{

 private String name;

 private Collection devices = new HashSet();

 public Network(String name)

 {

 this.name = name;

 }

 ...

}

public class Device

{

 private String name;

 private String ipAddress;

 public Device(String name,

 String addr)

 {

 this.name = name;

 this.ipAddress = addr;

 }

 ...

}

We decide that instead of Device having its own table, we want to persist them into the join table
of its relationship with the Network since they are only used by the network itself. We define our
MetaData like this

5 3 E m b e d d e d F i e l d s 249

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.mydomain.samples.embedded">

 <class name="Network" identity-type="datastore" table="NETWORK">

 <field name="name">

 <column name="NAME" length="40" jdbc-type="VARCHAR"/>

 </field>

 <field name="devices" persistence-modifier="persistent" table="NETWORK_DEVICES">

 <collection element-type="com.mydomain.samples.embedded.Device"/>

 <join>

 <column name="NETWORK_ID"/>

 </join>

 <element>

 <embedded>

 <field name="name">

 <column name="DEVICE_NAME" allows-null="true"/>

 </field>

 <field name="ipAddress">

 <column name="DEVICE_IP_ADDR" allows-null="true"/>

 </field>

 </embedded>

 </element>

 </field>

 </class>

 <class name="Device" table="DEVICE" embedded-only="true">

 <field name="name">

 <column name="NAME"/>

 </field>

 <field name="ipAddress">

 <column name="IP_ADDRESS"/>

 </field>

 </class>

 </package>

</jdo>

So here we will end up with a table called "NETWORK" with columns "NETWORK_ID",
and "NAME", and a table called "NETWORK_DEVICES" with columns "NETWORK_ID",
"ADPT_PK_IDX", "DEVICE_NAME", "DEVICE_IP_ADDR". When we persist a Network object,
any devices are persisted into the NETWORK_DEVICES table.

Please note that if, instead of specifying the <embedded> block we had specified embedded-element
in the collection element we would have ended up with the same thing, just that the fields and
columns would be mapped using their default mappings, and that the <embedded> provides control
over how they are mapped.

5 3 E m b e d d e d F i e l d s 250

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

You note that in our example above DataNucleus has added an extra column "ADPT_PK_IDX"
to provide the primary key of the join table now that we're storing the elements as embedded. A
variation on this would have been if we wanted to maybe use the "DEVICE_IP_ADDR" as the other
part of the primary key, in which case the "ADPT_PK_IDX" would not be needed. You would specify
this as follows

 <field name="devices" persistence-modifier="persistent" table="NETWORK_DEVICES">

 <collection element-type="com.mydomain.samples.embedded.Device"/>

 <join>

 <primary-key name="NETWORK_DEV_PK">

 <column name="NETWORK_ID"/>

 <column name="DEVICE_IP_ADDR"/>

 </primary-key>

 <column name="NETWORK_ID"/>

 </join>

 <element>

 <embedded>

 <field name="name">

 <column name="DEVICE_NAME" allows-null="true"/>

 </field>

 <field name="ipAddress">

 <column name="DEVICE_IP_ADDR" allows-null="true"/>

 </field>

 </embedded>

 </element>

 </field>

This results in the join table only having the columns "NETWORK_ID", "DEVICE_IP_ADDR",
and "DEVICE_NAME", and having a primary key as the composite of "NETWORK_ID" and
"DEVICE_IP_ADDR".

See also :-

• MetaData reference for <embedded> element
• MetaData reference for <element> element
• MetaData reference for <join> element
• Annotations reference for @Embedded
• Annotations reference for @Element

53.1.4 Embedding Map Keys/Values

Applicable to RDBMS, MongoDB

In a typical 1-N map relationship between classes, the classes in the relationship are persisted to their
own table, and a join table forms the map linkage. With JDO and DataNucleus you have a variation
on the join table relation where you can persist either the key class or the value class, or both key class
and value class into the join table. This is supported in DataNucleus with the following provisos

• You can have inheritance in embedded keys/values and a discriminator is added (you must
define the discriminator in the metadata of the embedded type).

5 3 E m b e d d e d F i e l d s 251

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• When retrieving embedded keys/values, all fields are retrieved in one call. That is, fetch plans
are not utilised. This is because the embedded key/value has no identity so we have to retrieve all
initially.

It should be noted that where the map "key"/"value" is not persistable or of a "reference" type
(Interface or Object) it will always be embedded, and this functionality here applies to persistable
keys/values only. DataNucleus doesn't support embedding reference type elements currently.

Let's take an example. We are modelling a FilmLibrary, and in our simple model our FilmLibrary
has map of Films, keyed by a String alias. So we define our classes as

public class FilmLibrary

{

 private String owner;

 private Map<String, Film> films = new HashMap();

 public FilmLibrary(String owner)

 {

 this.owner = owner;

 }

 ...

}

public class Film

{

 private String name;

 private String director;

 public Film(String name, String director)

 {

 this.name = name;

 this.director = director;

 }

 ...

}

We decide that instead of Film having its own table, we want to persist them into the join table of its
map relationship with the FilmLibrary since they are only used by the library itself. We define our
MetaData like this

5 3 E m b e d d e d F i e l d s 252

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="com.mydomain.samples.embedded">

 <class name="FilmLibrary" identity-type="datastore" table="FILM_LIBRARY">

 <field name="owner">

 <column name="OWNER" length="40" jdbc-type="VARCHAR"/>

 </field>

 <field name="films" persistence-modifier="persistent" table="FILM_LIBRARY_FILMS">

 <map/>

 <join>

 <column name="FILM_LIBRARY_ID"/>

 </join>

 <key>

 <column name="FILM_ALIAS"/>

 </key>

 <value>

 <embedded>

 <field name="name">

 <column name="FILM_NAME"/>

 </field>

 <field name="director">

 <column name="FILM_DIRECTOR" allows-null="true"/>

 </field>

 </embedded>

 </value>

 </field>

 </class>

 <class name="Film" embedded-only="true">

 <field name="name"/>

 <field name="director"/>

 </class>

 </package>

</jdo>

So here we will end up with a table called "FILM_LIBRARY" with columns "FILM_LIBRARY_ID",
and "OWNER", and a table called "FILM_LIBRARY_FILMS" with columns
"FILM_LIBRARY_ID", "FILM_ALIAS", "FILM_NAME", "FILM_DIRECTOR". When we persist a
FilmLibrary object, any films are persisted into the FILM_LIBRARY_FILMS table.

Please note that if, instead of specifying the <embedded> block we had specified embedded-key
of embedded-value in the map element we would have ended up with the same thing, just that the
fields and columns would be mapped using their default mappings, and that the <embedded> provides
control over how they are mapped.

5 3 E m b e d d e d F i e l d s 253

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

See also :-

• MetaData reference for <embedded> element
• MetaData reference for <key> element
• MetaData reference for <value> element
• MetaData reference for <join> element
• Annotations reference for @Embedded
• Annotations reference for @Key
• Annotations reference for @Value

5 4 S e r i a l i s e d F i e l d s 254

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

54 Serialised Fields
...

54.1 JDO : Serialising Fields
JDO provides a way for users to specify that a field will be persisted serialised. This is of use, for
example, to collections/maps/arrays which typically are stored using join tables or foreign-keys to
other records. By specifying that a field is serialised a column will be added to store that field and the
field will be serialised into it.

JDO's definition of serialising encompasses several types of fields. These are described below

• Serialised Array fields - where you want to serialise the array into a single "BLOB" column.
• Serialised Collection fields - where you want to serialise the collection into a single "BLOB"

column.
• Serialised Collection elements - where you want to serialise the collection elements into a single

column in a join table.
• Serialised Map fields - where you want to serialise the map into a single "BLOB" column
• Serialised Map keys/values - where you want to serialise the map keys and/or values into single

column(s) in a join table.
• Serialised persistable fields - where you want to serialise a PC object into a single "BLOB"

column.
• Serialised Reference (Interface/Object) fields - where you want to serialise a reference field into

a single "BLOB" column.
• Serialised field to local disk - not part of the JDO spec but available as an option for RDBMS

datastores usage
Perhaps the most important thing to bear in mind when deciding to serialise a field is that that object
must implement java.io.Serializable.

54.1.1 Serialised Collections

Applicable to RDBMS, HBase, MongoDB

Collections are usually persisted by way of either a join table, or by use of a foreign-key in the
element table. In some situations it is required to store the whole collection in a single column in the
table of the class being persisted. This prohibits the querying of such a collection, but will persist the
collection in a single statement. Let's take an example. We have the following classes

and we want the animals collection to be serialised into a single column in the table storing the Farm
class, so we define our MetaData like this

5 4 S e r i a l i s e d F i e l d s 255

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Farm" table="FARM">

 <datastore-identity column="ID"/>

 <field name="name" column="NAME"/>

 <field name="animals" serialized="true">

 <collection element-type="Animal"/>

 <column name="ANIMALS"/>

 </field>

</class>

<class name="Animal">

 <field name="name"/>

 <field name="type"/>

</class>

So we make use of the serialized attribute of <field>. This specification results in a table like this

Provisos to bear in mind are
• Queries cannot be performed on collections stored as serialised.

There are some other combinations of MetaData tags that result in serialising of the whole collection
in the same way. These are as follows

• Collection of non- persistable elements, and no <join> is specified. Since the elements don't
have a table of their own, the only option is to serialise the whole collection and it appears as a
single BLOB field in the table of the main class.

• Collection of persistable elements, with "embedded-element" set to true and no <join> is
specified. Since the elements are embedded and there is no join table, then the whole collection
is serialised as above.

See also :-
• MetaData reference for <field> element
• Annotations reference for @Persistent
• Annotations reference for @Serialized

54.1.2 Serialised Collection Elements

Applicable to RDBMS

Collections are usually persisted by way of either a join table, or by use of a foreign-key in the
element table. In some situations you may want to serialise the element into a single column in the
join table. Let's take an example. We have the same classes as in the previous case and we want the
animals collection to be stored in a join table, and the element serialised into a single column storing
the "Animal" object. We define our MetaData like this

5 4 S e r i a l i s e d F i e l d s 256

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Farm" table="FARM">

 <datastore-identity column="ID"/>

 <field name="name">

 <column name="NAME"/>

 </field>

 <field name="animals" table="FARM_ANIMALS">

 <collection element-type="Animal" serialised-element="true"/>

 <join column="FARM_ID_OID"/>

 </field>

</class>

<class name="Animal">

 <field name="name"/>

 <field name="type"/>

</class>

So we make use of the serialized-element attribute of <collection>. This specification results in tables
like this

Provisos to bear in mind are

• Queries cannot be performed on collection elements stored as serialised.
See also :-

• MetaData reference for <collection> element
• MetaData reference for <join> element
• Annotations reference for @Element

54.1.3 Serialised Maps

Applicable to RDBMS, HBase, MongoDB

Maps are usually persisted by way of a join table, or very occasionaly using a foreign-key in the value
table. In some situations it is required to store the whole map in a single column in the table of the
class being persisted. This prohibits the querying of such a map, but will persist the map in a single
statement. Let's take an example. We have the following classes

5 4 S e r i a l i s e d F i e l d s 257

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

and we want the children map to be serialised into a single column in the table storing the ClassRoom
class, so we define our MetaData like this

<class name="ClassRoom">

 <field name="level">

 <column name="LEVEL"/>

 </field>

 <field name="children" serialized="true">

 <map key-type="java.lang.String" value-type="Child"/>

 <column name="CHILDREN"/>

 </field>

</class>

<class name="Child"/>

So we make use of the serialized attribute of <field>. This specification results in a table like this

Provisos to bear in mind are

• Queries cannot be performed on maps stored as serialised.
There are some other combinations of MetaData tags that result in serialising of the whole map in the
same way. These are as follows

• Map<non- persistable, non- persistable>, and no <join> is specified. Since the keys/values
don't have a table of their own, the only option is to serialise the whole map and it appears as a
single BLOB field in the table of the main class.

• Map<non- persistable, persistable>, with "embedded-value" set to true and no <join> is
specified. Since the keys/values are embedded and there is no join table, then the whole map is
serialised as above.

See also :-

• MetaData reference for <map> element
• Annotations reference for @Key
• Annotations reference for @Value
• Annotations reference for @Serialized

5 4 S e r i a l i s e d F i e l d s 258

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

54.1.4 Serialised Map Keys/Values

Applicable to RDBMS

Maps are usually persisted by way of a join table, or very occasionaly using a foreign-key in the value
table. In the join table case you have the option of serialising the keys and/or the values each into a
single (BLOB) column in the join table. This is performed in a similar way to serialised elements for
collections, but this time using the "serialized-key", "serialized-value" attributes. We take the example
in the previous section, with "a classroom of children" and the children stored in a map field. This
time we want to serialise the child object into the join table of the map

<class name="ClassRoom">

 <field name="level">

 <column name="LEVEL"/>

 </field>

 <field name="children" table="CLASS_CHILDREN">

 <map key-type="java.lang.String" value-type="Child" serialized-value="true"/>

 <join column="CLASSROOM_ID"/>

 <key column="ALIAS"/>

 <value column="CHILD"/>

 </field>

</class>

<class name="Child"/>

So we make use of the serialized-value attribute of <map>. This results in a schema like this

Provisos to bear in mind are

• Queries cannot be performed on map keys/values stored as serialised.
See also :-

• MetaData reference for <map> element
• MetaData reference for <join> element
• MetaData reference for <key> element
• MetaData reference for <value> element
• Annotations reference for @Key
• Annotations reference for @Value

54.1.5 Serialised persistable Fields

Applicable to RDBMS, HBase, MongoDB

5 4 S e r i a l i s e d F i e l d s 259

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

A field that is a persistable object is typically stored as a foreign-key relation between the container
object and the contained object. In some situations it is not necessary that the contained object has
an identity of its own, and for efficiency of access the contained object is required to be stored in a
BLOB column in the containing object's datastore table. Let's take an example. We have the following
classes

and we want the teacher object to be serialised into a single column in the table storing the
ClassRoom class, so we define our MetaData like this

<class name="ClassRoom">

 <field name="level">

 <column name="LEVEL"/>

 </field>

 <field name="teacher" serialized="true">

 <column name="TEACHER"/>

 </field>

</class>

So we make use of the serialized attribute of <field>. This specification results in a table like this

Provisos to bear in mind are

• Queries cannot be performed on persistable objects stored as serialised.

54.1.6 Serialised Reference (Interface/Object) Fields

Applicable to RDBMS

A reference (Interface/Object) field is typically stored as a foreign-key relation between the container
object and the contained implementation of the reference. In some situations it is not necessary that
the contained object has an identity of its own, and for efficiency of access the contained object
is required to be stored in a BLOB column in the containing object's datastore table. Let's take an
example using an interface field. We have the following classes

5 4 S e r i a l i s e d F i e l d s 260

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

and we want the teacher object to be serialised into a single column in the table storing the
ClassRoom class, so we define our MetaData like this

<class name="ClassRoom">

 <field name="level">

 <column name="LEVEL"/>

 </field>

 <field name="teacher" serialized="true">

 <column name="TEACHER"/>

 </field>

</class>

<class name="Teacher">

</class>

So we make use of the serialized attribute of <field>. This specification results in a table like this

Provisos to bear in mind are

• Queries cannot be performed on Reference (Interface/Object) fields stored as serialised.
See also :-

• MetaData reference for <implements> element
• Annotations reference for @Serialized

5 4 S e r i a l i s e d F i e l d s 261

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

54.1.7 Serialised Field to Local File

Applicable to RDBMS

If you have a non-relation field that implements Serializable you have the option of serialising it into
a file on the local disk. This could be useful where you have a large file and don't want to persist very
large objects into your RDBMS. Obviously this will mean that the field is no longer queryable, but
then if its a large file you likely don't care about that. So let's give an example

@PersistenceCapable

public class Person

{

 @PrimaryKey

 long id;

 @Persistent

 @Extension(vendorName="datanucleus", key="serializeToFileLocation"

 value="person_avatars")

 AvatarImage image;

}

Or using XML

<class name="Person">

 ...

 <field name="image" persistence-modifier="persistent">

 <extension vendor-name="datanucleus" key="serializeToFileLocation"

 value="person_avatars"/>

 </field>

</class>

So this will now persist a file into a folder person_avatars with filename as the String form of the
identity of the owning object. In a real world example you likely will specify the extension value as an
absolute path name, so you can place it anywhere in the local disk.

5 5 I n t e r f a c e F i e l d s 262

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

55 Interface Fields
...

55.1 JDO : Interface Fields
JDO requires that implementations support the persistence of interfaces as first class objects (FCO's).
DataNucleus provides this capability. It follows the same general process as for java.lang.Object
since both interfaces and java.lang.Object are basically references to some persistable object.

To demonstrate interface handling let's introduce some classes. Let's suppose you have an interface
with a selection of classes implementing the interface something like this

You then have a class that contains an object of this interface type

public class ShapeHolder

{

 protected Shape shape=null;

 ...

}

JDO doesn't define how an interface is persisted in the datastore. Obviously there can be many
implementations and so no obvious solution. DataNucleus allows the following

• per-implementation : a FK is created for each implementation so that the datastore can provide
referential integrity. The other advantage is that since there are FKs then querying can be
performed. The disadvantage is that if there are many implementations then the table can become
large with many columns not used

• identity : a single column is added and this stores the class name of the implementation
stored, as well as the identity of the object. The advantage is that if you have large numbers
of implementations then this can cope with no schema change. The disadvantages are that no
querying can be performed, and that there is no referential integrity.

• xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

The user controls which one of these is to be used by specifying the extension mapping-strategy on
the field containing the interface. The default is "per-implementation"

5 5 I n t e r f a c e F i e l d s 263

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In terms of the implementations of the interface, you can either leave the field to accept any
known about implementation, or you can restrict it to only accept some implementations (see
"implementation-classes" metadata extension). If you are leaving it to accept any persistable
implementation class, then you need to be careful that such implementations are known to
DataNucleus at the point of encountering the interface field. By this we mean, DataNucleus has to
have encountered the metadata for the implementation so that it can allow for the implementation
when handling the field. You can force DataNucleus to know about a persistable class by using an
autostart mechanism, or using persistence.xml, or by placement of the package.jdo file so that when
the owning class for the interface field is encountered so is the metadata for the implementations.

55.1.1 1-1

To allow persistence of this interface field with DataNucleus you have 2 levels of control. The first
level is global control. Since all of our Square, Circle, Rectangle classes implement Shape then we
just define them in the MetaData as we would normally.

<package name="mydomain">

 <class name="Square">

 ...

 </class>

 <class name="Circle">

 ...

 </class>

 <class name="Rectangle">

 ...

 </class>

</package>

The global way means that when mapping that field DataNucleus will look at all persistable classes it
knows about that implement the specified interface.

JDO also allows users to specify a list of classes implementing the interface on a field-by-field basis,
defining which of these implementations are accepted for a particular interface field. To do this you
define the Meta-Data like this

<package name="mydomain">

 <class name="ShapeHolder">

 <field name="shape" persistence-modifier="persistent"

 field-type="mydomain.Circle,mydomain.Rectangle,mydomain.Square"/>

</class>

That is, for any interface object in a class to be persisted, you define the possible implementation
classes that can be stored there. DataNucleus interprets this information and will map the above
example classes to the following in the database

5 5 I n t e r f a c e F i e l d s 264

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So DataNucleus adds foreign keys from the containers table to all of the possible implementation
tables for the shape field.

If we use mapping-strategy of "identity" then we get a different datastore schema.

 <class name="ShapeHolder">

 <field name="shape" persistence-modifier="persistent">

 <extension vendor-name="datanucleus" key="mapping-strategy" value="identity"/>

 </field>

 </class>

and the datastore schema becomes

and the column "SHAPE" will contain strings such as mydomain.Circle:1 allowing retrieval of the
related implementation object.

5 5 I n t e r f a c e F i e l d s 265

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

55.1.2 1-N

You can have a Collection/Map containing elements of an interface type. You specify this in the same
way as you would any Collection/Map. You can have a Collection of interfaces as long as you use
a join table relation and it is unidirectional. The "unidirectional" restriction is that the interface
is not persistent on its own and so cannot store the reference back to the owner object. Use the 1-N
relationship guides for the metadata definition to use.

You need to use a DataNucleus extension tag "implementation-classes" if you want to restrict the
collection to only contain particular implementations of an interface. For example

<class name="ShapeHolder">

 <field name="shapes" persistence-modifier="persistent">

 <collection element-type="mydomain.Shape"/>

 <join/>

 <extension vendor-name="datanucleus" key="implementation-classes"

 value="mydomain.Circle,mydomain.Rectangle,mydomain.Square,mydomain.Triangle"/>

 </field>

</class>

So the shapes field is a Collection of mydomain.Shape and it will accept the implementations of type
Circle, Rectangle, Square and Triangle. If you omit the implementation-classes tag then you have
to give DataNucleus a way of finding the metadata for the implementations prior to encountering this
field.

55.1.3 Dynamic Schema Updates

The default mapping strategy for interface fields and collections of interfaces is to have
separate FK column(s) for each possible implementation of the interface. Obviously if you
have an application where new implementations are added over time the schema will need
new FK column(s) adding to match. This is possible if you enable the persistence property
datanucleus.rdbms.dynamicSchemaUpdates, setting it to true. With this set, any insert/update
operation of an interface related field will do a check if the implementation being stored is known
about in the schema and, if not, will update the schema accordingly.

5 6 O b j e c t F i e l d s 266

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

56 Object Fields
...

56.1 JDO : Fields of type java.lang.Object
JDO requires that implementations support the persistence of java.lang.Object as first class objects
(FCO's). DataNucleus provides this capability and also provides that java.lang.Object can be
stored as serialised. It follows the same general process as for Interfaces since both interfaces and
java.lang.Object are basically references to some persistable object.

java.lang.Object cannot be used to persist non-persistable types with fixed schema datastore (e.g
RDBMS). Think of how you would expect it to be stored if you think it ought to

JDO doesn't define how an object FCO is persisted in the datastore. Obviously there can be many
"implementations" and so no obvious solution. DataNucleus allows the following

• per-implementation : a FK is created for each "implementation" so that the datastore can
provide referential integrity. The other advantage is that since there are FKs then querying can be
performed. The disadvantage is that if there are many implementations then the table can become
large with many columns not used

• identity : a single column is added and this stores the class name of the "implementation" stored,
as well as the identity of the object. The disadvantages are that no querying can be performed,
and that there is no referential integrity.

• xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

The user controls which one of these is to be used by specifying the extension mapping-strategy on
the field containing the interface. The default is "per-implementation"

56.1.1 FCO

Let's suppose you have a field in a class and you have a selection of possible persistable class that
could be stored there, so you decide to make the field a java.lang.Object. So let's take an example. We
have the following class

public class ParkingSpace

{

 String location;

 Object occupier;

}

So we have a space in a car park, and in that space we have an occupier of the space. We have
some legacy data and so can't make the type of this "occupier" an interface type, so we just use
java.lang.Object. Now we know that we can only have particular types of objects stored there (since
there are only a few types of vehicle that can enter the car park). So we define our MetaData like this

5 6 O b j e c t F i e l d s 267

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="mydomain.samples.object">

 <class name="ParkingSpace">

 <field name="location"/>

 <field name="occupier" persistence-modifier="persistent"

 field-type="mydomain.samples.vehicles.Car,

 mydomain.samples.vehicles.Motorbike"/>

 </field>

</class>

or using annotations

@Persistent(types={mydomain.samples.vehicles.Car.class, mydomain.samples.vehicles.Motorbike.class})

Object occupier;

This will result in the following database schema.

So DataNucleus adds foreign keys from the ParkingSpace table to all of the possible implementation
tables for the occupier field.

In conclusion, when using "per-implementation" mapping for any java.lang.Object field in a class to
be persisted (as non-serialised), you must define the possible "implementation" classes that can be
stored there.

If we use mapping-strategy of "identity" then we get a different datastore schema.

 <class name="ParkingSpace">

 <field name="location"/>

 <field name="occupier" persistence-modifier="persistent">

 <extension vendor-name="datanucleus" key="mapping-strategy" value="identity"/>

 </field>

 </class>

and the datastore schema becomes

5 6 O b j e c t F i e l d s 268

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

and the column "OCCUPIER" will contain strings such as com.mydomain.samples.object.Car:1
allowing retrieval of the related implementation object.

56.1.2 Collections of Objects

You can have a Collection/Map containing elements of java.lang.Object. You specify this in the same
way as you would any Collection/Map. DataNucleus supports having a Collection of references with
multiple implementation types as long as you use a join table relation.

56.1.3 Serialised Objects

By default a field of type java.lang.Object is stored as an instance of the underlying persistable in the
table of that object. If either your Object field represents non-persistable objects or you simply wish
to serialise the Object into the same table as the owning object, you need to specify the "serialized"
attribute, like this

<class name="MyClass">

 <field name="myObject" serialized="true"/>

</class>

Similarly, where you have a collection of Objects using a join table, the objects are, by default, stored
in the table of the persistable instance. If instead you want them to occupy a single BLOB column of
the join table, you should specify the "embedded-element" attribute of <collection> like this

<class name="MyClass">

 <field name="myCollection">

 <collection element-type="java.lang.Object" serialized-element="true"/>

 <join/>

 </field>

</class>

Please refer to the serialised fields guide for more details of storing objects in this way.

5 7 A r r a y F i e l d s 269

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

57 Array Fields
...

57.1 JDO : Array fields
JDO allows implementations to optionally support the persistence of arrays. DataNucleus provides
full support for arrays in similar ways that collections are supported. DataNucleus supports persisting
arrays as

• Single Column - the array is byte-streamed into a single column in the table of the containing
object.

• Serialised - the array is serialised into single column in the table of the containing object.
• Using a Join Table - where the array relation is persisted into the join table, with foreign-key

links to an element table where the elements of the array are persistable
• Using a Foreign-Key in the element - only available where the array is of a persistable type

JDO has no simple way of detecting changes to an arrays contents. To update an array you must either

• replace the array field with the new array value

• update the array element and then call JDOHelper.makeDirty(obj, "fieldName");

57.1.1 Single Column Arrays

Let's suppose you have a class something like this

So we have an Account and it has a number of permissions, each expressed as a byte. We want
to persist the permissions in a single-column into the table of the account (but we don't want them
serialised). We then define MetaData something like this

<class name="Account" identity-type="datastore">

 <field name="firstName">

 <column name="FIRST_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="lastName">

 <column column="LAST_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="permissions" column="PERMISSIONS"/>

</class>

You could have added <array> to be explicit but the type of the field is an array, and the type
declaration also defines the component type so nothing more is needed. This results in a datastore
schema as follows

5 7 A r r a y F i e l d s 270

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

DataNucleus supports persistence of the following array types in this way : boolean[], byte[], char[],
double[], float[], int[], long[], short[], Boolean[], Byte[], Character[], Double[], Float[], Integer[],
Long[], Short[], BigDecimal[], BigInteger[]

See also :-

• MetaData reference for <array> element
• Annotations reference for @Element

57.1.2 Serialised Arrays

Let's suppose you have a class something like this

So we have an Account and it has a number of permissions, each expressed as a byte. We want to
persist the permissions as serialised into the table of the account. We then define MetaData something
like this

<class name="Account" identity-type="datastore">

 <field name="firstName">

 <column name="FIRST_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="lastName">

 <column column="LAST_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="permissions" serialized="true" column="PERMISSIONS"/>

</class>

That is, you define the field as serialized. To define arrays of short, long, int, or indeed any other
supported array type you would do the same as above. This results in a datastore schema as follows

5 7 A r r a y F i e l d s 271

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

DataNucleus supports persistence of many array types in this way, including : boolean[], byte[],
char[], double[], float[], int[], long[], short[], Boolean[], Byte[], Character[], Double[], Float[],
Integer[], Long[], Short[], BigDecimal[], BigInteger[], String[], java.util.Date[], java.util.Locale[]

See also :-

• MetaData reference for <field> element
• MetaData reference for <array> element
• Annotations reference for @Persistent
• Annotations reference for @Element
• Annotations reference for @Serialized

57.1.3 Arrays persisted into Join Tables

DataNucleus will support arrays persisted into a join table. Let's take the example above and make the
"permission" a class in its own right, so we have

So an Account has an array of Permissions, and both of these objects are persistable. We want to
persist the relationship using a join table. We define the MetaData as follows

5 7 A r r a y F i e l d s 272

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Account" table="ACCOUNT">

 <field name="firstName">

 <column name="FIRST_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="lastName">

 <column column="LAST_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="permissions" table="ACCOUNT_PERMISSIONS">

 <array/>

 <join column="ACCOUNT_ID"/>

 <element column="PERMISSION_ID"/>

 <order column="PERMISSION_ORDER_IDX"/>

 </field>

</class>

<class name="Permission" table="PERMISSION">

 <field name="name"/>

</class>

This results in a datastore schema as follows

See also :-

• MetaData reference for <array> element
• MetaData reference for <element> element
• MetaData reference for <join> element
• MetaData reference for <order> element
• Annotations reference for @Element
• Annotations reference for @Order

57.1.4 Arrays persisted using Foreign-Keys

DataNucleus will support arrays persisted via a foreign-key in the element table. This is only
applicable when the array is of a persistable type. Let's take the same example above. So we have

So an Account has an array of Permissions, and both of these objects are persistable. We want
to persist the relationship using a foreign-key in the table for the Permission class. We define the
MetaData as follows

5 7 A r r a y F i e l d s 273

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Account" table="ACCOUNT">

 <field name="firstName">

 <column name="FIRST_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="lastName">

 <column column="LAST_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="permissions">

 <array/>

 <element column="ACCOUNT_ID"/>

 <order column="ACCOUNT_PERMISSION_ORDER_IDX"/>

 </field>

</class>

<class name="Permission" table="PERMISSION">

 <field name="name"/>

</class>

This results in a datastore schema as follows

See also :-

• MetaData reference for <array> element
• MetaData reference for <element> element
• MetaData reference for <order> element
• Annotations reference for @Element
• Annotations reference for @Order

5 8 1 - t o - 1 R e l a t i o n s 274

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

58 1-to-1 Relations
...

58.1 JDO : 1-1 Relationships
You have a 1-to-1 relationship when an object of a class has an associated object of another class
(only one associated object). It could also be between an object of a class and another object of the
same class (obviously). You can create the relationship in 2 ways depending on whether the 2 classes
know about each other (bidirectional), or whether only one of the classes knows about the other class
(unidirectional). These are described below.

The various possible relationships are described below.

• 1-1 Unidirectional (where only 1 object is aware of the other)
• 1-1 Bidirectional (where both objects are aware of each other)
• 1-1 Unidirectional "Compound Identity" (object as part of PK in other object)

For RDBMS a 1-1 relation is stored as a foreign-key column(s). For non-RDBMS it is stored as
a String "column" storing the 'id' (possibly with the class-name included in the string) of the
related object.

58.1.1 Unidirectional

For this case you could have 2 classes, User and Account, as below.

so the Account class knows about the User class, but not vice-versa. If you define the XML metadata
for these classes as follows

5 8 1 - t o - 1 R e l a t i o n s 275

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="mydomain">

 <class name="User" table="USER">

 <field name="id" primary-key="true">

 <column name="USER_ID"/>

 </field>

 ...

 </class>

 <class name="Account" table="ACCOUNT">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="user">

 <column name="USER_ID"/>

 </field>

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Column(name="USER_ID")

 User user;

}

public class User

{

 ...

}

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT and a column USER_ID), as shown below.

Things to note :-

• Account has the object reference (and so owns the relation) to User and so its table holds the
foreign-key

• If you call PM.deletePersistent() on the end of a 1-1 unidirectional relation without the relation
and that object is related to another object, an exception will typically be thrown (assuming

5 8 1 - t o - 1 R e l a t i o n s 276

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

the RDBMS supports foreign keys). To delete this record you should remove the other objects
association first.

• If you invoke an operation that will retrieve the one-to-one field, and you only want it to get the
foreign key value (and not join to the related table) you can add the metadata extension fetch-fk-
only (set to "true") to the field/property.

58.1.2 Bidirectional

For this case you could have 2 classes, User and Account again, but this time as below. Here the
Account class knows about the User class, and also vice-versa.

Here we create the 1-1 relationship with a single foreign-key. To do this you define the XML
metadata as

<package name="mydomain">

 <class name="User" table="USER">

 <field name="id" primary-key="true">

 <column name="USER_ID"/>

 </field>

 ...

 <field name="account" mapped-by="user"/>

 </class>

 <class name="Account" table="ACCOUNT">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="user">

 <column name="USER_ID"/>

 </field>

 </class>

</package>

or alternatively using annotations

5 8 1 - t o - 1 R e l a t i o n s 277

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @Column(name="USER_ID")

 User user;

}

public class User

{

 ...

 @Persistent(mappedBy="user")

 Account account;

}

The difference is that we added mapped-by to the field of User. This represents the bidirectionality.

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT). With RDBMS the ACCOUNT table will have a column USER_ID (since RDBMS
will place the FK on the side without the "mapped-by"). Like this

With non-RDBMS datastores both tables will have a column containing the "id" of the related object,
that is USER will have an ACCOUNT column, and ACCOUNT will have a USER_ID column.

Things to note :-

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

• If you invoke an operation that will retrieve the one-to-one field (of the non-owner side), and
you only want it to get the foreign key value (and not join to the related table) you can add the
metadata extension fetch-fk-only (set to "true") to the field/property.

58.1.3 Embedded

The above 2 relationship types assume that both classes in the 1-1 relation will have their own table.
You can, of course, embed the elements of one class into the table of the other. This is described in
Embedded PC Objects.

5 9 1 - t o - N R e l a t i o n s 278

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

59 1-to-N Relations
...

59.1 JDO : 1-N Relationships
You have a 1-N (one to many) when you have one object of a class that has a Collection/Map of
objects of another class. In the java.util package there are an assortment of possible collection/
map classes and they all have subtly different behaviour with respect to allowing nulls, allowing
duplicates, providing ordering, etc. There are two ways in which you can represent a collection
or map in a datastore : Join Table (where a join table is used to provide the relationship mapping
between the objects), and Foreign-Key (where a foreign key is placed in the table of the object
contained in the collection or map.

We split our documentation based on what type of collection/map you are using.

• 1-N using Collection types
• 1-N using Set types
• 1-N using List type
• 1-N using Map type

6 0 C o l l e c t i o n s 279

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

60 Collections
...

60.1 JDO : 1-N Relationships with Collections
You have a 1-N (one to many) or N-1 (many to one) when you have one object of a class that has a
Collection of objects of another class. Please note that Collections allow duplicates, and so the
persistence process reflects this with the choice of primary keys. There are two ways in which you
can represent this in a datastore : Join Table (where a join table is used to provide the relationship
mapping between the objects), and Foreign-Key (where a foreign key is placed in the table of the
object contained in the Collection.

The various possible relationships are described below.

• 1-N Unidirectional using Join Table
• 1-N Unidirectional using Foreign-Key
• 1-N Bidirectional using Join Table
• 1-N Bidirectional using Foreign-Key
• 1-N Unidirectional of non-PC using Join Table
• 1-N embedded elements using Join Table
• 1-N Serialised collection
• 1-N using shared join table (DataNucleus Extension)
• 1-N using shared foreign key (DataNucleus Extension)
• 1-N Bidirectional "Compound Identity" (owner object as part of PK in element)

Important : If you declare a field as a Collection, you can instantiate it as either Set-based
or as List-based. With a List an "ordering" column is required, whereas with a Set it isn't.
Consequently DataNucleus needs to know if you plan on using it as Set-based or List-based.
You do this by adding an "order" element to the field if it is to be instantiated as a List-based
collection. If there is no "order" element, then it will be assumed to be Set-based.

Please note that RDBMS supports the full range of options on this page, whereas other
datastores (ODF, Excel, HBase, MongoDB, etc) persist the Collection in a column in the owner
object (as well as a column in the non-owner object when bidirectional) rather than using join-
tables or foreign-keys since those concepts are RDBMS-only.

60.1.1 equals() and hashCode()

Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to determine
equality and whether an element is contained in the Collection. Note also that the hashCode() should
be consistent throughout the lifetime of a persistable object. By that we mean that it should not
use some basis before persistence and then use some other basis (such as the object identity) after
persistence, for this reason we do not recommend usage of JDOHelper.getObjectId(obj) in the equals/
hashCode methods.

60.2 1-N Collection Unidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Collection of objects of type Address, yet each Address knows nothing about the Account
objects that it relates to. Like this

6 0 C o l l e c t i o n s 280

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

There are 2 ways that we can persist this relationship. These are shown below

60.2.1 Using Join Table

If you define the XML metadata for these classes as follows

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses" table="ACCOUNT_ADDRESSES">

 <collection element-type="com.mydomain.Address"/>

 <join column="ACCOUNT_ID_OID"/>

 <element column="ADDRESS_ID_EID"/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 </class>

</package>

or alternatively using annotations

6 0 C o l l e c t i o n s 281

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @Persistent(table="ACCOUNT_ADDRESSES")

 @Join(column="ACCOUNT_ID_OID")

 @Element(column="ADDRESS_ID_EID")

 Collection<Address> addresses;

}

public class Address

{

 ...

}

The crucial part is the join element on the field element - this signals to JDO to use a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as shown
below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element with the
collection.

• To specify the names of the join table columns, use the column attribute of join, element
elements.

• To specify the foreign-key between container table and join table, specify <foreign-key> below
the <join> element.

• To specify the foreign-key between join table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

• If you wish to share the join table with another relation then use the DataNucleus "shared join
table" extension

• The join table will, by default, be given a primary key. If you want to omit this then you can turn
it off using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

• The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You
can control this by adding an <order> element and specifying the column name for the order
column (within <field>).

6 0 C o l l e c t i o n s 282

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• If you want the set to include nulls, you can turn on this behaviour by adding the DataNucleus
extension metadata "allow-nulls" to the <field> set to true

60.2.2 Using Foreign-Key

In this relationship, the Account class has a List of Address objects, yet the Address knows nothing
about the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
XML metadata like this

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses">

 <collection element-type="com.mydomain.Address"/>

 <element column="ACCOUNT_ID"/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Element(column="ACCOUNT_ID")

 Collection<Address> addresses;

}

public class Address

{

 ...

}

Again there will be 2 tables, one for Address, and one for Account. Note that we have no "mapped-
by" attribute specified, and also no "join" element. If you wish to specify the names of the columns
used in the schema for the foreign key in the Address table you should use the element element
within the field of the collection.

6 0 C o l l e c t i o n s 283

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account collection field since the Address knows
nothing about the Account.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the foreign-key between container table and element table, specify <foreign-key>
below either the <field> element or the <element> element.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this
mode of persistence will not allow duplicate values in the Collection. If you want to allow duplicate
Collection entries, then use the "Join Table" variant above.

60.3 1-N Collection Bidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Collection of objects of type Address, and each Address has a reference to the Account
object that it relates to. Like this

There are 2 ways that we can persist this relationship. These are shown below

60.3.1 Using Join Table

If you define the XML metadata for these classes as follows

6 0 C o l l e c t i o n s 284

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses" mapped-by="account">

 <collection element-type="com.mydomain.Address"/>

 <join/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 <field name="account"/>

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Persistent(mappedBy="account")

 @Join

 Collection<Address> addresses;

}

public class Address

{

 ...

}

The crucial part is the join element on the field element - this signals to JDO to use a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as shown
below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

6 0 C o l l e c t i o n s 285

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element with the
collection.

• To specify the names of the join table columns, use the column attribute of join, element
elements.

• To specify the foreign-key between container table and join table, specify <foreign-key> below
the <join> element.

• To specify the foreign-key between join table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

• If you wish to share the join table with another relation then use the DataNucleus "shared join
table" extension

• The join table will, by default, be given a primary key. If you want to omit this then you can turn
it off using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

• The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You
can control this by adding an <order> element and specifying the column name for the order
column (within <field>).

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

• If you want the set to include nulls, you can turn on this behaviour by adding the extension
metadata "allow-nulls" to the <field> set to true

60.3.2 Using Foreign-Key

Here we have the 2 classes with both knowing about the relationship with the other.

If you define the XML metadata for these classes as follows

6 0 C o l l e c t i o n s 286

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses" mapped-by="account">

 <collection element-type="com.mydomain.Address"/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 <field name="account">

 <column name="ACCOUNT_ID"/>

 </field>

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Persistent(mappedBy="account")

 Collection<Address> addresses;

}

public class Address

{

 ...

}

The crucial part is the mapped-by on the "1" side of the relationship. This tells the JDO implementation to look
for a field called account on the Address class.

This will create 2 tables in the database, one for Address (including an ACCOUNT_ID to link to the
ACCOUNT table), and one for Account. Notice the subtle difference to this set-up to that of the Join
Table relationship earlier.

6 0 C o l l e c t i o n s 287

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the foreign-key between container table and element table, specify <foreign-key>
below either the <field> element or the <element> element.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this
mode of persistence will not allow duplicate values in the Collection. If you want to allow duplicate
Collection entries, then use the "Join Table" variant above.

60.4 1-N Collection of non-persistable objects

All of the examples above show a 1-N relationship between 2 persistable classes. DataNucleus can
also cater for a Collection of primitive or Object types. For example, when you have a Collection of
Strings. This will be persisted in the same way as the "Join Table" examples above. A join table is
created to hold the collection elements. Let's take our example. We have an Account that stores a
Collection of addresses. These addresses are simply Strings. We define the XML metadata like this

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses" persistence-modifier="persistent">

 <collection element-type="java.lang.String"/>

 <join/>

 <element column="ADDRESS"/>

 </field>

 </class>

or alternatively using annotations

6 0 C o l l e c t i o n s 288

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @Persistent

 @Join

 @Element(column="ADDRESS")

 Collection<String> addresses;

}

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". In our MetaData we
used the <element> tag to specify the column name to use for the actual address String.

Please note that the column ADPT_PK_IDX is added by DataNucleus so that duplicates can be
stored. You can control the name of this column by adding an <order> element and specifying the
column name for the order column (within <field>).

60.5 Embedded into a Join Table
The above relationship types assume that both classes in the 1-N relation will have their own table.
A variation on this is where you have a join table but you embed the elements of the collection into
this join table. To do this you use the embedded-element attribute on the collection MetaData element.
This is described in Embedded Collection Elements.

60.6 Serialised into a Join Table
The above relationship types assume that both classes in the 1-N relation will have their own table.
A variation on this is where you have a join table but you serialise the elements of the collection into
this join table in a single column. To do this you use the serialised-element attribute on the collection
MetaData element. This is described in Serialised Collection Elements

60.7 Shared Join Tables

The relationships using join tables shown above rely on the join table relating to the relation in
question. DataNucleus allows the possibility of sharing a join table between relations. The example
below demonstrates this. We take the example as show above (1-N Unidirectional Join table
relation), and extend Account to have 2 collections of Address records. One for home addresses and
one for work addresses, like this

6 0 C o l l e c t i o n s 289

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="workAddresses" persistence-modifier="persistent" table="ACCOUNT_ADDRESSES">

 <collection element-type="com.mydomain.Address"/>

 <join column="ACCOUNT_ID_OID"/>

 <element column="ADDRESS_ID_EID"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-column" value="ADDRESS_TYPE"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-pk" value="true"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-value" value="work"/>

 </field>

 <field name="homeAddresses" persistence-modifier="persistent" table="ACCOUNT_ADDRESSES">

 <collection element-type="com.mydomain.Address"/>

 <join column="ACCOUNT_ID_OID"/>

 <element column="ADDRESS_ID_EID"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-column" value="ADDRESS_TYPE"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-pk" value="true"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-value" value="home"/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 </class>

</package>

So we have defined the same join table for the 2 collections "ACCOUNT_ADDRESSES", and the
same columns in the join table, meaning that we will be sharing the same join table to represent
both relations. The important step is then to define the 3 DataNucleus extension tags. These define a
column in the join table (the same for both relations), and the value that will be populated when a row
of that collection is inserted into the join table. In our case, all "home" addresses will have a value of
"home" inserted into this column, and all "work" addresses will have "work" inserted. This means we
can now identify easily which join table entry represents which relation field.

This results in the following database schema

6 0 C o l l e c t i o n s 290

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

60.8 Shared Foreign Key

The relationships using foreign keys shown above rely on the foreign key relating to the relation
in question. DataNucleus allows the possibility of sharing a foreign key between relations between
the same classes. The example below demonstrates this. We take the example as show above (1-N
Unidirectional Foreign Key relation), and extend Account to have 2 collections of Address records.
One for home addresses and one for work addresses, like this

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

6 0 C o l l e c t i o n s 291

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="workAddresses" persistence-modifier="persistent">

 <collection element-type="com.mydomain.Address"/>

 <element column="ACCOUNT_ID_OID"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-column" value="ADDRESS_TYPE"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-value" value="work"/>

 </field>

 <field name="homeAddresses" persistence-modifier="persistent">

 <collection element-type="com.mydomain.Address"/>

 <element column="ACCOUNT_ID_OID"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-column" value="ADDRESS_TYPE"/>

 <extension vendor-name="datanucleus" key="relation-discriminator-value" value="home"/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 </class>

</package>

So we have defined the same foreign key for the 2 collections "ACCOUNT_ID_OID", The important
step is then to define the 2 DataNucleus extension tags. These define a column in the element table
(the same for both relations), and the value that will be populated when a row of that collection is
inserted into the element table. In our case, all "home" addresses will have a value of "home" inserted
into this column, and all "work" addresses will have "work" inserted. This means we can now identify
easily which element table entry represents which relation field.

This results in the following database schema

6 1 S e t s 292

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

61 Sets
...

61.1 JDO : 1-N Relationships with Sets
You have a 1-N (one to many) or N-1 (many to one) when you have one object of a class that
has a Set of objects of another class. Please note that Sets do not allow duplicates, and so the
persistence process reflects this with the choice of primary keys. There are two ways in which you
can represent this in a datastore : Join Table (where e join table is used to provide the relationship
mapping between the objects), and Foreign-Key (where a foreign key is placed in the table of the
object contained in the Set.

The various possible relationships are described below.

• 1-N Unidirectional using Join Table
• 1-N Unidirectional using Foreign-Key
• 1-N Bidirectional using Join Table
• 1-N Bidirectional using Foreign-Key
• 1-N Unidirectional of non-PC using Join Table
• 1-N embedded elements using Join Table
• 1-N Serialised Set
• 1-N using shared join table
• 1-N using shared foreign key
• 1-N Bidirectional "Compound Identity" (owner object as part of PK in element)

This page is aimed at Set fields and so applies to fields of Java type java.util.HashSet,
java.util.LinkedHashSet, java.util.Set, java.util.SortedSet, java.util.TreeSet

Please note that RDBMS supports the full range of options on this page, whereas other
datastores (ODF, Excel, HBase, MongoDB, etc) persist the Set in a column in the owner object
(as well as a column in the non-owner object when bidirectional) rather than using join-tables
or foreign-keys since those concepts are RDBMS-only.

61.1.1 equals() and hashCode()

Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to determine
equality and whether an element is contained in the Collection. Note also that the hashCode() should
be consistent throughout the lifetime of a persistable object. By that we mean that it should not
use some basis before persistence and then use some other basis (such as the object identity) after
persistence, for this reason we do not recommend usage of JDOHelper.getObjectId(obj) in the equals/
hashCode methods.

61.2 1-N Set Unidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Set of objects of type Address, yet each Address knows nothing about the Account objects
that it relates to. Like this

6 1 S e t s 293

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

There are 2 ways that we can persist this relationship. These are shown below

61.2.1 Using Join Table

If you define the XML metadata for these classes as follows

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses">

 <collection element-type="com.mydomain.Address"/>

 <join/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 </class>

</package>

or alternatively using annotations

6 1 S e t s 294

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @Join

 Set<Address> addresses;

}

public class Address

{

 ...

}

The crucial part is the join element on the field element - this signals to JDO to use a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as shown
below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element with the
collection.

• To specify the names of the join table columns, use the column attribute of join, element
elements.

• To specify the foreign-key between container table and join table, specify <foreign-key> below
the <join> element.

• To specify the foreign-key between join table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

• If you wish to share the join table with another relation then use the DataNucleus "shared join
table" extension

• The join table will, by default, be given a primary key. If you want to omit this then you can turn
it off using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

• If you want the set to include nulls, you can turn on this behaviour by adding the extension
metadata "allow-nulls" to the <field> set to true

6 1 S e t s 295

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

61.2.2 Using Foreign-Key

In this relationship, the Account class has a List of Address objects, yet the Address knows nothing
about the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
XML metadata like this

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses">

 <collection element-type="com.mydomain.Address"/>

 <element column="ACCOUNT_ID"/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Element(column="ACCOUNT_ID")

 Set<Address> addresses;

}

public class Address

{

 ...

}

Again there will be 2 tables, one for Address, and one for Account. Note that we have no "mapped-
by" attribute specified, and also no "join" element. If you wish to specify the names of the columns
used in the schema for the foreign key in the Address table you should use the element element
within the field of the collection.

6 1 S e t s 296

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In terms of operation within your classes of assigning the objects in the relationship. You have to
take your Account object and add the Address to the Account collection field since the Address
knows nothing about the Account. Also be aware that each Address object can have only one owner,
since it has a single foreign key to the Account. If you wish to have an Address assigned to multiple
Accounts then you should use the "Join Table" relationship above.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the foreign-key between container table and element table, specify <foreign-key>
below either the <field> element or the <element> element.

61.3 1-N Set Bidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Set of objects of type Address, and each Address has a reference to the Account object
that it relates to. Like this

There are 2 ways that we can persist this relationship. These are shown below

61.3.1 Using Join Table

If you define the XML Metadata for these classes as follows

6 1 S e t s 297

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses" mapped-by="account">

 <collection element-type="com.mydomain.Address"/>

 <join/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 <field name="account"/>

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Persistent(mappedBy="account")

 @Join

 Set<Address> addresses;

}

public class Address

{

 ...

 Account account;

}

The crucial part is the join element on the field element - this signals to JDO to use a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as shown
below.

6 1 S e t s 298

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element with the
collection.

• To specify the names of the join table columns, use the column attribute of join, element
elements.

• To specify the foreign-key between container table and join table, specify <foreign-key> below
the <join> element.

• To specify the foreign-key between join table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

• If you wish to share the join table with another relation then use the DataNucleus "shared join
table" extension

• The join table will, by default, be given a primary key. If you want to omit this then you can turn
it off using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

• If you want the set to include nulls, you can turn on this behaviour by adding the extension
metadata "allow-nulls" to the <field> set to true

61.3.2 Using Foreign-Key

Here we have the 2 classes with both knowing about the relationship with the other.

If you define the XML metadata for these classes as follows

6 1 S e t s 299

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses" mapped-by="account">

 <collection element-type="com.mydomain.Address"/>

 </field>

 </class>

 <class name="Address">

 <field name="id" primary-key="true">

 <column name="ADDRESS_ID"/>

 </field>

 ...

 <field name="account">

 <column name="ACCOUNT_ID"/>

 </field>

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Persistent(mappedBy="account")

 Set<Address> addresses;

}

public class Address

{

 ...

 Account account;

}

The crucial part is the mapped-by attribute of the field on the "1" side of the relationship. This tells the JDO
implementation to look for a field called account on the Address class.

This will create 2 tables in the database, one for Address (including an ACCOUNT_ID to link to the
ACCOUNT table), and one for Account. Notice the subtle difference to this set-up to that of the Join
Table relationship earlier.

6 1 S e t s 300

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the foreign-key between container table and element table, specify <foreign-key>
below either the <field> element or the <element> element.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

61.4 1-N Set of non-persistable objects

All of the examples above show a 1-N relationship between 2 persistable classes. DataNucleus can
also cater for a Collection of primitive or Object types. For example, when you have a Collection of
Strings. This will be persisted in the same way as the "Join Table" examples above. A join table is
created to hold the collection elements. Let's take our example. We have an Account that stores a
Collection of addresses. These addresses are simply Strings. We define the Meta-Data like this

<package name="com.mydomain">

 <class name="Account">

 <field name="id" primary-key="true">

 <column name="ACCOUNT_ID"/>

 </field>

 ...

 <field name="addresses" persistence-modifier="persistent">

 <collection element-type="java.lang.String"/>

 <join/>

 <element column="ADDRESS"/>

 </field>

 </class>

or alternatively using annotations

public class Account

{

 ...

 @Join

 @Element(column="ADDRESS")

 Set<String> addresses;

}

6 1 S e t s 301

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". In our MetaData we
used the <element> tag to specify the column name to use for the actual address String.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of
the element is not valid to be part of a primary key (with the RDBMS being used). If the column
type of your element is acceptable for use as part of a primary key then you will not have this
"ADPT_PK_IDX" column. You can control the name of this column by adding an <order> element
and specifying the column name for the order column (within <field>).

61.5 Embedded into a Join Table
The above relationship types assume that both classes in the 1-N relation will have their own table.
A variation on this is where you have a join table but you embed the elements of the collection into
this join table. To do this you use the embedded-element attribute on the collection MetaData element.
This is described in Embedded Collection Elements.

61.6 Serialised into a Join Table
The above relationship types assume that both classes in the 1-N relation will have their own table.
A variation on this is where you have a join table but you serialise the elements of the collection into
this join table in a single column. To do this you use the serialised-element attribute on the collection
MetaData element. This is described in Serialised Collection Elements

6 2 L i s t s 302

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

62 Lists
...

62.1 JDO : 1-N Relationships with Lists
You have a 1-N (one to many) or N-1 (many to one) when you have one object of a class that has a
List of objects of another class. There are two ways in which you can represent this in a datastore.
Join Table (where a join table is used to provide the relationship mapping between the objects), and
Foreign-Key (where a foreign key is placed in the table of the object contained in the List.

The various possible relationships are described below.

• 1-N Unidirectional using Join Table
• 1-N Unidirectional using Foreign-Key
• 1-N Ordered List using Foreign-Key
• 1-N Bidirectional using Join Table
• 1-N Bidirectional using Foreign-Key
• 1-N Unidirectional of non-PC using Join Table
• 1-N embedded elements using Join Table
• 1-N Serialised List
• 1-N using shared join table
• 1-N using shared foreign key
• 1-N Bidirectional "Compound Identity" (owner object as part of PK in element)

This page is aimed at List fields and so applies to fields of Java type java.util.ArrayList,
java.util.LinkedList, java.util.List, java.util.Stack, java.util.Vector

Please note that RDBMS supports the full range of options on this page, whereas other
datastores (ODF, Excel, HBase, MongoDB, etc) persist the List in a column in the owner object
(as well as a column in the non-owner object when bidirectional) rather than using join-tables
or foreign-keys since those concepts are RDBMS-only.

62.1.1 equals() and hashCode()

Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to determine
equality and whether an element is contained in the Collection. Note also that the hashCode() should
be consistent throughout the lifetime of a persistable object. By that we mean that it should not
use some basis before persistence and then use some other basis (such as the object identity) after
persistence, for this reason we do not recommend usage of JDOHelper.getObjectId(obj) in the equals/
hashCode methods.

62.2 1-N List Unidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a List of objects of type Address, yet each Address knows nothing about the Account
objects that it relates to. Like this

6 2 L i s t s 303

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

There are 2 ways that we can persist this relationship. These are shown below

62.2.1 Using Join Table

If you define the XML metadata for these classes as follows

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses">

 <collection element-type="com.mydomain.Address"/>

 <join/>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Join

 List<Address> addresses;

}

public class Address

{

 ...

}

The crucial part is the join element on the field element - this signals to JDO to use a join table.

There will be 3 tables, one for Address, one for Account, and the join table. The difference from Set
is in the contents of the join table. An index column (INTEGER_IDX) is added to keep track of the
position of objects in the List. The name of this column can be controlled using the <order> MetaData
element.

6 2 L i s t s 304

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element with the
collection.

• To specify the names of the join table columns, use the column attribute of join, element and
order elements.

• To specify the foreign-key between container table and join table, specify <foreign-key> below
the <join> element.

• To specify the foreign-key between join table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

• If you wish to share the join table with another relation then use the DataNucleus "shared join
table" extension

• The join table will, by default, be given a primary key. If you want to omit this then you can turn
it off using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

• The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You
can control this by adding an <order> element and specifying the column name for the order
column (within <field>).

• If you want the set to include nulls, you can turn on this behaviour by adding the extension
metadata "allow-nulls" to the <field> set to true

62.2.2 Using Foreign-Key

In this relationship, the Account class has a List of Address objects, yet the Address knows nothing
about the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
XML metadata like this

6 2 L i s t s 305

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses">

 <collection element-type="com.mydomain.Address"/>

 <element column="ACCOUNT_ID"/>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Element(column="ACCOUNT_ID")

 List<Address> addresses;

}

public class Address

{

 ...

}

Again there will be 2 tables, one for Address, and one for Account. Note that we have no "mapped-
by" attribute specified, and also no "join" element. If you wish to specify the names of the columns
used in the schema for the foreign key in the Address table you should use the element element
within the field of the collection.

In terms of operation within your classes of assigning the objects in the relationship. With
DataNucleus and List-based containers you have to take your Account object and add the Address to
the Account collection field since the Address knows nothing about the Account.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

6 2 L i s t s 306

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the foreign-key between container table and element table, specify <foreign-key>
below either the <field> element or the <element> element.

Limitations

• Since each Address object can have at most one owner (due to the "Foreign Key") this mode of
persistence will not allow duplicate values in the List. If you want to allow duplicate List entries,
then use the "Join Table" variant above.

62.2.3 1-N Ordered List using Foreign-Key

This is the same as the case above except that we don't want an indexing column adding to the
element and instead we define an "ordering" criteria. This is a DataNucleus extension to JDO. So we
define the XML metadata like this

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses">

 <collection element-type="com.mydomain.Address"/>

 <order>

 <extension vendor-name="datanucleus" key="list-ordering" value="city ASC"/>

 </order>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 </class>

</package>

or alternatively using annotations

public class Account

{

 ...

 @Order(extensions=@Extension(vendorName="datanucleus", key="list-ordering", value="city ASC"))

 List<Address> addresses;

}

public class Address

{

 ...

}

As above there will be 2 tables, one for Address, and one for Account. We have no indexing column,
but instead we will order the elements using the "city" field in ascending order.

6 2 L i s t s 307

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In terms of operation within your classes of assigning the objects in the relationship. With
DataNucleus and List-based containers you have to take your Account object and add the Address to
the Account collection field since the Address knows nothing about the Account.

Limitations

• Ordered lists are only ordered in the defined way when retrieved from the datastore.

62.3 1-N List Bidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a List of objects of type Address, and each Address has a reference to the Account object
that it relates to. Like this

There are 2 ways that we can persist this relationship. These are shown below

62.3.1 Using Join Table

If you define the XML metadata for these classes as follows

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses" mapped-by="account">

 <collection element-type="com.mydomain.Address"/>

 <join/>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 <field name="account"/>

 </class>

</package>

or alternatively using annotations

6 2 L i s t s 308

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @Persistent(mappedBy="account")

 @Join

 List<Address> addresses;

}

public class Address

{

 ...

 Account account;

}

The crucial part is the join element on the field element - this signals to JDO to use a join table.

There will be 3 tables, one for Address, one for Account, and the join table. The difference from Set
is in the contents of the join table. An index column (INTEGER_IDX) is added to keep track of the
position of objects in the List. The name of this column can be controlled using the <order> MetaData
element.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element with the
collection.

• To specify the names of the join table columns, use the column attribute of join, element and
order elements.

• To specify the foreign-key between container table and join table, specify <foreign-key> below
the <join> element.

• To specify the foreign-key between join table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

• If you wish to share the join table with another relation then use the DataNucleus "shared join
table" extension

• The join table will, by default, be given a primary key. If you want to omit this then you can turn
it off using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

6 2 L i s t s 309

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You
can control this by adding an <order> element and specifying the column name for the order
column (within <field>).

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

• If you want the set to include nulls, you can turn on this behaviour by adding the extension
metadata "allow-nulls" to the <field> set to true

62.3.2 Using Foreign-Key

Here we have the 2 classes with both knowing about the relationship with the other.

Please note that an Foreign-Key List will NOT, by default, allow duplicates. This is because
it stores the element position in the element table. If you need a List with duplicates we
recommend that you use the Join Table List implementation above. If you have an application
identity element class then you could in principle add the element position to the primary key to allow
duplicates, but this would imply changing your element class identity.

If you define the Meta-Data for these classes as follows

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses" mapped-by="account">

 <collection element-type="com.mydomain.Address"/>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 <field name="account">

 <column name="ACCOUNT_ID"/>

 </field>

 </class>

</package>

or alternatively using annotations

6 2 L i s t s 310

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @Persistent(mappedBy="account")

 List<Address> addresses;

}

public class Address

{

 ...

 Account account;

}

The crucial part is the mapped-by attribute of the field on the "1" side of the relationship. This tells the JDO
implementation to look for a field called account on the Address class.

Again there will be 2 tables, one for Address, and one for Account. The difference from the Set
example is that the List index is placed in the table for Address whereas for a Set this is not needed.

In terms of operation within your classes of assigning the objects in the relationship. With
DataNucleus and List-based containers you have to take your Account object and add the
Address to the Account collection field (you can't just take the Address object and set its
Account field since the position of the Address in the List needs setting, and this is done by
adding the Address to the Account). In addition, if you are removing an object from a List, you
cannot simply set the owner on the element to "null". You have to remove it from the List end
of the relationship.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the foreign-key between container table and element table, specify <foreign-key>
below either the <field> element or the <element> element.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this
mode of persistence will not allow duplicate values in the List. If you want to allow duplicate List
entries, then use the "Join Table" variant above.

6 2 L i s t s 311

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

62.4 1-N List of non-persistable objects

All of the examples above show a 1-N relationship between 2 persistable classes. DataNucleus can
also cater for a List of primitive or Object types. For example, when you have a List of Strings. This
will be persisted in the same way as the "Join Table" examples above. A join table is created to hold
the list elements. Let's take our example. We have an Account that stores a List of addresses. These
addresses are simply Strings. We define the XML metadata like this

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses" persistence-modifier="persistent">

 <collection element-type="java.lang.String"/>

 <join/>

 <element column="ADDRESS"/>

 </field>

 </class>

or alternatively using annotations

public class Account

{

 ...

 @Join

 @Element(column="ADDRESS")

 List<String> addresses;

}

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". In our MetaData we
used the <element> tag to specify the column name to use for the actual address String. In addition
we have an additional index column to form part of the primary key (along with the FK back to the
ACCOUNT table). You can override the default naming of this column by specifying the <order> tag.

62.5 Embedded into a Join Table
The above relationship types assume that both classes in the 1-N relation will have their own table.
A variation on this is where you have a join table but you embed the elements of the collection into
this join table. To do this you use the embedded-element attribute on the collection MetaData element.
This is described in Embedded Collection Elements.

6 2 L i s t s 312

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

62.6 Serialised into a Join Table
The above relationship types assume that both classes in the 1-N relation will have their own table.
A variation on this is where you have a join table but you serialise the elements of the collection into
this join table in a single column. To do this you use the serialised-element attribute on the collection
MetaData element. This is described in Serialised Collection Elements

6 3 M a p s 313

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

63 Maps
...

63.1 JDO : 1-N Relationships with Maps
You have a 1-N (one to many) or N-1 (many to one) when you have one object of a class that has
a Map of objects of another class. There are two general ways in which you can represent this in a
datastore. Join Table (where a join table is used to provide the relationship mapping between the
objects), and Foreign-Key (where a foreign key is placed in the table of the object contained in the
Map.

The various possible relationships are described below.

• Map[PC, PC] using join table
• Map[Simple, PC] using join table
• Map[PC, Simple] using join table
• Map[Simple, Simple] using join table
• 1-N Bidirectional using Foreign-Key (key stored in the value class)
• 1-N Unidirectional using Foreign-Key (key stored in the value class)
• 1-N Unidirectional using Foreign-Key (value stored in the key class)
• 1-N embedded keys/values using Join Table
• 1-N Serialised map
• 1-N Bidirectional "Compound Identity" (owner object as part of PK in value)

This page is aimed at Map fields and so applies to fields of Java type java.util.HashMap,
java.util.Hashtable, java.util.LinkedHashMap, java.util.Map, java.util.SortedMap, java.util.TreeMap,
java.util.Properties

Please note that RDBMS supports the full range of options on this page, whereas other
datastores (ODF, Excel, HBase, MongoDB, etc) persist the Map in a column in the owner object
rather than using join-tables or foreign-keys since those concepts are RDBMS-only

63.2 1-N Map using Join Table
We have a class Account that contains a Map. With a Map we store values using keys. As a result we
have 3 main combinations of key and value, bearing in mind whether the key or value is persistable.

63.2.1 Map[PC, PC]

Here both the keys and the values are persistable. Like this

6 3 M a p s 314

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

If you define the Meta-Data for these classes as follows

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses" persistence-modifier="persistent">

 <map key-type="com.mydomain.Name" value-type="com.mydomain.Address"/>

 <join/>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 </class>

 <class name="Name" identity-type="datastore">

 </class>

</package>

This will create 4 tables in the datastore, one for Account, one for Address, one for Name and a join
table containing foreign keys to the key/value tables.

If you want to configure the names of the columns in the "join" table you would use the <key> and
<value> subelements of <field>, something like this

6 3 M a p s 315

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <field name="addresses" persistence-modifier="persistent" table="ACCOUNT_ADDRESS">

 <map key-type="com.mydomain.Name" value-type="com.mydomain.Address"/>

 <join>

 <column name="ACCOUNT_ID"/>

 </join>

 <key>

 <column name="NAME_ID"/>

 </key>

 <value>

 <column name="ADDRESS_ID"/>

 </value>

 </field>

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element.
• To specify the names of the columns of the join table, specify the column attribute on the join,

key, and value elements.
• To specify the foreign-key between container table and join table, specify <foreign-key> below

the <join> element.
• To specify the foreign-key between join table and key table, specify <foreign-key> below the

<key> element.
• To specify the foreign-key between join table and value table, specify <foreign-key> below the

<value> element.
Which changes the names of the join table to ACCOUNT_ADDRESS from
ACCOUNT_ADDRESSES and the names of the columns in the join table from ACCOUNT_ID_OID
to ACCOUNT_ID, from NAME_ID_KID to NAME_ID, and from ADDRESS_ID_VID to
ADDRESS_ID.

63.2.2 Map[Simple, PC]

Here our key is a simple type (in this case a String) and the values are persistable. Like this

If you define the Meta-Data for these classes as follows

6 3 M a p s 316

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses" persistence-modifier="persistent">

 <map key-type="java.lang.String" value-type="com.mydomain.Address"/>

 <join/>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 </class>

</package>

This will create 3 tables in the datastore, one for Account, one for Address and a join table also
containing the key.

If you want to configure the names of the columns in the "join" table you would use the <key> and
<value> subelements of <field> as shown above.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the
key is not valid to be part of a primary key (with the RDBMS being used). If the column type of
your key is acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX"
column.

63.2.3 Map[PC, Simple]

This operates exactly the same as "Map[Simple, PC]" except that the additional table is for the key
instead of the value.

63.2.4 Map[Simple, Simple]

Here our keys and values are of simple types (in this case a String). Like this

6 3 M a p s 317

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

If you define the Meta-Data for these classes as follows

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses" persistence-modifier="persistent">

 <map key-type="java.lang.String" value-type="java.lang.String"/>

 <join/>

 </field>

 </class>

</package>

This results in just 2 tables. The "join" table contains both the key AND the value.

If you want to configure the names of the columns in the "join" table you would use the <key> and
<value> subelements of <field> as shown above.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the
key is not valid to be part of a primary key (with the RDBMS being used). If the column type of
your key is acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX"
column.

63.2.5 Embedded

The above relationship types assume that all persistable classes in the 1-N relation will have their own
table. A variation on this is where you have a join table but you embed the keys, the values, or the
keys and the values of the map into this join table. This is described in Embedded Maps.

63.3 1-N Map using Foreign-Key

6 3 M a p s 318

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

63.3.1 1-N Foreign-Key Bidirectional (key stored in value)

In this case we have an object with a Map of objects and we're associating the objects using a foreign-
key in the table of the value.

With these classes we want to store a foreign-key in the value table (ADDRESS), and we want to
use the "alias" field in the Address class as the key to the map. If you define the Meta-Data for these
classes as follows

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses" persistence-modifier="persistent" mapped-by="account">

 <map key-type="java.lang.String" value-type="com.mydomain.Address"/>

 <key mapped-by="alias"/>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 <field name="account" persistence-modifier="persistent">

 </field>

 <field name="alias" null-value="exception">

 <column name="KEY" length="20" jdbc-type="VARCHAR"/>

 </field>

 </class>

</package>

This will create 2 tables in the datastore. One for Account, and one for Address. The table for
Address will contain the key field as well as an index to the Account record (notated by the mapped-
by tag).

6 3 M a p s 319

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

63.3.2 1-N Foreign-Key Unidirectional (key stored in value)

In this case we have an object with a Map of objects and we're associating the objects using a foreign-
key in the table of the value. As in the case of the bidirectional relation above we're using a field (
alias) in the Address class as the key of the map.

In this relationship, the Account class has a Map of Address objects, yet the Address knows nothing
about the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
MetaData like this

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="addresses" persistence-modifier="persistent">

 <map key-type="java.lang.String" value-type="com.mydomain.Address"/>

 <key mapped-by="alias"/>

 <value column="ACCOUNT_ID_OID"/>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 <field name="alias" null-value="exception">

 <column name="KEY" length="20" jdbc-type="VARCHAR"/>

 </field>

 </class>

</package>

Again there will be 2 tables, one for Address, and one for Account. Note that we have no "mapped-
by" attribute specified on the "field" element, and also no "join" element. If you wish to specify the
names of the columns used in the schema for the foreign key in the Address table you should use the
value element within the field of the map.

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account map field since the Address knows nothing

6 3 M a p s 320

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

about the Account. Also be aware that each Address object can have only one owner, since it has a
single foreign key to the Account. If you wish to have an Address assigned to multiple Accounts
then you should use the "Join Table" relationship above.

63.3.3 1-N Foreign-Key Unidirectional (value stored in key)

In this case we have an object with a Map of objects and we're associating the objects using a foreign-
key in the table of the key. We're using a field (businessAddress) in the Address class as the value of
the map.

In this relationship, the Account class has a Map of Address objects, yet the Address knows
nothing about the Account. We don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
MetaData like this

<package name="com.mydomain">

 <class name="Account" identity-type="datastore">

 ...

 <field name="phoneNumbers" persistence-modifier="persistent">

 <map key-type="com.mydomain.Address" value-type="java.lang.String"/>

 <key column="ACCOUNT_ID_OID"/>

 <value mapped-by="businessPhoneNumber"/>

 </field>

 </class>

 <class name="Address" identity-type="datastore">

 ...

 <field name="businessPhoneNumber" null-value="exception">

 <column name="BUS_PHONE" length="20" jdbc-type="VARCHAR"/>

 </field>

 </class>

</package>

There will be 2 tables, one for Address, and one for Account. The key thing here is that we have
specified a "mapped-by" on the "value" element. Note that we have no "mapped-by" attribute
specified on the "field" element, and also no "join" element. If you wish to specify the names of the
columns used in the schema for the foreign key in the Address table you should use the key element
within the field of the map.

6 3 M a p s 321

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account map field since the Address knows nothing
about the Account. Also be aware that each Address object can have only one owner, since it has a
single foreign key to the Account. If you wish to have an Address assigned to multiple Accounts
then you should use the "Join Table" relationship above.

6 4 N - t o - 1 R e l a t i o n s 322

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

64 N-to-1 Relations
...

64.1 JDO : N-1 Relationships
You have a N-to-1 relationship when an object of a class has an associated object of another class
(only one associated object) and several of this type of object can be linked to the same associated
object. From the other end of the relationship it is effectively a 1-N, but from the point of view of the
object in question, it is N-1. You can create the relationship in 2 ways depending on whether the 2
classes know about each other (bidirectional), or whether only the "N" side knows about the other
class (unidirectional). These are described below.

For RDBMS an N-1 relation is stored as a foreign-key column(s), possibly in a join table. For
non-RDBMS it is stored as a String "column" storing the 'id' (possibly with the class-name
included in the string) of the related object.

64.1.1 Unidirectional (Join Table)

For this case you could have 2 classes, User and Account, as below.

so the Account class ("N" side) knows about the User class ("1" side), but not vice-versa and the
relation is stored using a join table. A particular user could be related to several accounts. If you
define the XML metadata for these classes as follows

<package name="mydomain">

 <class name="User" identity-type="datastore">

 ...

 </class>

 <class name="Account" identity-type="datastore">

 ...

 <field name="user" persistence-modifier="persistent">

 <join/>

 </field>

 </class>

</package>

alternatively using annotations

6 4 N - t o - 1 R e l a t i o n s 323

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @Join(table="ACCOUNT_USER")

 User user;

}

For RDBMS this will create 3 tables in the database, one for User (with name USER), one for
Account (with name ACCOUNT), and a join table (with name ACCOUNT_USER) as shown below.

Note that in the case of non-RDBMS datastores there is no join-table, simply a "column" in the
ACCOUNT "table", storing the "id" of the related object

Things to note :-

• If you wish to specify the names of the database tables and columns for these classes, you can
use the attribute table (on the class element), the attribute name (on the column element) and the
attribute name (on the column attribute under join

64.1.2 Unidirectional (ForeignKey)

Here you have the same two classes as above but you have a foreign-key in the table of Account. For
this case, just look at the 1-1 Unidirectional documentation since it is identical.

64.1.3 Bidirectional

This relationship is described in the guide for 1-N relationships. In particular there are 2 ways to
define the relationship with RDBMS : the first uses a Join Table to hold the relationship, whilst the
second uses a Foreign Key in the "N" object to hold the relationship. For non-RDBMS datastores each
side will have a "column" (or equivalent) in the "table" of the N side storing the "id" of the related
(owning) object. Please refer to the 1-N relationships bidirectional relations since they show this exact
relationship.

6 5 M - t o - N R e l a t i o n s 324

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

65 M-to-N Relations
...

65.1 JDO : M-N Relationships
You have a M-to-N (or Many-to-Many) relationship if an object of a class A has associated objects
of class B, and class B has associated objects of class A. This relationship may be achieved through
Java Set, Map, List or subclasses of these, although the only one that supports a true M-N is for a Set/
Collection.

With DataNucleus this can be set up as described in this section, using what is called a Join Table
relationship. Let's take the following example and describe how to model it with the different types of
collection classes. We have 2 classes, Product and Supplier as below.

Here the Product class knows about the Supplier class. In addition the Supplier knows about the
Product class, however with DataNucleus (as with the majority of JDO implementations) these
relationships are independent.

Please note that RDBMS supports the full range of options on this page, whereas other
datastores (ODF, Excel, HBase, MongoDB, etc) persist the Collection in a column in the owner
object and a column in the non-owner object rather than using join-tables since that concept is
RDBMS-only.

Please note when adding objects to an M-N relation, you MUST add to the owner side as a
minimum, and optionally also add to the non-owner side. Just adding to the non-owner side will
not add the relation.

The various possible relationships are described below.
• M-N Set relation
• M-N Ordered List relation
• M-N Indexed List - modelled as 2 1-N Unidirectional relations using Join Table
• M-N Map - modelled as 2 1-N Unidirectional using Join Table

65.1.1 equals() and hashCode()

Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to determine
equality and whether an element is contained in the Collection. Note also that the hashCode() should
be consistent throughout the lifetime of a persistable object. By that we mean that it should not
use some basis before persistence and then use some other basis (such as the object identity) after
persistence, for this reason we do not recommend usage of JDOHelper.getObjectId(obj) in the equals/
hashCode methods.

65.2 Using Set

6 5 M - t o - N R e l a t i o n s 325

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

If you define the XML metadata for these classes as follows

<package name="mydomain">

 <class name="Product" identity-type="datastore">

 ...

 <field name="suppliers" table="PRODUCTS_SUPPLIERS">

 <collection element-type="mydomain.Supplier"/>

 <join>

 <column name="PRODUCT_ID"/>

 </join>

 <element>

 <column name="SUPPLIER_ID"/>

 </element>

 </field>

 </class>

 <class name="Supplier" identity-type="datastore">

 ...

 <field name="products" mapped-by="suppliers">

 <collection element-type="mydomain.Product"/>

 </field>

 </class>

</package>

alternatively using annotations

public class Product

{

 ...

 @Persistent(table="PRODUCTS_SUPPLIERS")

 @Join(column="PRODUCT_ID")

 @Element(column="SUPPLIER_ID")

 Set<Supplier> suppliers;

}

public class Supplier

{

 ...

 @Persistent(mappedBy="suppliers")

 Set<Products> products;

}

Note how we have specified the information only once regarding join table name, and join column
names as well as the <join>. This is the JDO standard way of specification, and results in a single join
table.

6 5 M - t o - N R e l a t i o n s 326

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

See also :-

• M-N Worked Example
• M-N with Attributes Worked Example

65.3 Using Ordered Lists

If you define the Meta-Data for these classes as follows

<package name="mydomain">

 <class name="Product" identity-type="datastore">

 ...

 <field name="suppliers">

 <collection element-type="mydomain.Supplier"/>

 <order>

 <extension vendor-name="datanucleus" key="list-ordering" value="id ASC"/>

 </order>

 <join/>

 </field>

 </class>

 <class name="Supplier" identity-type="datastore">

 ...

 <field name="products">

 <collection element-type="mydomain.Product"/>

 <order>

 <extension vendor-name="datanucleus" key="list-ordering" value="id ASC"/>

 </order>

 <join/>

 </field>

 </class>

</package>

or using annotations

6 5 M - t o - N R e l a t i o n s 327

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Product

{

 ...

 @Persistent(table="PRODUCTS_SUPPLIERS")

 @Join(column="PRODUCT_ID")

 @Element(column="SUPPLIER_ID")

 @Order(extensions=@Extension(vendorName="datanucleus", key="list-ordering", value="id ASC"))

 List<Supplier> suppliers

}

public class Supplier

{

 ...

 @Persistent

 @Order(extensions=@Extension(vendorName="datanucleus", key="list-ordering", value="id ASC"))

 List<Product> products

}

There will be 3 tables, one for Product, one for Supplier, and the join table. The difference from the
Set example is that we now have <order-by> at both sides of the relation. This has no effect in the
datastore schema but when the Lists are retrieved they are ordered using the specified order-by.

65.4 Using indexed Lists

Firstly a true M-N relation with Lists is impossible since there are two lists, and it is undefined
as to which one applies to which side etc. What is shown below is two independent 1-N
unidirectional join table relations. If you define the Meta-Data for these classes as follows

6 5 M - t o - N R e l a t i o n s 328

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<package name="mydomain">

 <class name="Product" identity-type="datastore">

 ...

 <field name="suppliers" persistence-modifier="persistent">

 <collection element-type="mydomain.Supplier"/>

 <join/>

 </field>

 </class>

 <class name="Supplier" identity-type="datastore">

 ...

 <field name="products" persistence-modifier="persistent">

 <collection element-type="mydomain.Product"/>

 <join/>

 </field>

 </class>

</package>

alternatively using annotations

public class Product

{

 ...

 @Join

 List<Supplier> suppliers;

}

public class Supplier

{

 ...

 @Join

 List<Products> products;

}

There will be 4 tables, one for Product, one for Supplier, and the join tables. The difference from
the Set example is in the contents of the join tables. An index column is added to keep track of the
position of objects in the Lists.

6 5 M - t o - N R e l a t i o n s 329

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In the case of a List at both ends it doesn't make sense to use a single join table because the ordering
can only be defined at one side, so you have to have 2 join tables.

65.5 Using Map

If you define the Meta-Data for these classes as follows

<package name="mydomain">

 <class name="Product" identity-type="datastore">

 ...

 <field name="suppliers" persistence-modifier="persistent">

 <map key-type="java.lang.String" value-type="mydomain.Supplier"/>

 <join/>

 </field>

 </class>

 <class name="Supplier" identity-type="datastore">

 ...

 <field name="products" persistence-modifier="persistent">

 <map key-type="java.lang.String" value-type="mydomain.Product"/>

 <join/>

 </field>

 </class>

</package>

This will create 4 tables in the datastore, one for Product, one for Supplier, and the join tables which
also contains the keys to the Maps (a String).

6 5 M - t o - N R e l a t i o n s 330

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

65.6 Relationship Behaviour
Please be aware of the following.

• To add an object to an M-N relationship you need to set it at both ends of the relation since the
relation is bidirectional and without such information the JDO implementation won't know which
end of the relation is correct.

• If you want to delete an object from one end of a M-N relationship you will have to remove it
first from the other objects relationship. If you don't you will get an error message that the object
to be deleted has links to other objects and so cannot be deleted.

6 6 C a s c a d i n g 331

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

66 Cascading
...

66.1 JDO : Cascading Operations
When defining your objects to be persisted and the relationships between them, it is often required to
define dependencies between these related objects. What should happen when persisting an object and
it relates to another object? What should happen to a related object when an object is deleted? You
can define what happens with JDO and with DataNucleus. Let's take an example

public class Owner

{

 private DrivingLicense license;

 private Collection cars;

 ...

}

public class DrivingLicense

{

 private String serialNumber;

 ...

}

public class Car

{

 private String registrationNumber;

 private Owner owner;

 ...

}

So we have an Owner of a collection of vintage Car's (1-N), and the Owner has a DrivingLicense
(1-1). We want to define lifecycle dependencies to match the relationships that we have between these
objects. Firstly lets look at the basic Meta-Data for the objects.

6 6 C a s c a d i n g 332

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jdo SYSTEM "file:/javax/jdo/jdo.dtd">

<jdo>

 <package name="com.mydomain.samples.cars">

 <class name="Owner">

 <field name="license" persistence-modifier="persistent"/>

 <field name="cars">

 <collection element-type="com.mydomain.samples.cars.Car" mapped-by="owner"/>

 </field>

 </class>

 <class name="DrivingLicense">

 <field name="serialNumber"/>

 </class>

 <class name="Car">

 <field name="registrationNumber"/>

 <field name="owner" persistence-modifier="persistent"/>

 </class>

 </package>

</jdo>

66.1.1 Persistence

JDO defines a concept called persistence-by-reachability. This means that when you persist an
object and it has a related persistable object then this other object is also persisted. So using our
example if we do

Owner bob = new Owner("Bob Smith");

DrivingLicense license = new DrivingLicense("011234BX4J");

bob.setLicense(license);

pm.makePersistent(bob); // "bob" knows about "license"

This results in both the Owner and the DrivingLicense objects being made persistent since the Owner
is passed to the PM operation and it has a field referring to the unpersisted DrivingLicense object. So
"reachability" will persist the license.

With DataNucleus you can actually turn off persistence-by-reachability for particular fields, by
specifying in the MetaData a DataNucleus extension tag, as follows

<class name="Owner">

 <field name="license" persistence-modifier="persistent">

 <extension vendor-name="datanucleus" key="cascade-persist" value="false"/>

 </field>

 ...

</class>

6 6 C a s c a d i n g 333

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So with this specification when we call makePersistent() with an object of type Owner then the field
"license" will not be persisted at that time.

66.1.2 Update

As mentioned above JDO defines a concept called persistence-by-reachability. This applies not
just to persist but also to update of objects, so when you update an object and its updated field has a
persistable object then that will be persisted. So using our example if we do

Owner bob = (Owner)pm.getObjectById(id);

DrivingLicense license2 = new DrivingLicense("233424BX4J");

bob.setLicense(license2); // "bob" knows about "license2"

So when this field is updated the new DrivingLicense object will be made persistent since it is
reachable from the persistent Owner object.

With DataNucleus you can actually turn off update-by-reachability for particular fields, by specifying
in the MetaData a DataNucleus extension tag, as follows

<class name="Owner">

 <field name="license" persistence-modifier="persistent">

 <extension vendor-name="datanucleus" key="cascade-update" value="false"/>

 </field>

 ...

</class>

So with this specification when we call makePersistent() to update an object of type Owner then the
field "license" will not be updated at that time.

66.1.3 Deletion, using Dependent Field

So we have an inverse 1-N relationship (no join table) between our Owner and his precious Car's, and
a 1-1 relationship between the Owner and his DrivingLicense, because without his license he wouldn't
be able to drive the cars :-0. What will happen to the license and the cars when the owner dies ? Well
in this particular case we want to define that the when the owner is deleted, then his license will also
be deleted (since it is for him only), but that his cars will continue to exist, because his daughter will
inherit them. In JDO this is called Dependent Fields. To utilise this concept to achieve our end goal
we change the Meta-Data to be

6 6 C a s c a d i n g 334

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jdo SYSTEM "file:/javax/jdo/jdo.dtd">

<jdo>

 <package name="com.mydomain.samples.cars">

 <class name="Owner">

 <field name="license" persistence-modifier="persistent" dependent="true"/>

 <field name="cars">

 <collection element-type="com.mydomain.samples.cars.Car" mapped-by="owner"

 dependent-element="false"/>

 </field>

 </class>

 <class name="DrivingLicense">

 <field name="serialNumber"/>

 </class>

 <class name="Car">

 <field name="registrationNumber"/>

 <field name="owner" persistence-modifier="persistent" dependent="false"/>

 </class>

 </package>

</jdo>

So it was as simple as just adding dependent and dependent-element attributes to our related fields.
Notice that we also added one to the other end of the Owner-Car relationship, so that when a Car
comes to the end of its life, the Owner will not die with it. It may be the case that the owner dies
driving the car and they both die at the same time, but their deaths are independent!!

Just as we made use of dependent-element for collection fields, we also can make use of dependent-
key and dependent-value for map fields, and dependent-element for array fields.

Dependent Fields is utilised in the following situations

• An object is deleted (using deletePersistent()) and that object has relations to other objects. If the
other objects (either 1-1, 1-N, or M-N) are dependent then they are also deleted.

• An object has a 1-1 relation with another object, but the other object relation is nulled out. If the
other object is dependent then it is deleted when the relation is nulled.

• An object has a 1-N collection relation with other objects and the element is removed from the
collection. If the element is dependent then it will be deleted when removed from the collection.
The same happens when the collections is cleared.

• An object has a 1-N map relation with other objects and the key is removed from the map. If
the key or value are dependent and they are not present in the map more than once they will be
deleted when they are removed. The same happens when the map is cleared.

66.1.4 Deletion, using Foreign Keys (RDBMS)

With JDO2 you can use "dependent-field" as shown above. As an alternative, when using RDBMS,
you can use the datastore-defined foreign keys and let the datastore built-in "referential integrity"
look after such deletions. DataNucleus provides a PMF property datanucleus.deletionPolicy allowing
enabling of this mode of operation.

The default setting of datanucleus.deletionPolicy is "JDO2" which performs deletion of related
objects as follows

6 6 C a s c a d i n g 335

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

1. If dependent-field is true then use that to define the related objects to be deleted.
2. Else, if the column of the foreign-key field is NULLable then NULL it and leave the related

object alone
3. Else deleted the related object (and throw exceptions if this fails for whatever datastore-related

reason)
The other setting of datanucleus.deletionPolicy is "DataNucleus" which performs deletion of related
objects as follows

1. If dependent-field is true then use that to define the related objects to be deleted.
2. If a foreign-key is specified (in MetaData) for the relation field then leave any deletion to the

datastore to perform (or throw exceptions as necessary)
3. Else, if the column of the foreign-key field is NULLable then NULL it and leave the related

object alone
4. Else deleted the related object (and throw exceptions if this fails for whatever datastore-related

reason)
So, as you can see, with the second option you have the ability to utilise datastore "referential
integrity" checking using your MetaData-specified <foreign-key> elements.

6 7 M e t a D a t a R e f e r e n c e 336

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

67 MetaData Reference
...

67.1 JDO : Metadata Overview
JDO requires a definition of how to persist classes by way of Metadata. This Metadata can be
provided in the following forms

So you can provide the metadata via annotations solely, or via annotations plus ORM XML
Metadata overrides, or via JDO XML Metadata solely, or via JDO XML Metadata plus ORM XML
Metadata overrides, or finally via a Metadata API. If you are using XML overrides for ORM, this
definition will be merged in to the base definition (annotations or JDO XML Metadata). Note that you
can utilise annotations for one class, and then JDO XML Metadata for another class should you so
wish.

When not using the MetaData API we recommend that you use either XML or annotations for the basic
persistence information, but always use XML for ORM information. This is because it is liable to change at
deployment time and hence is accessible when in XML form whereas in annotations you add an extra compile
cycle (and also you may need to deploy to some other datastore at some point, hence needing a different
deployment).

67.1.1 JDO XML Metadata

JDO expects the XML metadata to be specified in a file or files in particular locations in the
CLASSPATH. For example, if you have a class com.mycompany.sample.MyExample, JDO will look
for any of the following resources until it finds one (in the order stated) :-

6 7 M e t a D a t a R e f e r e n c e 337

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

META-INF/package.jdo

WEB-INF/package.jdo

package.jdo

com/package.jdo

com/mycompany/package.jdo

com/mycompany/sample/package.jdo

com/mycompany/sample/MyExample.jdo

In addition to the above, you can split your metadata definitions between JDO XML MetaData files.
For example if you have the following classes

com/mycompany/A.java

com/mycompany/B.java

com/mycompany/C.java

com/mycompany/app1/D.java

com/mycompany/app1/E.java

You could define the metadata for these 5 classes in many ways -- for example put all class
definitions in com/mycompany/package.jdo, or put the definitions for D and E in com/mycompany/
app1/package.jdo and the definitions for A, B, C in com/mycompany/package.jdo, or have some
in their class named MetaData files e.g com/mycompany/app1/A.jdo, or a mixture of the above.
DataNucleus will always search for the metadata file containing the class definition for the class that
it requires.

67.1.2 ORM XML Metadata

You can use ORM XML metadata to override particular datastore-specific things like table and
column names. JDO expects any ORM XML metadata to be specified in a file or files in particular
locations in the CLASSPATH. These filenames depend on the javax.jdo.option.mapping persistence
property. For example, if you have a class com.mycompany.sample.MyExample, and the persistence
property is set to "mysql" then JDO will look for any of the following resources until it finds one (in
the order stated) :-

META-INF/package-mysql.orm

WEB-INF/package-mysql.orm

package-mysql.orm

com/package-mysql.orm

com/mycompany/package-mysql.orm

com/mycompany/sample/package-mysql.orm

com/mycompany/sample/MyExample-mysql.orm

If your application doesn't make use of ORM metadata then you could turn off the searches
for ORM Metadata files when a class is loaded up. You do this with the persistence property
datanucleus.metadata.supportORM setting it to false.

6 7 M e t a D a t a R e f e r e n c e 338

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

67.1.3 XML Metadata validation

By default any XML Metadata (JDO or ORM) will be validated for accuracy when loading it.
Obviously XML is defined by a DTD or XSD schema and so should follow that. You can turn off
such validations by setting the persistence property datanucleus.metadata.xml.validate to false
when creating your PMF. Note that this only turns off the XML strictness validation, and not the
checks on inconsistency of specification of relations etc.

67.1.4 Metadata discovery at class initialisation

JDO provides a mechanism whereby when a class is initialised (by the ClassLoader) any
PersistenceManagerFactory is notified of its existence, and its Metadata can be loaded. This is
enabled by the enhancement process. If you decided that you maybe only wanted some classes present
in one PMF and other classes present in a different PMF then you can disable this and leave it to
DataNucleus to discover the Metadata when operations are performed on that PMF. The persistence
property to define to disable this is datanucleus.metadata.autoregistration (setting it to false).

6 8 X M L 339

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

68 XML
...

68.1 JDO : XML Meta-Data Reference
JDO has always accepted Metadata in XML format. As described in the Metadata Overview this
has to be contained in files with particular filenames in particular locations (relative to the name
of the class), and that this metadata is discovered at runtime. You can provide JDO metadata, or
alternatively ORM metadata, but with virtually identical format. This page defines the format of the
XML Metadata. Here is an example header for package.jdo files with JDO XSD specification

<?xml version="1.0" encoding="UTF-8" ?>

<jdo xmlns="http://xmlns.jcp.org/xml/ns/jdo/jdo"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/jdo/jdo

 http://xmlns.jcp.org/xml/ns/jdo/jdo_3_0.xsd" version="3.0">

 ...

</jdo>

Here is an example header for package.orm files with ORM XSD specification

<?xml version="1.0" encoding="UTF-8" ?>

<orm xmlns="http://xmlns.jcp.org/xml/ns/jdo/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/jdo/orm

 http://xmlns.jcp.org/xml/ns/jdo/orm_3_0.xsd" version="3.0">

 ...

</orm>

What follows provides a reference guide to MetaData elements (refer to the relevant XSD for precise
details).

• jdo

• package

• class

• datastore-identity

• column
• extension

• primary-key

• column
• inheritance

• discriminator

• column
• join

• column

http://xmlns.jcp.org/xml/ns/jdo/jdo_3_0.xsd
http://xmlns.jcp.org/xml/ns/jdo/orm_3_0.xsd

6 8 X M L 340

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• version

• column
• extension

• join

• column
• foreign-key

• column
• field
• property

• index

• column
• field
• property

• unique

• column
• field
• property

• field

• collection

• extension
• map

• extension
• array
• join

• primary-key
• index
• column

• embedded

• field

• column
• element

• column
• key

• column
• value

• column

6 8 X M L 341

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• order

• column
• extension

• column

• extension
• foreign-key

• column
• index

• column
• unique

• column
• extension

• property

• collection

• extension
• map

• extension
• array
• join

• primary-key
• index
• column

• embedded

• field

• column
• element

• column
• key

• column
• value

• column
• order

• column
• column

• extension

6 8 X M L 342

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• foreign-key

• column
• index

• column
• unique

• column
• extension

• fetch-group

• field
• query

• sequence

• extension
• fetch-plan
• extension

• extension

68.1.1 Metadata for package tag

These are attributes within the <package> tag (jdo/package). This is used to denote a package, and all
of the <class> elements that follow are in this Java package.

Attribute Description Values

Standard (JDO) Tags

name Name of the java package

catalog Name of the catalog in which to
persist the classes in this package.
See also the property name
"javax.jdo.mapping.Catalog" in the
PMF Guide.

schema Name of the schema in which to
persist the classes in this package.
See also the property name
"javax.jdo.mapping.Schema" in the
PMF Guide.

68.1.2 Metadata for class tag

These are attributes within the <class> tag (jdo/package/class). This is used to define the persistence
definition for this class.

Attribute Description Values

6 8 X M L 343

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Standard (JDO) Tags

name Name of the class to persist

identity-type The identity type, specifying
whether they are uniquely provided
by the JDO implementation
(datastore identity), accessible
fields in the object (application
identity), or not at all (nondurable
identity). DataNucleus only
supports nondurable identity for
SQL views.

datastore, application, nondurable

objectid-class The class name of the primary key.
When using application identity.

requires-extent Whether the JDO implementation
must provide an Extent for this
class.

true, false

detachable Whether the class is detachable
from the persistence graph.

true, false

embedded-only Whether this class should only be
stored embedded in the tables for
other classes.

true, false

persistence-modifier What type of persistability type this
class exhibits. Please refer to JDO
Class Types.

persistence-capable | persistence-
aware | non-persistent

catalog Name of the catalog in
which to persist the class.
See also the property name
"javax.jdo.mapping.Catalog" in the
PMF Guide.

schema Name of the schema in
which to persist the class.
See also the property name
"javax.jdo.mapping.Schema" in the
PMF Guide.

table Name of the table/view in
which to persist the class.
See also the property name
"datanucleus.identifier.case" in the
Persistence Properties Guide.

cacheable Whether the class can be cached in
a Level 2 cache. From JDO2.2

true | false

serializeRead Whether to default to locking
objects of this type when reading
them. From JDO2.2

true | false

68.1.3 Metadata for datastore-identity tag

These are attributes within the <datastore-identity> tag (jdo/package/class/datastore-identity). This
is used when the <class> to which this pertains uses datastore identity. It is used to define the precise

http://db.apache.org/jdo/class_types.html
http://db.apache.org/jdo/class_types.html

6 8 X M L 344

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

definition of datastore identity to be used. This element can contain column sub-elements allowing
definition of the column details where required - these are optional.

Attribute Description Values

Standard (JDO) Tags

strategy Strategy for datastore identity
generation for this class. native
allows DataNucleus to choose the
most suitable for the datastore.
sequence will use a sequence
(specified by the attribute
sequence) - if supported by the
datastore.
increment will use the id values in
the datastore to decide the next id.
uuid-string will use a UUID string
generator (16-characters).
uuid-hex will use a UUID string
generator (32-characters).
identity will use a datastore inbuilt
auto-incrementing types.
auid is a DataNucleus extension,
that is an almost universal id
generator (best possible derivate of
a DCE UUID).
max is a DataNucleus extension,
that uses "select max(column)+1
from table" for the identity.
timestamp is a DataNucleus
extension, providing the current
timestamp.
timestamp-value is a DataNucleus
extension, providing the current
timestamp millisecs.
[other values] to utilise user-
supplied DataNucleus value
generator plugins.

native | sequence | increment |
identity | uuid-string | uuid-hex |
auid | max | timestamp | timestamp-
value | [other values]

sequence Name of the sequence to use to
generate identity values, when
using a strategy of sequence.
Please see also the class
extension tags for controlling the
sequence.

column Name of the column used for the
datastore identity for this class.

These are attributes within the <extension> tag (jdo/package/class/datastore-identity/extension).
These are for controlling the generation of ids when in datastore identity mode.

Attribute Description Values

Extension (JDO) Tags

6 8 X M L 345

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

sequence-table-basis This defines the basis on which to
generate unique identities when
using the TableValueGenerator
(used by the "increment" strategy,
and sometimes by "native"). You
can either define identities unique
against the base table name, or
against the base class name (in
an inheritance tree). Used when
the strategy is set to native or
increment

class | table

sequence-catalog-name The catalog used to store
sequences for use by value
generators. See Value Generation.
Default catalog for the datastore
will be used if not specified.

sequence-schema-name The schema used to store
sequences for use by value
generators. See Value Generation.
Default schema for the datastore
will be used if not specified.

sequence-table-name The table used to store sequences
for use by value generators. See
Value Generation.

SEQUENCE_TABLE

sequence-name-column-name The column name in the sequence-
table used to store the name of
the sequence for use by value
generators. See Value Generation.

SEQUENCE_NAME

sequence-nextval-column-name The column name in the sequence-
table used to store the next value
in the sequence for use by value
generators. See Value Generation.

NEXT_VAL

key-min-value The minimum key value for use
by value generators. Keys lower
than this will not be generated. See
Value Generation.

key-max-value The maximum key value for use
by value generators. Keys higher
than this will not be generated. See
Value Generation.

key-initial-value The starting value for use by value
generators. Keys will start from this
value when being generated. See
Value Generation.

key-cache-size The cache size for keys for use
by value generators. The cache
of keys will be constrained by this
value. See Value Generation.

key-database-cache-size The database cache size for
keys for use by value generators.
The cache of keys will be
constrained by this value. See
Value Generation.

6 8 X M L 346

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

68.1.4 Metadata for primary-key tag

These are attributes within the <primary-key> tag (jdo/package/class/primary-key or class/field/join/
primary-key). It is used to specify the name of the primary key constraint in the datastore during the
schema generation process. When used under <join> it specifies that the join table has a primary-key.

Attribute Description Values

Standard (JDO) Tags

name Name of the primary key constraint.

column Name of the column to use for the
primary key

68.1.5 Metadata for inheritance tag

These are attributes within the <inheritance> tag (jdo/package/class/inheritance). It is used when this
class is part of an inheritance tree, and to denote how the class is stored in the datastore since there are
several ways (strategies) in which it can be stored.

Attribute Description Values

Standard (JDO) Tags

strategy Strategy for inheritance of
this class. Please refer to the
Inheritance Guide. Note that
"complete-table" is a DataNucleus
extension to JDO2

new-table, subclass-table,
superclass-table, complete-table

68.1.6 Metadata for discriminator tag

These are attributes within the <discriminator> tag (jdo/package/class/inheritance/discriminator).
This is used to define a discriminator column that is used when this class is stored in the same table as
another class in the same inheritance tree. The discriminator column will contain a value for objects of
this class, and different values for objects of other classes in the inheritance tree.

Attribute Description Values

Standard (JDO) Tags

strategy Strategy for the discrimination
column

value-map | class-name | none

value Value for the discrimination column

column Name for the discrimination column

6 8 X M L 347

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

indexed Whether the discriminator column
should be indexed. This is to be
specified when defining index
information

true | false | unique

68.1.7 Metadata for version tag

These are attributes within the <version> tag (jdo/package/class/version). This is used to define
whether and how this class is handled with respect to optimistic transactions.

Attribute Description Values

Standard (JDO) Tags

strategy Strategy for versioning of this class.
The "version-number" mode uses
an incremental numbered value,
and the "date-time" mode uses a
java.sql.Timestamp value. state-
image isn't currently supported.

state-image, date-time, version-
number

column Name of the column in the
datastore to store this field

indexed Whether the version column should
be indexed. This is to be specified
when defining index information

true | false | unique

These are attributes within the <extension> tag (jdo/package/class/version/extension).

Attribute Description Values

Extension (JDO) Tags

field-name This extension allows you to
define a field that will be used to
contain the version of the object.
It is populated by DataNucleus at
persist. See JDO Versioning

68.1.8 Metadata for query tag

These are attributes within the <query> tag (jdo/package/class/query). This element is used to define
any "named queries" that are to be available for this class. This element contains the query single-
string form as its content.

Attribute Description Values

Standard (JDO) Tags

6 8 X M L 348

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

name Name of the query. This name is
mandatory and is used in calls to
pm.newNamedQuery(). Has to be
unique for this class.

language Query language to use. Some
datastores offer other languages

JDOQL | SQL | JPQL

unique Whether the query is to return
a unique result (only for SQL
queries).

true | false

result-class Class name of any result class
(only for SQL queries).

68.1.9 Metadata for field tag

These are attributes within the <field> tag (jdo/package/class/field). This is used to define the
persistence behaviour of the fields of the class to which it pertains. Certain types of fields are, by
default, persisted. This element can be used to change the default behaviour and maybe not persist a
field, or to persist something that normally isn't persisted. It is used, in addition, to define more details
about how the field is persisted in the datastore.

Attribute Description Values

Standard (JDO) Tags

name Name of the field.

persistence-modifier The persistence-modifier specifies
how JDO manage each field in your
persistent class. There are three
options: persistent, transactional
and none.

• persistent means that your
field will managed by JDO
and stored in the database on
transaction commit.

• transactional means that your
field will managed by JDO but
not stored in the database.
Transactional fields values
will be saved by JDO when
you start your transaction and
restored when you roll back
your transaction.

• none means that your field will
not be managed by JDO.

persistent, transactional, none

primary-key Whether the field is part of any
primary key (if using application
identity).

true, false

6 8 X M L 349

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

null-value How to treat null values of
persistent fields during storage.
Valid options are "exception",
"default", "none" (where "none" is
the default).

exception, default, none

default-fetch-group Whether this field is part of the
default fetch group for the class.
Defaults to true for non-key fields
of primitive types, java.util.Date,
java.lang.*, java.math.*, etc.

true, false

embedded Whether this field should be stored,
if possible, as part of the object
instead as its own object in the
datastore. This defaults to true
for primitive types, java.util.Date,
java.lang.*, java.math.* etc and
false for persistable, reference
(Object, Interface) and container
types.

true, false

serialized Whether this field should be stored
serialised into a single column of
the table of the containing object.

true, false

dependent Whether the field should be used to
check for dependent objects, and
to delete them when this object is
deleted. In other words cascade
delete capable.

true, false

mapped-by The name of the field at the other
end of a relationship. Used by 1-1,
1-N, M-N to mark a relation as
bidirectional.

value-strategy The strategy for populating values
to this field. Is typically used for
generating primary key values. See
the definitions under "datastore-
identity".

native | sequence | increment |
identity | uuid-string | uuid-hex |
auid | max | timestamp | timestamp-
value | [other values]

sequence Name of the sequence to use to
generate values, when using a
strategy of sequence. Please see
also the class extension tags for
controlling the sequence.

recursion-depth The depth that will be recursed
when this field is self-referencing.
Should be used alongside
FetchPlan.setMaxFetchDepth() to
control the objects fetched.

-1, 1, 2, ... (integer)

6 8 X M L 350

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

field-type Used to specify a more restrictive
type than the field definition in
the class. This might be required
in order to map the field to the
datastore. To be portable, specify
the name of a single type that is
itself able to be mapped to the
datastore (e.g. a field of type Object
can specify field-type="Integer").

indexed Whether the column(s) for this
field should be indexed. This is to
be specified when defining index
information

true | false | unique

table Table name to use for any join
table overriding the default name
provided by DataNucleus. This is
used either for 1-N relationships
with a join table or for Secondary
Tables. See also the property name
"datanucleus.identifier.case" in the
Persistence Properties Guide.

column Column name to use for this field
(alternative to specifying column
sub-elements if only one column).

delete-action The foreign-key delete action. This
is a shortcut to specifying foreign
key information. Please refer to
the <foreign-key> element for full
details.

cascade | restrict | null | default |
none

cacheable Whether the field/property can be
cached in a Level 2 cache. From
JDO2.2

true | false

load-fetch-group Name of a fetch group to activate
when a load of this field is initiated
(due to it being currently unloaded).
Not used for getObjectById,
queries, extents etc. Better to
use "fetch-group" and define your
groups

These are attributes within the <extension> tag (jdo/package/class/field/extension).

Attribute Description Values

Extension (JDO) Tags

cascade-persist JDO defines that when an object
is persisted then all fields will also
be persisted using "persistence-by-
reachability". This extension allows
you to turn off the persistence of a
field relation.

true | false

6 8 X M L 351

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

cascade-update JDO defines that when an object is
updated then all fields containing
persistable objects will also be
updated using "persistence-by-
reachability". This extension allows
you to turn off the update of a field
relation.

true | false

cascade-refresh When calling
PersistenceManager.refresh() only
fetch plan fields of the passed
object will be refreshed. Setting
this to true will refresh the fields of
related PC objects in this field

true | false

allow-nulls When the field is a collection by
default it will not be allowed to have
nulls present but you can allow
them by setting this DataNucleus
extension tag

true | false

insertable Whether this field should be
supplied when inserting into the
datastore.

true | false

updateable Whether this field should be
supplied when updating the
datastore.

true | false

implementation-classes Used to define the possible classes
implementing this interface/Object
field. This is used to limit the
possible tables that this is a foreign
key to (when this field is specified
as an interface/Object in the class).
Value should be comma-separated
list of fully-qualified class names

key-implementation-classes Used to define the possible classes
implementing this interface/Object
key. This is used to limit the
possible tables that this is a foreign
key to (when this key is specified
as an interface/Object). Value
should be comma-separated list of
fully-qualified class names

value-implementation-classes Used to define the possible classes
implementing this interface/Object
value. This is used to limit the
possible tables that this is a foreign
key to (when this value is specified
as an interface/Object). Value
should be comma-separated list of
fully-qualified class names

6 8 X M L 352

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

strategy-when-notnull This is to be used in conjunction
with the "value-strategy" attribute.
Default JDO2 behaviour when you
have a "value-strategy" defined
for a field is to always create
a strategy value for that field
regardless of whether you have
set the value of the field yourself.
This extension allows you to only
apply the strategy if the field is null
at persistence. This extension has
no effect on primitive field types
(which can't be null) and the value-
strategy will always be applied to
such fields.

true | false

relation-discriminator-column Name of a column to use for
discrimination of the relation used
by objects stored. This is defined
when, for example, a join table
is shared by multiple relations
and the objects placed in the join
table need discriminating for which
relation they are for

RELATION_DISCRIM

relation-discriminator-pk Whether the column added for the
discrimination of relations is to be
part of the PK when using a join
table.

true | false

relation-discriminator-value Value to use in the relation
discriminator column for objects of
this fields relation. This is defined
when, for example, a join table
is shared by multiple relations
and the objects placed in the join
table need discriminating for which
relation they are for.

Fully-qualified class name

select-function Permits to use a function when
fetching contents from the
database. A ? (question mark)
is mandatory to have and will be
replaced by the column name when
generating the SQL statement.
For example to specify a value of
UPPER(?) will convert the field
value to upper case on a datastore
that supports that UPPER function.

insert-function Permits to use a function when
inserting into the database. A ?
(question mark) is optional and
will be replaced by the column
name when generating the SQL
statement. For example to specify
a value of TRIM(?) will trim the field
value on a datastore that supports
that TRIM function.

6 8 X M L 353

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

update-function Permits to use a function when
updating into the database. A ?
(question mark) is optional and
will be replaced by the column
name when generating the SQL
statement. For example to specify
a value of FUNC(?) will perform
"FUNC" on the field value on a
datastore that supports that FUNC
function.

sequence-table-basis This defines the basis on which to
generate unique identities when
using the TableValueGenerator
(used by the "increment" strategy,
and sometimes by "native"). You
can either define identities unique
against the base table name, or
against the base class name (in
an inheritance tree). Used when
the strategy is set to native or
increment

class | table

sequence-catalog-name The catalog used to store
sequences for use by value
generators. See Value Generation.
Default catalog for the datastore
will be used if not specified.

sequence-schema-name The schema used to store
sequences for use by value
generators. See Value Generation.
Default schema for the datastore
will be used if not specified.

sequence-table-name The table used to store sequences
for use by value generators. See
Value Generation.

SEQUENCE_TABLE

sequence-name-column-name The column name in the sequence-
table used to store the name of
the sequence for use by value
generators. See Value Generation.

SEQUENCE_NAME

sequence-nextval-column-name The column name in the sequence-
table used to store the next value
in the sequence for use by value
generators. See Value Generation.

NEXT_VAL

key-min-value The minimum key value for use
by value generators. Keys lower
than this will not be generated. See
Value Generation.

key-max-value The maximum key value for use
by value generators. Keys higher
than this will not be generated. See
Value Generation.

key-initial-value The starting value for use by value
generators. Keys will start from this
value when being generated. See
Value Generation.

6 8 X M L 354

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

key-cache-size The cache size for keys for use
by value generators. The cache
of keys will be constrained by this
value. See Value Generation.

key-database-cache-size The database cache size for
keys for use by value generators.
The cache of keys will be
constrained by this value. See
Value Generation.

mapping-class Specifies the mapping class to be
used for mapping this field. This is
only used where the user wants to
override the default DataNucleus
mapping class and provide their
own mapping class for this field.

Fully-qualified class name

68.1.10 Metadata for property tag

These are attributes within the <property> tag (jdo/package/class/property). This is used to define
the persistence behaviour of the Java Bean properties of the class to which it pertains. This element
can be used to change the default behaviour and maybe not persist a property, or to persist something
that normally isn't persisted. It is used, in addition, to define more details about how the property is
persisted in the datastore.

Attribute Description Values

Standard (JDO) Tags

name Name of the property. The "name"
of a property is obtained by taking
the getXXX, setXXX method names
and using the XXX and making the
first letter lowercase.

persistence-modifier The persistence-modifier specifies
how to manage each property
in your persistent class. There
are three options: persistent,
transactional and none.

• persistent means that your
field will be managed and
stored in the database on
transaction commit.

• transactional means that
your field will be managed but
not stored in the database.
Transactional fields values
will be saved by JDO when
you start your transaction and
restored when you roll back
your transaction.

• none means that your field will
not be managed.

persistent, transactional, none

6 8 X M L 355

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

primary-key Whether the property is part of any
primary key (if using application
identity).

true, false

null-value How to treat null values of
persistent properties during
storage.

exception, default, none

default-fetch-group Whether this property is part of the
default fetch group for the class.
Defaults to true for non-key fields
of primitive types, java.util.Date,
java.lang.*, java.math.*, etc.

true, false

embedded Whether this property should be
stored, if possible, as part of the
object instead as its own object in
the datastore. This defaults to true
for primitive types, java.util.Date,
java.lang.*, java.math.* etc and
false for persistable, reference
(Object, Interface) and container
types.

true, false

serialized Whether this property should
be stored serialised into a
single column of the table of the
containing object.

true, false

dependent Whether the property should be
used to check for dependent
objects, and to delete them when
this object is deleted. In other
words cascade delete capable.

true, false

mapped-by The name of the property at the
other end of a relationship. Used by
1-1, 1-N, M-N to mark a relation as
bidirectional.

value-strategy The strategy for populating values
to this property. Is typically used for
generating primary key values. See
the definitions under "datastore-
identity".

native | sequence | increment |
identity | uuid-string | uuid-hex |
auid | max | timestamp | timestamp-
value | [other values]

sequence Name of the sequence to use to
generate values, when using a
strategy of sequence. Please see
also the class extension tags for
controlling the sequence.

recursion-depth The depth that will be
recursed when this
property is self-referencing.
Should be used alongside
FetchPlan.setMaxFetchDepth() to
control the objects fetched.

-1, 1, 2, ... (integer)

6 8 X M L 356

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

field-type Used to specify a more restrictive
type than the property definition in
the class. This might be required
in order to map the field to the
datastore. To be portable, specify
the name of a single type that is
itself able to be mapped to the
datastore (e.g. a field of type Object
can specify field-type="Integer").

indexed Whether the column(s) for this
property should be indexed. This is
to be specified when defining index
information

true | false | unique

table Table name to use for any join
table overriding the default name
provided by DataNucleus. This is
used either for 1-N relationships
with a join table or for Secondary
Tables. See also the property name
"datanucleus.identifier.case" in the
Persistence Properties Guide.

column Column name to use for this
property (alternative to specifying
column sub-elements if only one
column).

delete-action The foreign-key delete action. This
is a shortcut to specifying foreign
key information. Please refer to
the <foreign-key> element for full
details.

cascade | restrict | null | default |
none

cacheable Whether the field/property can be
cached in a Level 2 cache. From
JDO2.2

true | false

load-fetch-group Name of a fetch group to activate
when a load of this field is initiated
(due to it being currently unloaded).
Not used for getObjectById,
queries, extents etc. Better to
use "fetch-group" and define your
groups

These are attributes within the <extension> tag (jdo/package/class/property/extension).

Attribute Description Values

Extension (JDO) Tags

cascade-persist JDO defines that when an object
is persisted then all fields will also
be persisted using "persistence-by-
reachability". This extension allows
you to turn off the persistence of a
field relation.

true | false

6 8 X M L 357

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

cascade-update JDO defines that when an object is
updated then all fields containing
persistable objects will also be
updated using "persistence-by-
reachability". This extension allows
you to turn off the update of a field
relation.

true | false

cascade-refresh When calling
PersistenceManager.refresh() only
fetch plan fields of the passed
object will be refreshed. Setting
this to true will refresh the fields of
related PC objects in this field

true | false

allow-nulls When the field is a collection by
default it will not be allowed to have
nulls present but you can allow
them by setting this DataNucleus
extension tag

true | false

insertable Whether this field should be
supplied when inserting into the
datastore.

true | false

updateable Whether this field should be
supplied when updating the
datastore.

true | false

implementation-classes Used to define the possible classes
implementing this interface/Object
field. This is used to limit the
possible tables that this is a foreign
key to (when this field is specified
as an interface/Object in the class).
Value should be comma-separated
list of fully-qualified class names

key-implementation-classes Used to define the possible classes
implementing this interface/Object
key. This is used to limit the
possible tables that this is a foreign
key to (when this key is specified
as an interface/Object). Value
should be comma-separated list of
fully-qualified class names

value-implementation-classes Used to define the possible classes
implementing this interface/Object
value. This is used to limit the
possible tables that this is a foreign
key to (when this value is specified
as an interface/Object). Value
should be comma-separated list of
fully-qualified class names

6 8 X M L 358

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

strategy-when-notnull This is to be used in conjunction
with the "value-strategy" attribute.
Default JDO2 behaviour when you
have a "value-strategy" defined
for a field is to always create
a strategy value for that field
regardless of whether you have
set the value of the field yourself.
This extension allows you to only
apply the strategy if the field is null
at persistence. This extension has
no effect on primitive field types
(which can't be null) and the value-
strategy will always be applied to
such fields.

true | false

relation-discriminator-column Name of a column to use for
discrimination of the relation used
by objects stored. This is defined
when, for example, a join table
is shared by multiple relations
and the objects placed in the join
table need discriminating for which
relation they are for

RELATION_DISCRIM

relation-discriminator-pk Whether the column added for the
discrimination of relations is to be
part of the PK when using a join
table.

true | false

relation-discriminator-value Value to use in the relation
discriminator column for objects of
this fields relation. This is defined
when, for example, a join table
is shared by multiple relations
and the objects placed in the join
table need discriminating for which
relation they are for.

Fully-qualified class name

select-function Permits to use a function when
fetching contents from the
database. A ? (question mark)
is mandatory to have and will be
replaced by the column name when
generating the SQL statement.
For example to specify a value of
UPPER(?) will convert to upper
case the field value on a datastore
that supports that UPPER function.

insert-function Permits to use a function when
inserting into the database. A ?
(question mark) is optional and
will be replaced by the column
name when generating the SQL
statement. For example to specify
a value of TRIM(?) will trim the field
value on a datastore that supports
that TRIM function.

6 8 X M L 359

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

update-function Permits to use a function when
updating into the database. A ?
(question mark) is optional and
will be replaced by the column
name when generating the SQL
statement. For example to specify
a value of FUNC(?) will perform
FUNC() on the field value on a
datastore that supports that FUNC
function.

sequence-table-basis This defines the basis on which to
generate unique identities when
using the TableValueGenerator
(used by the "increment" strategy,
and sometimes by "native"). You
can either define identities unique
against the base table name, or
against the base class name (in
an inheritance tree). Used when
the strategy is set to native or
increment

class | table

sequence-catalog-name The catalog used to store
sequences for use by value
generators. See Value Generation.
Default catalog for the datastore
will be used if not specified.

sequence-schema-name The schema used to store
sequences for use by value
generators. See Value Generation.
Default schema for the datastore
will be used if not specified.

sequence-table-name The table used to store sequences
for use by value generators. See
Value Generation.

SEQUENCE_TABLE

sequence-name-column-name The column name in the sequence-
table used to store the name of
the sequence for use by value
generators. See Value Generation.

SEQUENCE_NAME

sequence-nextval-column-name The column name in the sequence-
table used to store the next value
in the sequence for use by value
generators. See Value Generation.

NEXT_VAL

key-min-value The minimum key value for use
by value generators. Keys lower
than this will not be generated. See
Value Generation.

key-max-value The maximum key value for use
by value generators. Keys higher
than this will not be generated. See
Value Generation.

key-initial-value The starting value for use by value
generators. Keys will start from this
value when being generated. See
Value Generation.

6 8 X M L 360

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

key-cache-size The cache size for keys for use
by value generators. The cache
of keys will be constrained by this
value. See Value Generation.

key-database-cache-size The database cache size for
keys for use by value generators.
The cache of keys will be
constrained by this value. See
Value Generation.

mapping-class Specifies the mapping class to be
used for mapping this field. This is
only used where the user wants to
override the default DataNucleus
mapping class and provide their
own mapping class for this field.

Fully-qualified class name

68.1.11 Metadata for fetch-group tag

These are attributes within the <fetch-group> tag (jdo/package/class/fetch-group). This element is
used to define fetch groups that are utilised at runtime, and are of particular use with attach/detach.
This element can contain fetch-group sub-elements allowing definition of hierarchical groups. It can
also contain field elements, defining the fields that are part of this fetch-group.

Attribute Description Values

Standard (JDO) Tags

name Name of the fetch group.
Used with the fetch plan of the
PersistenceManager.

post-load Whether to call jdoPostLoad when
the fetch group is invoked.

true | false

68.1.12 Metadata for embedded tag

These are attributes within the <embedded> tag (jdo/package/class/embedded). It is used when this
field is a persistable and is embedded into the same table as the class.

Attribute Description Values

Standard (JDO) Tags

owner-field Name of the field in the embedded
persistable that is the link back to
the owning object (if any).

null-indicator-column Name of the column to be used for
detacting if the embedded object is
null.

6 8 X M L 361

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

null-indicator-value Value of the null-indicator-column
that signifies that the embedded
object is null.

68.1.13 Metadata for key tag

These are attributes within the <key> tag (jdo/package/class/field/key). This element is used to define
details for the persistence of a Map.

Attribute Description Values

Standard (JDO) Tags

mapped-by When the map is formed by a
foreign-key, the key can be a field
in a value persistable class. This
attribute defines which field in the
value class is used as the key

column Name of the column (if only one)

delete-action Action to be performed when the
owner object is deleted. This is to
be specified when defining foreign
key information

cascade | restrict | null | default |
none

indexed Whether the key column should
be indexed. This is to be specified
when defining index information

true | false | unique

unique Whether the key column should be
unique. This is to be specified when
defining unique key information

true | false

68.1.14 Metadata for value tag

These are attributes within the <value> tag (jdo/package/class/field/value). This element is used to
define details for the persistence of a Map.

Attribute Description Values

mapped-by When the map is formed by a
foreign-key, the value can be a
field in a key persistable class. This
attribute defines which field in the
key class is used as the value.

Standard (JDO) Tags

column Name of the column (if only one)

delete-action Action to be performed when the
owner object is deleted. This is to
be specified when defining foreign
key information

cascade | restrict | null | default |
none

6 8 X M L 362

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

indexed Whether the value column should
be indexed. This is to be specified
when defining index information

true | false | unique

unique Whether the value column
should be unique. This is to be
specified when defining unique key
information

true | false

68.1.15 Metadata for order tag

These are attributes within the <order> tag (jdo/package/class/field/order). This is used to define the
column details for the ordering column in a List.

Attribute Description Values

Standard (JDO) Tags

mapped-by When a List is formed by a foreign-
key, the ordering can be a field
in the element persistable class.
This attribute defines which field
in the element class is used as
the ordering. The field must be
of type int, Integer, long, Long.
DataNucleus will write the index
positions to this field (starting at 0
for the first item in the List)

column Name of the column to use for
ordering.

These are attributes within the <extension> tag (jdo/package/class/field/order/extension).

Attribute Description Values

Extension (JDO) Tags

list-ordering Used to make the list be an
"ordered list" where it has no index
column and instead will order
the elements by the specified
expression upon retrieval. The
ordering expression takes names
and ASC/DESC and can be a
composite

{orderfield [ASC|DESC] [,
{orderfield} ASC|DESC]}

68.1.16 Metadata for index tag

These are attributes within the <index> tag (jdo/package/class/field/index). This element is used
where a user wishes to add specific indexes to the datastore to provide more efficient access to
particular fields.

6 8 X M L 363

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Attribute Description Values

Standard (JDO) Tags

name Name of the index in the datastore

unique Whether the index is unique true | false

column Name of the column to use
(alternative to specifying it as a
sub-element).

These are attributes within the <extension> tag (jdo/package/class/field/index/extension).

Attribute Description Values

Extension (JDO) Tags

extended-setting Additional settings to the index.
This extension is used to set
database proprietary settings.

68.1.17 Metadata for foreign-key tag

These are attributes within the <foreign-key> tag (jdo/package/class/field/foreign-key). This is used
where the user wishes to define the behaviour of the foreign keys added due to the relationships in the
object model. This is to be read in conjunction with foreign-key guide

Attribute Description Values

Standard (JDO) Tags

name Name of the foreign key in the
datastore

deferred Whether the constraints are initially
deferred.

true | false

delete-action Action to be performed when the
owner object is deleted.

cascade | restrict | null | default

update-action Action to be performed when the
owner object is updated.

cascade | restrict | null | default

68.1.18 Metadata for unique tag

These are attributes within the <unique> tag (jdo/package/class/unique, jdo/package/class/field/
unique). This element is used where a user wishes to add specific unique constraints to the datastore
to provide more control over particular fields.

Attribute Description Values

Standard (JDO) Tags

6 8 X M L 364

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

name Name of the constraint in the
datastore

column Name of the column to use
(alternative to specifying it as a
sub-element).

68.1.19 Metadata for column tag

These are attributes within the <column> tag (*/column). This is used to define the details of a
column in the datastore, and so can be used to match to an existing datastore schema.

Attribute Description Values

Standard (JDO) Tags

name Name of the column in the
datastore. See also the property
name "datanucleus.identifier.case"
in the Persistence Properties
Guide.

length Length of the column in the
datastore (for character types), or
the precision of the column in the
datastore (for floating point field
types).

positive integer

scale Scale of the column in the
datastore (for floating point field
types).

positive integer

jdbc-type JDBC Type to use for this column
in the datastore when the default
value is not satisfactory. Please
refer to JDBC for the valid types.
Not all of these types are supported
for all RDBMS mappings.

Valid JDBC Type (CHAR,
VARCHAR, LONGVARCHAR,
NUMERIC, DECIMAL, BIT,
TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT,
DOUBLE, BINARY, VARBINARY,
LONGVARBINARY, DATE, TIME,
TIMESTAMP, BLOB, BOOLEAN,
CLOB, DATALINK)

sql-type SQL Type to use for this column
in the datastore. This should not
usually be necessary since the
specification of JDBC type together
with length/scale will likely define it.

Valid SQL Type (e.g VARCHAR,
CHAR, NUMERIC etc)

allows-null Whether the column in the
datastore table should allow nulls
or not. The default is "false" for
primitives, and "true" otherwise.

true | false

6 8 X M L 365

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

default-value Default value to use for this column
when creating the table. If you want
the default to be NULL, then put
this as "#NULL". This is particularly
for cases where you have a table
that stores multiple classes in
an inheritance tree (subclass-
table, superclass-table) so when
you persist a superclass object it
doesn't have the subclass fields in
its INSERT and so the datastore
uses the default-value settings
that are embodied in the CREATE
TABLE statement.

Default value expression

target Declares the name of the primary
key column for the referenced
table. For columns contained in join
elements, this is the name of the
primary key column in the primary
table. For columns contained
in field, element, key, value, or
array elements, this is the name
of the primary key column of the
primary table of the other side of
the relationship.

target column name

target-field Declares the name of the primary
key field for the referenced class.
For columns contained in join
elements, this is the name of
the primary key field in the base
class. For columns contained in
field, element, key, value, or array
elements, this is the name of the
primary key field of the base class
of the other side of the relationship.

target field name

insert-value Value to use for this column when
it has no field in the class and an
object is being inserted. If you want
the inserted value to be NULL, then
put this as "#NULL"

Insert value

position Position of the column in the table
(0 = first).

positive integer

These are attributes within the <extension> tag (*/column/extension).

Attribute Description Values

Extension (JDO) Tags

6 8 X M L 366

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datastore-mapping-class Specifies the datastore mapping
class to be used for mapping this
field. This is only used where
the user wants to override the
default DataNucleus datastore
mapping class and provide their
own mapping class for this field
based on the database data type.
This datastore mapping class must
be available for the DataNucleus
PersistenceManagerFactory
classpath.

Fully-qualified class name

enum-check-constraint Specifies that a CHECK constraint
for this column must be generated
based on the values of a
java.lang.Enum type. e.g. enum
Color (RED, GREEN, BLUE) where
its name is persisted a CHECK
constraint is defined as CHECK
"COLUMN" IN ('RED', 'GREEN',
'BLUE').

true | false

68.1.20 Metadata for join tag

These are attributes within the <join> tag (jdo/package/class/field/join). This element is added when
the field has a mapping to a "join" table (as part of a 1-N relationship). It is also used to specify
overriding of details in an inheritance tree where the primary key columns are shared up the hierarchy.
A further use (when specified under the <class> element) is for specifying the column details for
joining to a Secondary Table.

Attribute Description Values

Standard (JDO) Tags

column Name of the column used to join to
the PK of the primary table (when
only one column used). Used in
Secondary Tables.

table Table name used when joining
the PK of a FCO class table to a
secondary table. See Secondary
Tables.

delete-action Action to be performed when the
owner object is deleted. This is to
be specified when defining foreign
key information

cascade | restrict | null | default |
none

indexed Whether the join table owner
column should be indexed. This is
to be specified when defining index
information

true | false | unique

6 8 X M L 367

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

unique Whether the join table owner
column should be unique. This is to
be specified when defining unique
key information

true | false

outer Whether to use an outer join here.
This is of particular relevance to
secondary tables

true | false

These are attributes within the <extension> tag (jdo/package/class/field/join/extension). These are for
controlling the join table.

Attribute Description Values

Extension (JDO) Tags

primary-key This parameter defines if the join
table will be assigned a primary
key. The default is true since it is
considered a best practice to have
primary keys on all tables. This
allows the option of turning it off.

true | false

68.1.21 Metadata for element tag

These are attributes within the <element> tag (jdo/package/class/field/element). This element is
added when the field has a mapping to a "element" (as part of a 1-N relationship).

Attribute Description Values

Standard (JDO) Tags

mapped-by The name of the field at the other
("N") end of a relationship when
this field is the "1" side of a 1-N
relationship (for FK relationships).
This performs the same function
as specifying "mapped-by" on the
<field> element.

column Name of the column (alternative to
specifying it as a sub-element).

delete-action Action to be performed when the
owner object is deleted. This is to
be specified when defining foreign
key information

cascade | restrict | null | default |
none

indexed Whether the element column
should be indexed. This is to be
specified when defining index
information

true | false | unique

6 8 X M L 368

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

unique Whether the element column
should be unique. This is to be
specified when defining unique key
information

true | false

68.1.22 Metadata for collection tag

These are attributes within the <collection> tag (jdo/package/class/field/collection). This is used to
define the persistence of a Collection.

Attribute Description Values

Standard (JDO) Tags

element-type The type of element stored in this
Collection or array (fully qualified
class). This is not required when
the field is an array. It is also not
required when the Collection is
defined using JDK 1.5 generics.

embedded-element Whether the elements of a
collection or array-valued persistent
field should be stored embedded or
as first-class objects. It's a hint for
the JDO implementation to store,
if possible, the elements of the
collection as part of the it instead
of as their own instances in the
datastore. See the <embedded>
element for details on how to
define the field mappings for the
embedded element.

true, false

dependent-element Whether the elements of the
collection are to be considered
dependent on the owner object.

true, false

serialized-element Whether the elements of a
collection or array-valued persistent
field should be stored serialised
into a single column of the join
table (where used).

true, false

These are attributes within the <extension> tag (jdo/package/class/field/collection/extension).

Attribute Description Values

Extension (JDO) Tags

6 8 X M L 369

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

cache Whether this SCO collection
will be cached by DataNucleus
or whether every access of
the collection will go through
to the datastore. See also
"datanucleus.cache.collections" in
the Persistence Properties Guide.
This MetaData attribute is used
to override the value used by the
PersistenceManagerFactory

true | false

cache-lazy-loading Whether objects from this
SCO collection will be lazy
loaded (loaded when required)
or whether they should be
loaded at initialisation. See also
"datanucleus.cache.collections.lazy"
in the Persistence Properties
Guide. This MetaData attribute is
used to override the value used by
the PersistenceManagerFactory

true | false

comparator-name Defines the name of the
comparator to use with SortedSet,
TreeSet collections. The
specified name is the name of
the comparator class, which
must have a default constructor.
This extension is only used by
SortedSet, TreeSet fields.

Fully-qualified class name

68.1.23 Metadata for map tag

These are attributes within the <map> tag (jdo/package/class/field/map). This is used to define the
persistence of a Map.

Attribute Description Values

Standard (JDO) Tags

key-type The type of key stored in this Map
(fully qualified class). This is not
required when the Map is defined
using JDK 1.5 generics.

embedded-key Whether the elements of a Map key
field should be stored embedded or
as first-class objects.

true, false

value-type The type of value stored in this Map
(fully qualified class). This is not
required when the Map is defined
using JDK 1.5 generics.

embedded-value Whether the elements of a Map
value field should be stored
embedded or as first-class objects.

true, false

6 8 X M L 370

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

dependent-key Whether the keys of the map are
to be considered dependent on the
owner object.

true, false

dependent-value Whether the value of the map are
to be considered dependent on the
owner object.

true, false

serialized-key Whether the keys of a map-valued
persistent field should be stored
serialised into a single column of
the join table (where used).

true, false

serialized-value Whether the values of a map-
valued persistent field should
be stored serialised into a single
column of the join table (where
used).

true, false

These are attributes within the <extension> tag (jdo/package/class/field/map/extension).

Attribute Description Values

Extension (JDO) Tags

cache Whether this SCO map will be
cached by DataNucleus or whether
every access of the map will go
through to the datastore. See also
"datanucleus.cache.collections" in
the Persistence Properties Guide.
This MetaData attribute is used
to override the value used by the
PersistenceManagerFactory

true | false

cache-lazy-loading Whether objects from this
SCO map will be lazy loaded
(loaded when required) or
whether they should be loaded
at initialisation. See also
"datanucleus.cache.collections.lazy"
in the Persistence Properties
Guide. This MetaData attribute is
used to override the value used by
the PersistenceManagerFactory

true | false

comparator-name Defines the name of the
comparator to use with SortedMap,
TreeMap maps. The specified
name is the name of the
comparator class, which must
have a default constructor.
This extension is only used by
SortedMap, TreeMap fields.

Fully-qualified class name

6 8 X M L 371

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

68.1.24 Metadata for array tag

This is used to define the persistence of an array. DataNucleus provides support for many types of
arrays, either serialised into a single column, using a join table, or via a foreign-key (for arrays of PC
objects).

Attribute Description Values

Standard (JDO) Tags

embedded-element Whether the array elements should
be stored embedded (default = true
for primitives, wrappers etc and
false for persistable objects).

true, false

serialized-element Whether the array elements should
be stored serialised into a single
column in the join table.

true, false

dependent-element Whether the elements of the array
are to be considered dependent on
the owner object.

true, false

68.1.25 Metadata for sequence tag

These are attributes within the <sequence> tag. This is used to denote a JDO datastore sequence.

Attribute Description Values

Standard (JDO) Tags

name Symbolic name for the sequence
for this package

datastore-sequence Name of the sequence in the
datastore

factory-class Factory class for creating the
sequence. Please refer to the
Sequence guide

strategy Strategy to use for application of
this sequence.

nontransactional | contiguous |
noncontiguous

allocation-size Allocation size for the sequence for
this package

50

initial-value Initial value for the sequence for
this package

1

These are attributes within the <extension> tag (jdo/package/class/sequence/extension). These are for
controlling the datastore sequences created by DataNucleus. Please refer to the documentation for the
value generator being used for applicability

Attribute Description Values

Extension (JDO) Tags

6 8 X M L 372

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

sequence-catalog-name The catalog used to store
sequences for use by value
generators. See Value Generation.
Default catalog for the datastore
will be used if not specified.

sequence-schema-name The schema used to store
sequences for use by value
generators. See Value Generation.
Default schema for the datastore
will be used if not specified.

sequence-table-name The table used to store sequences
for use by value generators. See
Value Generation.

SEQUENCE_TABLE

sequence-name-column-name The column name in the sequence-
table used to store the name of
the sequence for use by value
generators. See Value Generation.

SEQUENCE_NAME

sequence-nextval-column-name The column name in the sequence-
table used to store the next value
in the sequence for use by value
generators. See Value Generation.

NEXT_VAL

key-min-value The minimum key value for use
by value generators. Keys lower
than this will not be generated. See
Value Generation.

key-max-value The maximum key value for use
by value generators. Keys higher
than this will not be generated. See
Value Generation.

key-initial-value The starting value for use by value
generators. Keys will start from this
value when being generated. See
Value Generation.

key-cache-size The cache size for keys for use
by value generators. The cache
of keys will be constrained by this
value. See Value Generation.

key-database-cache-size The database cache size for
keys for use by value generators.
The cache of keys will be
constrained by this value. See
Value Generation.

68.1.26 Metadata for fetch-plan tag

These are attributes within the <fetch-plan> tag (jdo/fetch-plan). This element is used to define fetch
plans that are utilised at runtime, and are of particular use with queries. This element contains fetch-
group sub-elements.

Attribute Description Values

6 8 X M L 373

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Standard (JDO) Tags

name Name of the fetch plan.

maxFetchDepth Max depth to fetch with this fetch
plan

1

fetchSize Size to fetch with this fetch plan (for
use with query result sets

0

68.1.27 Metadata for class extension tag

These are attributes within the <extension> tag (jdo/package/class/extension). These are for
controlling the class definition

Attribute Description Values

Extension (JDO) Tags

requires-table This is for use with a "nondurable"
identity case and specifies whether
the class requires a table/view in
the datastore.

true | false

ddl-definition Definition of the TABLE SCHEMA
to be used by the class.

true | false

ddl-imports Classes imported resolve macro
identifiers in the definition of a
RDBMS Table.

mysql-engine-type "Engine Type" to use when creating
the table for this class in MySQL.
Refer to the MySQL documentation
for ENGINE type (e.g INNODB,
MEMORY, ISAM)

view-definition Definition of the VIEW to be used
by the class. Please refer to the
RDBMS Views Guide for details.
If your view already exists, then
specify this as " " and have the
autoStart flags set to false.

view-imports Classes imported resolve macro
identifiers in the definition of a
RDBMS View. Please refer to the
RDBMS Views Guide for details.

read-only Whether objects of this type are
read-only. Setting this to true will
prevent any insert/update/delete of
this type

true | false

68.1.28 Metadata for extension tag

These are attributes within the <extension> tag. This is used to denote a DataNucleus extension to
JDO.

6 8 X M L 374

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Attribute Description Values

Standard (JDO) Tags

vendor-name Name of the vendor. For
DataNucleus we use the name
"datanucleus" (lowercase).

key Key of the extension property

value Value of the extension property

6 9 A n n o t a t i o n s 375

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

69 Annotations
...

69.1 JDO : Annotations
Java provides the ability to use annotations, and JDO provides its own set. When selecting to use
annotations please bear in mind the following :-

• You must have the datanucleus-api-jdo jar available in your CLASSPATH.
• You must have the jdo-api (or javax.jdo) jar in your CLASSPATH since this provides the

annotations
• Annotations should really only be used for attributes of persistence that you won't be changing

at deployment. Things such as table and column names shouldn't really be specified using
annotations although it is permitted. Instead it would be better to put such information in an
ORM MetaData file.

• Annotations can be added in two places - for the class as a whole, or for a field in particular.
• You can annotate fields or getters with field-level information. If you annotate fields then the

fields are processed for persistence. If you annotate the methods (getters) then the methods
(properties) are processed for persistence.

• Annotations are prefixed by the @ symbol and can take properties (in brackets after the name,
comma-separated)

Annotations supported by DataNucleus are shown below. The annotations/attributes coloured in
brighter green are ORM and really should be placed in XML rather than directly in the class using
annotations.

Annotation Class/Field/Method Description

@PersistenceCapable Class Specifies that the class/interface
is persistent. In the case of an
interface this would utilise JDO's
"persistent-interface" capabilities

@PersistenceAware Class Specifies that the class is not
persistent but needs to be able to
access fields of persistent classes

@Cacheable Class Specifies whether this class can be
cached in a Level 2 cache or not.

@EmbeddedOnly Class Specifies that the class is persistent
and can only be persisted
embedded in another persistent
class

@DatastoreIdentity Class Specifies the details for generating
datastore-identity for this class

@Version Class Specifies any versioning process
for objects of this class

@FetchPlans Class Defines a series of fetch plans

@FetchPlan Class Defines a fetch plan

@FetchGroups Class Defines a series of fetch groups for
this class

@FetchGroup Class Defines a fetch group for this class

6 9 A n n o t a t i o n s 376

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Sequence Class Defines a sequence for use by this
class

@Queries Class Defines a series of named queries
for this class

@Query Class Defines a named query for this
class

@Inheritance Class Specifies the inheritance model for
persisting this class

@Discriminator Class Specifies any discriminator for this
class to be used for determining
object types

@PrimaryKey Class ORM : Defines the primary key
constraint for this class

@Indices Class ORM : Defines a series of indices
for this class

@Index Class ORM : Defines an index for the
class as a whole (typically a
composite index)

@Uniques Class ORM : Defines a series of unique
constraints for this class

@Unique Class ORM : Defines a unique constraint
for the class as a whole (typically a
composite)

@ForeignKeys Class ORM : Defines a series of foreign-
keys (typically for non-mapped
columns/tables)

@ForeignKey Class ORM : Defines a foreign-key for the
class as a whole (typically for non-
mapped columns/tables)

@Joins Class ORM : Defines a series of joins to
secondary tables from this table

@Join Class ORM : Defines a join to a
secondary table from this table

@Columns Class ORM : Defines a series of columns
that dont have associated fields
("unmapped columns")

@Persistent Field/Method Defines the persistence for a field/
property of the class

@Serialized Field/Method Defines this field as being stored
serialised

@NotPersistent Field/Method Defines this field as being not
persisted

@Transactional Field/Method Defines this field as being
transactional (not persisted, but
managed)

@Cacheable Field/Method Specifies whether this field/property
can be cached in a Level 2 cache
or not.

6 9 A n n o t a t i o n s 377

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PrimaryKey Field/Method Defines this field as being (part of)
the primary key

@Element Field/Method Defines the details of elements of
an array/collection stored in this
field

@Key Field/Method Defines the details of keys of a map
stored in this field

@Value Field/Method Defines the details of values of a
map stored in this field

@Order Field/Method ORM : Defines the details of
ordering of an array/collection
stored in this field

@Join Field/Method ORM : Defines the join to a join
table for a collection/array/map

@Embedded Field/Method ORM : Defines that this field is
embedded and how it is embedded

@Columns Field/Method ORM : Defines a series of columns
where a field is persisted

@Column Field/Method ORM : Defines a column where a
field is persisted

@Index Field/Method ORM : Defines an index for the field

@Unique Field/Method ORM : Defines a unique constraint
for the field

@ForeignKey Field/Method ORM : Defines a foreign key for the
field

@Extensions Class/Field/Method Defines a series of JDO extensions

@Extension Class/Field/Method Defines a JDO extension

69.1.1 @PersistenceCapable

This annotation is used when you want to mark a class as persistent. It equates to the <class> XML
element (though with only some of its attributes). Specified on the class.

Attribute Type Description Default

requiresExtent String Whether an extent is
required for this class

true

embeddedOnly String Whether objects of this
class can only be stored
embedded in other
objects

false

detachable String Whether objects of this
class can be detached

false

identityType IdentityType Type of identity
(APPLICATION,
DATASTORE,
NONDURABLE)

DATASTORE

6 9 A n n o t a t i o n s 378

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

objectIdClass Class Object-id class

table String ORM : Name of the
table where this class is
persisted

catalog String ORM : Name of the
catalog where this table is
persisted

schema String ORM : Name of the
schema where this table
is persisted

cacheable String Whether the class can be
L2 cached.

true | false

serializeRead String Whether to default reads
of this object type to lock
the object

false

extensions Extension[] Vendor extensions

@PersistenceCapable(identityType=IdentityType.APPLICATION)

public class MyClass

{

 ...

}

69.1.2 @PersistenceAware

This annotation is used when you want to mark a class as being used in persistence but not being
persistable. That is "persistence-aware" in JDO terminology. It has no attributes. Specified on the
class.

@PersistenceAware

public class MyClass

{

 ...

}

See the documentation for Class Mapping

69.1.3 @Cacheable

This annotation is a shortcut for @PersistenceCapable(cacheable={value}) specifying whether the
class can be cached in a Level 2 cache. Specified on the class. The default

Attribute Type Description Default

6 9 A n n o t a t i o n s 379

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

value String Whether the class is
cacheable

true | false

@Cacheable("false")

public class MyClass

{

 ...

}

See the documentation for L2 Caching

69.1.4 @EmbeddedOnly

This annotation is a shortcut for @PersistenceCapable(embeddedOnly="true") meaning that the class
can only be persisted embedded into another class. It has no attributes. Specified on the class.

@EmbeddedOnly

public class MyClass

{

 ...

}

69.1.5 @Inheritance

Annotation used to define the inheritance for a class. Specified on the class.

Attribute Type Description Default

strategy InheritanceStrategy The inheritance
strategy (NEW_TABLE,
SUBCLASS_TABLE,
SUPERCLASS_TABLE)

customStrategy String Name of a custom
inheritance strategy
(DataNucleus supports
"complete-table")

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)

public class MyClass

{

 ...

}

See the documentation for Inheritance

6 9 A n n o t a t i o n s 380

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

69.1.6 @Discriminator

Annotation used to define a discriminator to be stored with instances of this class and is used to
determine the types of the objects being stored. Specified on the class.

Attribute Type Description Default

strategy DiscriminatorStrategy The discriminator
strategy (VALUE_MAP,
CLASS_NAME, NONE)

value String Value to use for instances
of this type when using
strategy of VALUE_MAP

column String ORM : Name of the
column to use to store the
discriminator

indexed String ORM : Whether the
discriminator column is to
be indexed

columns Column[] ORM : Column definitions
used for storing the
discriminator

@PersistenceCapable

@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)

@Discriminator(strategy=DiscriminatorStrategy.CLASS_NAME)

public class MyClass

{

 ...

}

69.1.7 @DatastoreIdentity

Annotation used to define the identity when using datastore-identity for the class. Specified on the
class.

Attribute Type Description Default

strategy IdGeneratorStrategy The inheritance strategy
(NATIVE, SEQUENCE,
IDENTITY, INCREMENT,
UUIDSTRING, UUIDHEX)

customStrategy String Name of a custom id
generation strategy
(e.g "max", "auid"). This
overrides the value of
"strategy"

6 9 A n n o t a t i o n s 381

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

sequence String Name of the sequence
to use (when using
SEQUENCE strategy) -
refer to @Sequence

column String ORM : Name of the
column for the datastore
identity

columns Column[] ORM : Column definition
for the column(s) for the
datastore identity

extensions Extension[] Vendor extensions

@PersistenceCapable

@DatastoreIdentity(strategy=IdGeneratorStrategy.INCREMENT)

public class MyClass

{

 ...

}

See the documentation for Datastore Identity

69.1.8 @Version

Annotation used to define the versioning details for use with optimistic transactions. Specified on the
class.

Attribute Type Description Default

strategy VersionStrategy The version strategy
(NONE, STATE_IMAGE,
DATE_TIME,
VERSION_NUMBER)

indexed String Whether the version
column(s) is indexed

column String ORM : Name of the
column for the version

columns Column[] ORM : Column definition
for the column(s) for the
version

extensions Extension[] Vendor extensions

@PersistenceCapable

@Version(strategy=VersionStrategy.VERSION_NUMBER)

public class MyClass

{

 ...

}

6 9 A n n o t a t i o n s 382

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

See the documentation for Optimistic Transactions

69.1.9 @PrimaryKey

Annotation used to define the primary key constraint for a class. Maps across to the <primary-key>
XML element. Specified on the class.

Attribute Type Description Default

name String ORM : Name of the
primary key constraint

column String ORM : Name of the
column for this key

columns Column[] ORM : Column definition
for the column(s) of this
key

@PersistenceCapable

@PrimaryKey(name="MYCLASS_PK")

public class MyClass

{

 ...

}

69.1.10 @FetchPlans

Annotation used to define a set of fetch plans. Specified on the class. Used by named queries

Attribute Type Description Default

value FetchPlan[] Array of fetch plans - see
@FetchPlan annotation

@PersistenceCapable

@FetchPlans({@FetchPlan(name="plan_3", maxFetchDepth=3, fetchGroups={"group1", "group4"}),

 @FetchPlan(name="plan_4", maxFetchDepth=2, fetchGroups={"group1", "group2"})})

public class MyClass

{

 ...

}

See the documentation for FetchGroups

6 9 A n n o t a t i o n s 383

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

69.1.11 @FetchPlan

Annotation used to define a fetch plan Is equivalent to the <fetch-plan> XML element. Specified on
the class. Used by named queries

Attribute Type Description Default

name String Name of the FetchPlan

maxFetchDepth int Maximum fetch depth 1

fetchSize int Size hint for fetching
query result sets

0

fetchGroups String[] Names of the fetch
groups included in this
FetchPlan.

@PersistenceCapable

@FetchPlan(name="plan_3", maxFetchDepth=3, fetchGroups={"group1", "group4"})

public class MyClass

{

 ...

}

See the documentation for FetchGroups

69.1.12 @FetchGroups

Annotation used to define a set of fetch groups for a class. Specified on the class.

Attribute Type Description Default

value FetchGroup[] Array of fetch groups
- see @FetchGroup
annotation

6 9 A n n o t a t i o n s 384

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

@FetchGroups({@FetchGroup(name="one_two", members={@Persistent(name="field1"), @Persistent(name="field2")}),

 @FetchGroup(name="three", members={@Persistent(name="field3")})})

public class MyClass

{

 @Persistent

 String field1;

 @Persistent

 String field2;

 @Persistent

 String field3;

 ...

}

See the documentation for FetchGroups

69.1.13 @FetchGroup

Annotation used to define a fetch group. Is equivalent to the <fetch-group> XML element. Specified
on the class.

Attribute Type Description Default

name String Name of the fetch group

postLoad String Whether to call
jdoPostLoad after loading
this fetch group

members Persistent[] Definitions of the fields/
properties to include in
this fetch group

@PersistenceCapable

@FetchGroup(name="one_two", members={@Persistent(name="field1"), @Persistent(name="field2")})

public class MyClass

{

 @Persistent

 String field1;

 @Persistent

 String field2;

 ...

}

See the documentation for FetchGroups

6 9 A n n o t a t i o n s 385

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

69.1.14 @Sequence

Annotation used to define a sequence generator. Is equivalent to the <sequence> XML element.
Specified on the class.

Attribute Type Description Default

name String Name of the sequence

strategy SequenceStrategy Strategy for the sequence
(NONTRANSACTIONAL,
CONTIGUOUS,
NONCONTIGUOUS)

datastoreSequence String Name of a datastore
sequence that this maps
to

factoryClass Class Factory class to use to
generate the sequence

initialValue int Initial value of the
sequence

1

allocationSize int Allocation size of the
sequence

50

extensions Extension[] Vendor extensions

See the documentation for Sequences

69.1.15 @Queries

Annotation used to define a set of named queries for a class. Specified on the class.

Attribute Type Description Default

value Query[] Array of queries - see
@Query annotation

@PersistenceCapable

@Queries({@Query(name="PeopleCalledSmith", language="JDOQL",

 value="SELECT FROM org.datanucleus.samples.Person WHERE surname == \"Smith\""),

 @Query(name="PeopleCalledJones", language="JDOQL",

 value="SELECT FROM org.datanucleus.samples.Person WHERE surname == \"Jones\"")})

public class Person

{

 @Persistent

 String surname;

 ...

}

See the documentation for Named Queries

6 9 A n n o t a t i o n s 386

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

69.1.16 @Query

Annotation used to define a named query. Is equivalent to the <query> XML element. Specified on
the class.

Attribute Type Description Default

name String Name of the query

value String The query string itself

language String Language of the query
(JDOQL, SQL, ...)

JDOQL

unmodifiable String Whether the query is not
modifiable at runtime

unique String Whether the query returns
unique results (for SQL
queries only)

resultClass Class Result class to use (for
SQL queries only)

fetchPlan String Name of a named
FetchPlan to use with this
query

extensions Extension[] Vendor extensions

@PersistenceCapable

@Query(name="PeopleCalledSmith", language="JDOQL",

 value="SELECT FROM org.datanucleus.samples.Person WHERE surname == \"Smith\"")

public class Person

{

 @Persistent

 String surname;

 ...

}

See the documentation for Named Queries

69.1.17 @Indices

Annotation used to define a set of indices for a class. Specified on the class.

Attribute Type Description Default

value Index[] Array of indices - see
@Index annotation

6 9 A n n o t a t i o n s 387

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

@Indices({@Index(name="MYINDEX_1", members={"field1","field2"}), @Index(name="MYINDEX_2", members={"field3"})})

public class Person

{

 ...

}

See the documentation for Schema Constraints

69.1.18 @Index

Annotation used to define an index for the class as a whole typically being a composite index across
multiple columns or fields/properties. Is equivalent to the <index> XML element when specified
under class. Specified on the class.

Attribute Type Description Default

name String ORM : Name of the index

table String ORM : Name of the table
for the index

unique String ORM : Whether the index
is unique

members String[] ORM : Names of the
fields/properties that
make up this index

columns Column[] ORM : Columns that
make up this index

@PersistenceCapable

@Index(name="MY_COMPOSITE_IDX", members={"field1", "field2"})

public class MyClass

{

 @Persistent

 String field1;

 @Persistent

 String field2;

 ...

}

See the documentation for Schema Constraints

69.1.19 @Uniques

Annotation used to define a set of unique constraints for a class. Specified on the class.

6 9 A n n o t a t i o n s 388

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Attribute Type Description Default

value Unique[] Array of constraints - see
@Unique annotation

@PersistenceCapable

@Uniques({@Unique(name="MYCONST_1", members={"field1","field2"}), @Unique(name="MYCONST_2", members={"field3"})})

public class Person

{

 ...

}

See the documentation for Schema Constraints

69.1.20 @Unique

Annotation used to define a unique constraints for the class as a whole typically being a composite
constraint across multiple columns or fields/properties. Is equivalent to the <unique> XML element
when specified under class. Specified on the class.

Attribute Type Description Default

name String ORM : Name of the
constraint

table String ORM : Name of the table
for the constraint

deferred String ORM : Whether the
constraint is deferred

members String[] ORM : Names of the
fields/properties that
make up this constraint

columns Column[] ORM : Columns that
make up this constraint

@PersistenceCapable

@Unique(name="MY_COMPOSITE_IDX", members={"field1", "field2"})

public class MyClass

{

 @Persistent

 String field1;

 @Persistent

 String field2;

 ...

}

6 9 A n n o t a t i o n s 389

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

See the documentation for Schema Constraints

69.1.21 @ForeignKeys

Annotation used to define a set of foreign-key constraints for a class. Specified on the class.

Attribute Type Description Default

value ForeignKey[] Array of FK constraints
- see @ForeignKey
annotation

See the documentation for Schema Constraints

69.1.22 @ForeignKey

Annotation used to define a foreign-key constraint for the class. Specified on the class.

Attribute Type Description Default

name String ORM : Name of the
constraint

table String ORM : Name of the table
that the FK is to

deferred String ORM : Whether the
constraint is deferred

unique String ORM : Whether the
constraint is unique

deleteAction ForeignKeyAction ORM : Action to apply
to the FK to be used on
deleting

ForeignKeyAction.RESTRICT

updateAction ForeignKeyAction ORM : Action to apply
to the FK to be used on
updating

ForeignKeyAction.RESTRICT

members String[] ORM : Names of the
fields/properties that
compose this FK.

columns Column[] ORM : Columns that
compose this FK.

See the documentation for Schema Constraints

69.1.23 @Joins

Annotation used to define a set of joins (to secondary tables) for a class. Specified on the class.

6 9 A n n o t a t i o n s 390

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Attribute Type Description Default

value Join[] Array of joins - see @Join
annotation

@PersistenceCapable

@Joins({@Join(table="MY_OTHER_TABLE", column="MY_PK_COL"),

 @Join(table="MY_SECOND_TABLE", column="MY_PK_COL")})

public class MyClass

{

 @Persistent(table="MY_OTHER_TABLE")

 String myField;

 @Persistent(table="MY_SECOND_TABLE")

 String myField2;

 ...

}

69.1.24 @Join

Annotation used to specify a join for a secondary table. Specified on the class.

Attribute Type Description Default

table String ORM : Table name used
when joining the PK of
a FCO class table to a
secondary table.

column String ORM : Name of the
column used to join to the
PK of the primary table
(when only one column
used)

outer String ORM : Whether to use an
outer join when retrieving
fields/properties stored in
the secondary table

columns Column[] ORM : Name of the
colums used to join to the
PK of the primary table
(when multiple columns
used)

extensions Extension[] Vendor extensions

6 9 A n n o t a t i o n s 391

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable(name="MYTABLE")

@Join(table="MY_OTHER_TABLE", column="MY_PK_COL")

public class MyClass

{

 @Persistent(name="MY_OTHER_TABLE")

 String myField;

 ...

}

69.1.25 @Columns

Annotation used to define the columns which have no associated field in the class. User should
specify a minimum of @Column "name", "jdbcType", and "insertValue". Specified on the class.

Attribute Type Description Default

value Column[] Array of columns - see
@Column annotation

@PersistenceCapable

@Columns(@Column(name="MY_OTHER_COL", jdbcType="VARCHAR", insertValue="N/A")

public class MyClass

{

 ...

}

69.1.26 @Persistent

Annotation used to define the fields/properties to be persisted. Is equivalent to the <field> and
<property> XML elements. Specified on the field/method.

Attribute Type Description Default

persistenceModifier PersistenceModifier Whether the field is
persistent (PERSISTENT,
TRANSACTIONAL,
NONE)

[depends on field type]

defaultFetchGroup String Whether the field is part of
the DFG

nullValue NullValue Required behaviour when
inserting a null value
for this field (NONE,
EXCEPTION, DEFAULT).

NONE

6 9 A n n o t a t i o n s 392

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

embedded String Whether this field as a
whole is embedded. Use
@Embedded to specify
details.

embeddedElement String Whether the element
stored in this collection/
array field/property is
embedded

embeddedKey String Whether the key stored in
this map field/property is
embedded

embeddedValue String Whether the value stored
in this map field/property
is embedded

serialized String Whether this field/property
as a whole is serialised

serializedElement String Whether the element
stored in this collection/
array field/property is
serialised

serializedKey String Whether the key stored in
this map field/property is
serialised

serializedValue String Whether the value stored
in this map field/property
is serialised

dependent String Whether this field is
dependent, deleting
the related object when
deleting this object

dependentElement String Whether the element
stored in this field/
property is dependent

dependentKey String Whether the key stored
in this field/property is
dependent

dependentValue String Whether the value stored
in this field/property is
dependent

primaryKey String Whether this field is (part
of) the primary key

false

valueStrategy IdGeneratorStrategy Strategy to use
when generating
values for the field
(NATIVE, SEQUENCE,
IDENTITY, INCREMENT,
UUIDSTRING, UUIDHEX)

customValueStrategy String Name of a custom id
generation strategy
(e.g "max", "auid"). This
overrides the value of
"valueStrategy"

6 9 A n n o t a t i o n s 393

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

sequence String Name of the sequence
when using valueStrategy
of SEQUENCE - refer to
@Sequence

types Class[] Type(s) of field (when
using interfaces/reference
types). DataNucleus
currently only supports
the first value although in
the future it is hoped to
support multiple.

mappedBy String Field in other class when
the relation is bidirectional
to signify the owner of the
relation

table String ORM : Name of the
table where this field is
persisted. If this field is a
collection/map/array then
the table refers to a join
table, otherwise this refers
to a secondary table.

name String Name of the field when
defining an embedded
field.

columns Column[] ORM : Column
definition(s) for the
columns into which this
field is persisted. This is
only typically used when
specifying columns of
a field of an embedded
class.

cacheable String Whether the field/property
can be L2 cached.

true | false

extensions Extension[] Vendor extensions

recursionDepth int Recursion depth for
this field when fetching.
Only applicable when
specified within
@FetchGroup

1

loadFetchGroup String Name of a fetch group
to activate when a load
of this field is initiated
(due to it being currently
unloaded). Not used for
getObjectById, queries,
extents etc. Better to use
@FetchGroup and define
your groups

6 9 A n n o t a t i o n s 394

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

public class MyClass

{

 @Persistent(primaryKey="true")

 String myField;

 ...

}

See the documentation for Fields/Properties

69.1.27 @Serialized

This annotation is a shortcut for @Persistent(serialized="true") meaning that the field is stored
serialized. It has no attributes. Specified on the field/method.

@PersistenceCapable

public class MyClass

{

 @Serialized

 Object myField;

 ...

}

See the documentation for Serialising

69.1.28 @NotPersistent

This annotation is a shortcut for @Persistent(persistenceModifier=PersistenceModifier.NONE)
meaning that the field/property is not persisted. It has no attributes. Specified on the field/method.

@PersistenceCapable

public class MyClass

{

 @NotPersistent

 String myOtherField;

 ...

}

See the documentation for Fields/Properties

69.1.29 @Transactional

This annotation is a shortcut for
@Persistent(persistenceModifier=PersistenceModifier.TRANSACTIONAL) meaning that the field/
property is not persisted yet managed. It has no attributes. Specified on the field/method.

6 9 A n n o t a t i o n s 395

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

public class MyClass

{

 @Transactional

 String myOtherField;

 ...

}

See the documentation for Fields/Properties

69.1.30 @Cacheable

This annotation is a shortcut for @Persistent(cacheable={value}) specifying whether the field/
property can be cached in a Level 2 cache. Specified on the field/property. The default

Attribute Type Description Default

value String Whether the field/property
is cacheable

true | false

public class MyClass

{

 @Cacheable("false")

 Collection elements;

 ...

}

See the documentation for L2 Caching

69.1.31 @PrimaryKey

This annotation is a shortcut for @Persistent(primaryKey="true") meaning that the field/property is
part of the primary key for the class. No attributes are needed when specified like this. Specified on
the field/method.

@PersistenceCapable

public class MyClass

{

 @PrimaryKey

 String myOtherField;

 ...

}

See the documentation for Schema Constraints

6 9 A n n o t a t i o n s 396

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

69.1.32 @Element

Annotation used to define the element for any collection/array to be persisted. Maps across to the
<collection>, <array> and <element> XML elements. Specified on the field/method.

Attribute Type Description Default

types Class[] Type(s) of element.
While the attribute
allows multiple values
DataNucleus currently
only supports the first type
value

When using an array
is not needed. When
using a collection will
be taken from the
collection definition if
using generics, otherwise
must be specified.

embedded String Whether the element is
embedded into a join
table

serialized String Whether the element is
serialised into the join
table

dependent String Whether the element
objects are dependent
when deleting the owner
collection/array

mappedBy String Field in the element class
that represents this object
(when the relation is
bidirectional)

embeddedMapping Embedded[] Definition of any
embedding of the
(persistable) element.
Only 1 "Embedded"
should be provided

table String ORM : Name of the table
for this element

column String ORM : Name of the
column for this element

foreignKey String ORM : Name of any
foreign-key constraint to
add

generateForeignKey String ORM : Whether to
generate a FK constraint
for the element (when not
specifying the name)

deleteAction ForeignKeyAction ORM : Action to be
applied to the foreign key
for this element for action
upon deletion

updateAction ForeignKeyAction ORM : Action to be
applied to the foreign key
for this element for action
upon update

6 9 A n n o t a t i o n s 397

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

index String ORM : Name of any index
constraint to add

indexed String ORM : Whether this
element column is
indexed

unique String ORM : Whether this
element column is unique

uniqueKey String ORM : Name of any
unique key constraint to
add

columns Column[] ORM : Column definition
for the column(s) of this
element

extensions Extension[] Vendor extensions

@PersistenceCapable

public class MyClass

{

 @Element(types=org.datanucleus.samples.MyElementClass.class, dependent="true")

 Collection myField;

 ...

}

69.1.33 @Order

Annotation used to define the ordering of an order-based Collection/array to be persisted. Maps across
to the <order> XML element. Specified on the field/method.

Attribute Type Description Default

mappedBy String ORM : Field in the
element class that
represents the ordering of
the collection/array

column String ORM : Name of the
column for this order

columns Column[] ORM : Column definition
for the column(s) of this
order

extensions Extension[] Vendor extensions

6 9 A n n o t a t i o n s 398

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

public class MyClass

{

 @Element(types=org.datanucleus.samples.MyElementClass.class, dependent="true")

 @Order(column="ORDER_IDX")

 Collection myField;

 ...

}

69.1.34 @Key

Annotation used to define the key for any map to be persisted. Maps across to the <map> and <key>
XML elements. Specified on the field/method.

Attribute Type Description Default

types Class[] Type(s) of key. While the
attribute allows multiple
values DataNucleus
currently only supports
the first type value

When using generics will
be taken from the Map
definition, otherwise must
be specified

embedded String Whether the key is
embedded into a join
table

serialized String Whether the key is
serialised into the join
table

dependent String Whether the key objects
are dependent when
deleting the owner map

mappedBy String Used to specify the field in
the value class where the
key is stored (optional).

embeddedMapping Embedded[] Definition of any
embedding of the
(persistable) key. Only 1
"Embedded" should be
provided

table String ORM : Name of the table
for this key

column String ORM : Name of the
column for this key

foreignKey String ORM : Name of any
foreign-key constraint to
add

generateForeignKey String ORM : Whether to
generate a FK constraint
for the key (when not
specifying the name)

6 9 A n n o t a t i o n s 399

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

deleteAction ForeignKeyAction ORM : Action to be
applied to the foreign
key for this key for action
upon deletion

updateAction ForeignKeyAction ORM : Action to be
applied to the foreign
key for this key for action
upon update

index String ORM : Name of any index
constraint to add

indexed String ORM : Whether this key
column is indexed

uniqueKey String ORM : Name of any
unique key constraint to
add

unique String ORM : Whether this key
column is unique

columns Column[] ORM : Column definition
for the column(s) of this
key

extensions Extension[] Vendor extensions

@PersistenceCapable

public class MyClass

{

 @Key(types=java.lang.String.class)

 Map myField;

 ...

}

69.1.35 @Value

Annotation used to define the value for any map to be persisted. Maps across to the <map> and
<value> XML elements. Specified on the field/method.

Attribute Type Description Default

types Class[] Type(s) of value.
While the attribute
allows multiple values
DataNucleus currently
only supports the first type
value

When using generics will
be taken from the Map
definition, otherwise must
be specified

embedded String Whether the value is
embedded into a join
table

6 9 A n n o t a t i o n s 400

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

serialized String Whether the value is
serialised into the join
table

dependent String Whether the value objects
are dependent when
deleting the owner map

mappedBy String Used to specify the field
in the key class where the
value is stored (optional).

embeddedMapping Embedded[] Definition of any
embedding of the
(persistable) value. Only
1 "Embedded" should be
provided

table String ORM : Name of the table
for this value

column String ORM : Name of the
column for this value

foreignKey String ORM : Name of any
foreign-key constraint to
add

deleteAction ForeignKeyAction ORM : Action to be
applied to the foreign key
for this value for action
upon deletion

generateForeignKey String ORM : Whether to
generate a FK constraint
for the value (when not
specifying the name)

updateAction ForeignKeyAction ORM : Action to be
applied to the foreign key
for this value for action
upon update

index String ORM : Name of any index
constraint to add

indexed String ORM : Whether this value
column is indexed

uniqueKey String ORM : Name of any
unique key constraint to
add

unique String ORM : Whether this value
column is unique

columns Column[] ORM : Column definition
for the column(s) of this
value

extensions Extension[] Vendor extensions

6 9 A n n o t a t i o n s 401

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

public class MyClass

{

 @Key(types=java.lang.String.class)

 @Value(types=org.datanucleus.samples.MyValueClass.class, dependent="true")

 Map myField;

 ...

}

69.1.36 @Join

Annotation used to specify a join to a join table for a collection/array/map. Specified on the field/
method.

Attribute Type Description Default

table String ORM : Name of the table

column String ORM : Name of the
column to join our PK to in
the join table (when only
one column used)

primaryKey String ORM : Name of any
primary key constraint to
add for the join table

generatePrimaryKey String ORM : Whether to
generate a PK constraint
on the join table (when
not specifying the name)

foreignKey String ORM : Name of any
foreign-key constraint to
add

generateForeignKey String ORM : Whether to
generate a FK constraint
on the join table (when
not specifying the name)

index String ORM : Name of any index
constraint to add

indexed String ORM : Whether the join
column(s) is indexed

uniqueKey String ORM : Name of any
unique constraint to add

unique String ORM : Whether the join
column(s) has a unique
constraint

columns Column[] ORM : Name of the
columns to join our PK
to in the join table (when
multiple columns used)

6 9 A n n o t a t i o n s 402

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

extensions Extension[] Vendor extensions

@PersistenceCapable

public class MyClass

{

 @Persistent

 @Element(types=org.datanucleus.samples.MyElement.class)

 @Join(table="MYCLASS_ELEMENTS", column="MYCLASS_ELEMENTS_PK")

 Collection myField;

 ...

}

69.1.37 @Embedded

Annotation used to define that the field contents is embedded into the same table as this field Maps
across to the <embedded> XML element. Specified on the field/method.

Attribute Type Description Default

ownerMember String ORM : The field/property
in the embedded object
that links back to the
owning object (where
it has a bidirectional
relation)

nullIndicatorColumn String ORM : The column in the
embedded object used
to judge if the embedded
object is null.

nullIndicatorValue String ORM : The value in the
null column to interpret
the object as being null.

members Persistent[] ORM : Field/property
definitions for this
embedding.

6 9 A n n o t a t i o n s 403

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

public class MyClass

{

 @Embedded(members={

 @Persistent(name="field1", columns=@Column(name="OTHER_FLD_1")),

 @Persistent(name="field2", columns=@Column(name="OTHER_FLD_2"))

 })

 MyOtherClass myField;

 ...

}

@PersistenceCapable

@EmbeddedOnly

public class MyOtherClass

{

 @Persistent

 String field1;

 @Persistent

 String field2;

}

69.1.38 @Columns

Annotation used to define the columns into which a field is persisted. If the field is persisted into a
single column then @Column should be used. Specified on the field/method.

Attribute Type Description Default

value Column[] Array of columns - see
@Columns annotation

@PersistenceCapable

public class MyClass

{

 @Persistent

 @Columns({@Column(name="RED"), @Column(name="GREEN"), @Column(name="BLUE"), @Column(name="ALPHA")})

 Color myField;

 ...

}

69.1.39 @Column

Annotation used to define that the colum where a field is persisted. Is equivalent to the <column>
XML element when specified under field. Specified on the field/method (and within other
annotations).

6 9 A n n o t a t i o n s 404

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Attribute Type Description Default

name String ORM : Name of the
column

target String ORM : Column in the
other class that this maps
to

targetMember String ORM : Field/Property in
the other class that this
maps to

jdbcType String ORM : JDBC Type to use
for persisting into this
column

sqlType String ORM : SQL Type to use
for persisting into this
column

length int ORM : Max length of data
to store in this column

scale int ORM : Max number of
floating points of data to
store in this column

allowsNull String ORM : Whether null is
allowed to be persisted
into this column

defaultValue String ORM : Default value to
persist into this column.
If you want the default to
be NULL, then put this as
"#NULL"

insertValue String ORM : Value to insert
into this column when it is
an "unmapped" column.
If you want the inserted
value to be NULL, then
put this as "#NULL"

position int Position of this column in
the owning table (0 = first)

extensions Extension[] Vendor extensions

@PersistenceCapable

public class MyClass

{

 @Persistent

 @Column(name="MYCOL", jdbcType="VARCHAR", length=40)

 String field1;

 ...

}

6 9 A n n o t a t i o n s 405

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

69.1.40 @Index

Annotation used to define that this field is indexed. Is equivalent to the <index> XML element when
specified under field. Specified on the field/method.

Attribute Type Description Default

name String ORM : Name of the index

unique String ORM : Whether the index
is unique

@PersistenceCapable

public class MyClass

{

 @Persistent

 @Index(name="MYFIELD1_IDX")

 String field1;

 @Persistent

 @Index(name="MYFIELD2_IDX", unique="true")

 String field2;

 ...

}

See the documentation for Schema Constraints

69.1.41 @Unique

Annotation used to define that this field has a unique constraint. Is equivalent to the <unique> XML
element when specified under field. Specified on the field/method.

Attribute Type Description Default

name String ORM : Name of the
constraint

deferred String ORM : Whether the
constraint is deferred

@PersistenceCapable

public class MyClass

{

 @Persistent

 @Unique(name="MYFIELD1_IDX")

 String field1;

 ...

}

6 9 A n n o t a t i o n s 406

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

See the documentation for Schema Constraints

69.1.42 @ForeignKey

Annotation used to define the foreign key for a relationship field. Is equivalent to the <foreign-key>
XML element when specified under field. Specified on the field/method.

Attribute Type Description Default

name String ORM : Name of the
constraint

deferred String ORM : Whether the
constraint is deferred

unique String ORM : Whether the
constraint is unique

deleteAction ForeignKeyAction ORM : Action to apply
to the FK to be used on
deleting

ForeignKeyAction.RESTRICT

updateAction ForeignKeyAction ORM : Action to apply
to the FK to be used on
updating

ForeignKeyAction.RESTRICT

@PersistenceCapable

public class MyClass

{

 @Persistent

 @ForeignKey(name="MYFIELD1_FK", deleteAction=ForeignKeyAction.RESTRICT)

 String field1;

 ...

}

See the documentation for Schema Constraints

69.1.43 @Extensions

Annotation used to define a set of extensions specific to the JDO implementation being used.
Specified on the class or field.

Attribute Type Description Default

value Extension[] Array of extensions - see
@Extension annotation

6 9 A n n o t a t i o n s 407

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

@Extensions({@Extension(vendorName="datanucleus", key="firstExtension", value="myValue"),

 @Extension(vendorName="datanucleus", key="secondExtension", value="myValue")})

public class Person

{

 ...

}

69.1.44 @Extension

Annotation used to define an extension specific to a particular JDO implementation. Is equivalent to
the <extension> XML element. Specified on the class or field.

Attribute Type Description Default

vendorName String Name of the JDO vendor

key String Key for the extension

value String Value of the extension

@PersistenceCapable

@Extension(vendorName="DataNucleus", key="RunFast", value="true")

public class Person

{

 ...

}

7 0 M e t a D a t a A P I 408

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

70 MetaData API
...

70.1 JDO : Metadata API
When using JDO you need to define which classes are persistent, and also how they are persisted.
JDO has allowed XML metadata since its first revision, and introduced support for annotations in
JDO 2.1. JDO 3.0 introduces a programmatic API to do the same task.

70.1.1 Defining Metadata for classes

The basic idea behind the Metadata API is that the developer obtains a metadata object from the
PersistenceManagerFactory, and adds the definition to that as required, before registering it for use in
the persistence process.

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(propsFile);

...

JDOMetadata md = pmf.newMetadata();

So we have a JDOMetadata object and want to define the persistence for our class
mydomain.MyClass, so we do as follows

PackageMetadata pmd = md.newPackageMetadata("mydomain");

ClassMetadata cmd = pmd.newClassMetadata("MyClass");

So we follow the same structure of the JDO XML Metadata file adding packages to the top level,
and classes to the respective package. Note that we could have achieved this by a simple typesafe
invocation

ClassMetadata cmd = md.newClassMetadata(MyClass.class);

So now we have the class defined, we need to set its key information

cmd.setTable("CLIENT").setDetachable(true).setIdentityType(IdentityType.DATASTORE);

cmd.setPersistenceModifier(ClassPersistenceModifier.PERSISTENCE_CAPABLE);

InheritanceMetadata inhmd = cmd.newInheritanceMetadata();

inhmd.setStrategy(InheritanceStrategy.NEW_TABLE);

DiscriminatorMetadata dmd = inhmd.newDiscriminatorMetadata();

dmd.setColumn("disc").setValue("Client");

dmd.setStrategy(DiscriminatorStrategy.VALUE_MAP).setIndexed(Indexed.TRUE);

VersionMetadata vermd = cmd.newVersionMetadata();

vermd.setStrategy(VersionStrategy.VERSION_NUMBER);

vermd.setColumn("version").setIndexed(Indexed.TRUE);

And we define also define fields/properties via the API in a similar way

7 0 M e t a D a t a A P I 409

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

FieldMetadata fmd = cmd.newFieldMetadata("name");

fmd.setNullValue(NullValue.DEFAULT).setColumn("client_name");

fmd.setIndexed(true).setUnique(true);

Note that, just like with XML metadata, we don't need to add information for all fields since they have
their own default persistence settings based on the type of the field.

All that remains is to register the metadata with the persistence process

pmf.registerMetadata(md);

70.1.2 Accessing Metadata for classes

Maybe you have a class with its persistence defined in XML or annotations and you want to check its
persistence information at runtime. With the JDO Metadata API you can do that

TypeMetadata compmd = pmf.getMetadata("mydomain.MyOtherClass");

and we can now inspect the information, casting the compmd to either
javax.jdo.metadata.ClassMetadata or javax.jdo.metadata.InterfaceMetadata.

Please note that you cannot currently change metadata retrieved in this way, only view it

7 1 O R M M e t a D a t a 410

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

71 ORM MetaData
...

71.1 JDO : ORM Meta-Data
JDO defines that MetaData (defined in the MetaData guide) can be found in particular locations
in the CLASSPATH, and has a particular format. It also defines that you can split your MetaData
for Object Relational Mapping (ORM) into separate files if you so wish. So you would define
your basic persistence in a file "package.jdo" and then define the MetaData files "package-
mysql.orm" (for MySQL), and "package-oracle.orm" (for Oracle). To make use of this JDO 2 Object-
Relational Mapping file separation, you must specify the PersistenceManagerFactory property
datanucleus.Mapping. If you set this to, for example, mysql DataNucleus would look for files such
as package.jdo and package-mysql.orm in the same locations as specified above.

71.1.1 Simple Example

Let us take a sample class and generate MetaData for it. Suppose I have a class as follows

package mydomain;

public class Person

{

 /** Title of the Person. */

 String title=null;

 /** Forename of the Person. */

 String forename=null;

 /** Surname of the Person. */

 String surname=null;

 ...

}

and I want to use an existing schema. With this case I need to define the table and column names
that it maps to. To do this I need to use JDO 2 ORM tags. So I come up with MetaData as follows in
package.jdo

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jdo PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/jdo_2_0.dtd">

<jdo>

 <package name="mydomain">

 <class name="Person" identity-type="datastore">

 <field name="title"/>

 <field name="forename"/>

 <field name="surname"/>

 </class>

 </package>

</jdo>

7 1 O R M M e t a D a t a 411

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

and then I add the ORM information in package-mysql.orm as

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE orm PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Mapping Metadata 2.0//EN"

 "http://java.sun.com/dtd/jdo_orm_2_0.dtd">

<orm>

 <package name="mydomain">

 <class name="Person" table="PERSON">

 <field name="title">

 <column name="TITLE"/>

 </field>

 <field name="forename">

 <column name="FORENAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="surname">

 <column name="SURNAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 </class>

 </package>

</orm>

So you see that our class is being mapped across to a table "PERSON" in the datastore, with columns
"TITLE", "FORENAME", "SURNAME". We have also specified that the upper size limit on the
forename and surname fields is 100.

71.1.2 Memory utilisation

The XML files are parsed and populated to memory the first time a pesistent operation is executed
over a persistent class (e.g. pm.makePersistent(object)). If the persistent class has relationships to
other persistent classes, the metadata for the classes in the relationships are loaded. In addition to the
persistent class and classes in the relationships, all other classes / files that were encountered while
searching for the persistent classes are loaded, plus their relationships.

In average, for each persistent class a 3kb of memory is used to hold metadata information. This value
will vary according the amount of metadata declared. Although this value can be used as reference in
earlier stages of development, you should verify if it corresponds to your persistent classes.

A general formula can be used (with caution) to estimate the amount of memory required:

Amount Required = (# of persistent classes) * 3KB

7 2 S c h e m a M a p p i n g 412

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

72 Schema Mapping
...

72.1 JDO : Schema Mapping
You saw in our basic class mapping guide how you define MetaData for a classes basic persistence,
notating which fields are persisted. The next step is to define how it maps to the schema of the
datastore (in this case RDBMS). The simplest way of mapping is to map each class to its own table.
This is the default model in JDO persistence (with the exception of inheritance). If you don't specify
the table and column names, then DataNucleus will generate table and column names for you. You
should specify your table and column names if you have an existing schema. Failure to do so will
mean that DataNucleus uses its own names and these will almost certainly not match what you have
in the datastore. There are several aspects to cover here

• Table and column names
• Column for datastore identity
• Column(s) for application identity
• Column nullability and default value
• Column Types
• Columns with no field in the class

72.1.1 Tables and Column names

The main thing that developers want to do when they set up the persistence of their data is to control
the names of the tables and columns used for storing the classes and fields. This is an essential step
when mapping to an existing schema, because it is necessary to map the classes onto the existing
database entities. Let's take an example

public class Hotel

{

 private String name;

 private String address;

 private String telephoneNumber;

 private int numberOfRooms;

 ...

}

In our case we want to map this class to a table called ESTABLISHMENT, and has columns NAME,
DIRECTION, PHONE and NUMBER_OF_ROOMS (amongst other things). So we define our Meta-
Data like this

7 2 S c h e m a M a p p i n g 413

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Hotel" table="ESTABLISHMENT">

 <field name="name">

 <column name="NAME"/>

 </field>

 <field name="address">

 <column name="DIRECTION"/>

 </field>

 <field name="telephoneNumber">

 <column name="PHONE"/>

 </field>

 <field name="numberOfRooms">

 <column name="NUMBER_OF_ROOMS"/>

 </field>

</class>

So we have defined the table and the column names. It should be mentioned that if you don't specify
the table and column names then DataNucleus will generate names for the datastore identifiers. The
table name will be based on the class name, and the column names will be based on the field names
and the role of the field (if part of a relationship).

See also :-

• Identifier Guide - defining the identifiers to use for table/column names
• MetaData reference for <column> element
• MetaData reference for <primary-key> element
• Annotations reference for @Column
• Annotations reference for @PrimaryKey

72.1.2 Column names for datastore-identity

When you select datastore-identity a surrogate column will be added in the datastore. You need to be
able to define the column name if mapping to an existing schema (or wanting to control the schema).
So lets say we have the following

public class MyClass // persisted to table "MYCLASS"

{

 ...

}

public class MySubClass extends MyClass // persisted to table "MYSUBCLASS"

{

 ...

}

We want to define the names of the identity column in "MYCLASS" and "MYSUBCLASS". Here's
how we do it

7 2 S c h e m a M a p p i n g 414

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="MyClass" table="MYCLASS">

 <datastore-identity>

 <column name="MY_PK_COLUMN"/>

 </datastore-identity>

 ...

</class>

<class name="MySubClass" table="MYSUBCLASS">

 <datastore-identity>

 <column name="MYSUB_PK_COLUMN"/>

 </datastore-identity>

 ...

</class>

So we will have a PK column "MY_PK_COLUMN" in the table "MYCLASS", and a PK
column "MYSUB_PK_COLUMN" in the table "MYSUBCLASS" (and that corresponds to the
"MY_PK_COLUMN" value in "MYCLASS"). We could also do

<class name="MyClass" table="MYCLASS">

 <datastore-identity>

 <column name="MY_PK_COLUMN"/>

 </datastore-identity>

 ...

</class>

<class name="MySubClass" table="MYSUBCLASS">

 <inheritance strategy="new-table"/>

 <primary-key>

 <column name="MYSUB_PK_COLUMN"/>

 </primary-key>

 ...

</class>

See also :-

• Inheritance Guide - defining how to use inheritance between classes
• MetaData reference for <column> element
• MetaData reference for <primary-key> element
• Annotations reference for @Column
• Annotations reference for @PrimaryKey

72.1.3 Column names for application-identity

When you select application-identity you have some field(s) that form the "primary-key" of the class.
A common situation is that you have inherited classes and each class has its own table, and so the
primary-key column names can need defining for each class in the inheritance tree. So lets show an
example how to do it

7 2 S c h e m a M a p p i n g 415

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class MyClass // persisted to table "MYCLASS"

{

 long id; // PK field

 ...

}

public class MySubClass extends MyClass // persisted to table "MYSUBCLASS"

{

 ...

}

Defining the column name for "MyClass.id" is easy since we use the same as shown previously
"column" for the field. Obviously the table "MYSUBCLASS" will also need a PK column. Here's
how we define the column mapping

<class name="MyClass" identity-type="application" table="MYCLASS">

 <field name="myPrimaryKeyField" primary-key="true">

 <column name="MY_PK_COLUMN"/>

 </field>

 ...

</class>

<class name="MySubClass" identity-type="application" table="MYSUBCLASS">

 <inheritance strategy="new-table"/>

 <primary-key>

 <column name="MYSUB_PK_COLUMN" target="MY_PK_COLUMN"/>

 </primary-key>

 ...

</class>

So we will have a PK column "MY_PK_COLUMN" in the table "MYCLASS", and a PK
column "MYSUB_PK_COLUMN" in the table "MYSUBCLASS" (and that corresponds to the
"MY_PK_COLUMN" value in "MYCLASS"). You can also use

<class name="MyClass" identity-type="application" table="MYCLASS">

 <field name="myPrimaryKeyField" primary-key="true">

 <column name="MY_PK_COLUMN"/>

 </field>

 ...

</class>

<class name="MySubClass" identity-type="application" table="MYSUBCLASS">

 <inheritance strategy="new-table">

 <join>

 <column name="MYSUB_PK_COLUMN" target="MY_PK_COLUMN"/>

 </join>

 </inheritance>

 ...

</class>

See also :-

• Inheritance Guide - defining how to use inheritance between classes
• MetaData reference for <inheritance> element

7 2 S c h e m a M a p p i n g 416

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• MetaData reference for <column> element
• MetaData reference for <primary-key> element
• Annotations reference for @Inheritance
• Annotations reference for @Column
• Annotations reference for @PrimaryKey

72.1.4 Column nullability and default values

So we've seen how to specify the basic structure of a table, naming the table and its columns, and how
to control the types of the columns. We can extend this further to control whether the columns are
allowed to contain nulls and to set a default value for a column if we ever have need to insert into it
and not specify a particular column. Let's take a related class for our hotel. Here we have a class to
model the payments made to the hotel.

public class Payment

{

 Customer customer;

 String bankTransferReference;

 String currency;

 double amount;

}

In this class we can model payments from a customer of an amount. Where the customer pays by bank
transfer we can save the reference number. Since our hotel is in the United Kingdom we want the
default currency to be pounds, or to use its ISO4217 currency code "GBP". In addition, since the bank
transfer reference is optional we want that column to be nullable. So let's specify the MetaData for the
class.

<class name="Payment">

 <field name="customer" persistence-capable="persistent" column="CUSTOMER_ID"/>

 <field name="bankTransferReference">

 <column name="TRANSFER_REF" allows-null="true"/>

 </field>

 <field name="currency">

 <column name="CURRENCY" default-value="GBP"/>

 </field>

 <field name="amount" column="AMOUNT"/>

</class>

So we make use of the allows-null and default-value attributes. The table, when created by
DataNucleus, will then provide the default and nullability that we require.

See also :-

• MetaData reference for <column> element
• Annotations reference for @Column

7 2 S c h e m a M a p p i n g 417

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

72.1.5 Column types

DataNucleus will provide a default type for any columns that it creates, but it will allow users to
override this default. The default that DataNucleus chooses is always based on the Java type for
the field being mapped. For example a Java field of type "int" will be mapped to a column type
of INTEGER in RDBMS datastores. Similarly String will be mapped to VARCHAR. To override
the default setting (and always the best policy if you are wanting your MetaData to give the same
datastore definition with all JDO implementations) you do as follows

<class name="Payment">

 <field name="customer" persistence-capable="persistent" column="CUSTOMER_ID">

 <field name="bankTransferReference">

 <column name="TRANSFER_REF" jdbc-type="VARCHAR" length="255" allows-null="true"/>

 </field>

 <field name="currency">

 <column name="CURRENCY" jdbc-type="CHAR" length="3" default-value="GBP"/>

 </field>

 <field name="amount">

 <column name="AMOUNT" jdbc-type="DECIMAL" length="10" scale="2"/>

 </field>

</class>

So we have defined TRANSFER_REF to use VARCHAR(255) column type, CURRENCY to use
CHAR(3) column type, and AMOUNT to use DECIMAL(10,2) column type. Please be aware that
DataNucleus only supports persisting particular Java types to particular JDBC/SQL types. We have
demonstrated above the jdbc-type attribute, but there is also an sql-type attribute. This is to be used
where you want to map to some specific SQL type (and will not be needed in the vast majority of
cases - the jdbc-type should generally be used).

See also :-

• Types Guide - defining persistence of Java types
• RDBMS Types Guide - defining mapping of Java types to available JDBC/SQL types
• MetaData reference for <column> element
• Annotations reference for @Column

72.1.6 Columns with no field in the class

DataNucleus supports mapping of columns in the datastore that have no associated field in the java
class. These are useful where you maybe have a table used by other applications and dont use some
of the information in your Java model. DataNucleus needs to know about these columns so that it
can validate the schema correctly, and also insert particular values when inserting objects into the
table. You could handle this by defining your schema yourself so that the particular columns have
"DEFAULT" settings, but this way you allow DataNucleus to know about all information. So to give
an example

7 2 S c h e m a M a p p i n g 418

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Hotel" table="ESTABLISHMENT">

 <field name="name">

 <column name="NAME"/>

 </field>

 <field name="address">

 <column name="DIRECTION"/>

 </field>

 <field name="telephoneNumber">

 <column name="PHONE"/>

 </field>

 <field name="numberOfRooms">

 <column name="NUMBER_OF_ROOMS"/>

 </field>

 <column name="YEAR_ESTABLISHED" jdbc-type="INTEGER" insert-value="1980"/>

 <column name="MANAGER_NAME" jdbc-type="VARCHAR" insert-value="N/A"/>

</class>

So in this example our table "ESTABLISHMENT" has the columns associated with the specified
fields and also has columns "YEAR_ESTABLISHED" (that is INTEGER-based and will be given a
value of "1980" on any inserts) and "MANAGER_NAME" (VARCHAR-based and will be given a
value of "N/A" on any inserts).

72.1.7 columnposition

With some datastores it is desirable to be able to specify the relative position of a column in the table
schema. The default (for DataNucleus) is just to put them in ascending alphabetical order. JDO allows
definition of this using the position attribute on a column. See fields/properties column positioning
docs for details.

7 3 M u l t i t e n a n c y 419

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

73 Multitenancy
...

73.1 JDO : Multitenancy
On occasion you need to share a data model with other user-groups or other applications and where
the model is persisted to the same structure of datastore. There are three ways of handling this with
DataNucleus.

• Separate Database per Tenant - have a different database per user-group/application.
• Separate Schema per Tenant - as the first option, except use different schemas.
• Same Database/Schema but with a Discriminator - this is described below.

73.1.1 Multitenancy via Discriminator

If you specify the persistence property datanucleus.tenantId as an identifier for your user-group/
application then DataNucleus will know that it needs to provide a tenancy discriminator to all primary
tables of persisted classes. This discriminator is then used to separate the data of the different user-
groups.

By default this will add a column TENANT_ID to each primary table, of String-based type. You can
control this by specifying extension metadata for each persistable class

<class name="MyClass">

 <extension vendor-name="datanucleus" key="multitenancy-column-name" value="TENANT"/>

 <extension vendor-name="datanucleus" key="multitenancy-column-length" value="24"/>

 ...

</class>

In all subsequent use of DataNucleus, any "insert" to the primary "table"(s) will also include the
TENANT column value. Additionally any query will apply a WHERE clause restricting to a
particular value of TENANT column.

If you want to disable multitenancy on a class, just specify the following metadata

<class name="MyClass">

 <extension vendor-name="datanucleus" key="multitenancy-disable" value="true"/>

 ...

</class>

7 4 D a t a s t o r e I d e n t i f i e r s 420

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

74 Datastore Identifiers
...

74.1 JDO : Datastore Identifiers
A datastore identifier is a simple name of a database object, such as a column, table, index, or view,
and is composed of a sequence of letters, digits, and underscores (_) that represents it's name.
DataNucleus allows users to specify the names of tables, columns, indexes etc but if the user doesn't
specify these DataNucleus will generate names.

Generation of identifier names for RDBMS is controlled by an IdentifierFactory, and DataNucleus
provides a default implementation. You can provide your own RDBMS IdentifierFactory plugin to
give your own preferred naming if so desired. You set the RDBMS IdentifierFactory by setting the
persistence property datanucleus.identifierFactory. Set it to the symbolic name of the factory you
want to use. JDO doesn't define what the names of datastore identifiers should be but DataNucleus
provides the following factories for your use.

• datanucleus2 RDBMS IdentifierFactory (default for JDO persistence)
• jpa RDBMS IdentifierFactory (default for JPA persistence)
• datanucleus1 RDBMS IdentifierFactory (used in DataNucleus v1)
• jpox RDBMS IdentifierFactory (compatible with JPOX)

Generation of identifier names for non-RDBMS datastores is controlled by an NamingFactory, and
DataNucleus provides a default implementation. You can provide your own NamingFactory plugin
to give your own preferred naming if so desired. For non-RDBMS you set the NamingFactory by
setting the persistence property datanucleus.identifier.namingFactory. Set it to the symbolic name of
the factory you want to use. JDO doesn't define what the names of datastore identifiers should be but
DataNucleus provides the following factories for your use.

• datanucleus2 NamingFactory (default for JDO persistence for non-RDBMS)
• jpa NamingFactory (default for JPA persistence for non-RDBMS)

In describing the different possible naming conventions available out of the box with DataNucleus
we'll use the following example

class MyClass

{

 String myField1;

 Collection<MyElement> elements1; // Using join table

 Collection<MyElement> elements2; // Using foreign-key

}

class MyElement

{

 String myElementField;

 MyClass myClass2;

}

74.1.1 NamingFactory 'datanucleus2'

This is default for JDO persistence to non-RDBMS datastores.

7 4 D a t a s t o r e I d e n t i f i e r s 421

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using the example above, the rules in this NamingFactory mean that, assuming that the user doesn't
specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS
• When using datastore identity MYCLASS will have a column called MYCLASS_ID
• MyClass.myField1 will be persisted into a column called MYFIELD1
• MyElement will be persisted into a table named MYELEMENT
• MyClass.elements1 will be persisted into a join table called MYCLASS_ELEMENTS1
• MYCLASS_ELEMENTS1 will have columns called MYCLASS_ID_OID (FK to owner table)

and MYELEMENT_ID_EID (FK to element table)
• MYCLASS_ELEMENTS1 will have column names like STRING_ELE, STRING_KEY,

STRING_VAL for non-PC elements/keys/values of collections/maps
• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID_OWN or

ELEMENTS2_MYCLASS_ID_OID (FK to owner) table
• Any discriminator column will be called DISCRIMINATOR
• Any index column in a List will be called IDX
• Any adapter column added to a join table to form part of the primary key will be called IDX
• Any version column for a table will be called VERSION

74.1.2 NamingFactory 'jpa'

The NamingFactory "jpa" aims at providing a naming policy consistent with the "JPA" specification.

Using the same example above, the rules in this NamingFactory mean that, assuming that the user
doesn't specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS
• When using datastore identity MYCLASS will have a column called MYCLASS_ID
• MyClass.myField1 will be persisted into a column called MYFIELD1
• MyElement will be persisted into a table named MYELEMENT
• MyClass.elements1 will be persisted into a join table called MYCLASS_MYELEMENT
• MYCLASS_ELEMENTS1 will have columns called MYCLASS_MYCLASS_ID (FK to

owner table) and ELEMENTS1_ELEMENT_ID (FK to element table)
• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID (FK to

owner) table
• Any discriminator column will be called DTYPE
• Any index column in a List for field MyClass.myField1 will be called MYFIELD1_ORDER
• Any adapter column added to a join table to form part of the primary key will be called IDX
• Any version column for a table will be called VERSION

74.1.3 RDBMS IdentifierFactory 'datanucleus2'

7 4 D a t a s t o r e I d e n t i f i e r s 422

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

This became the default for JDO persistence from DataNucleus v2.x onwards and changes a few
things over the previous "datanucleus1" factory, attempting to make the naming more concise and
consistent (we retain "datanucleus1" for backwards compatibility).

Using the same example above, the rules in this RDBMS IdentifierFactory mean that, assuming that
the user doesnt specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS
• When using datastore identity MYCLASS will have a column called MYCLASS_ID
• MyClass.myField1 will be persisted into a column called MYFIELD1
• MyElement will be persisted into a table named MYELEMENT
• MyClass.elements1 will be persisted into a join table called MYCLASS_ELEMENTS1
• MYCLASS_ELEMENTS1 will have columns called MYCLASS_ID_OID (FK to owner table)

and MYELEMENT_ID_EID (FK to element table)
• MYCLASS_ELEMENTS1 will have column names like STRING_ELE, STRING_KEY,

STRING_VAL for non-PC elements/keys/values of collections/maps
• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID_OWN or

ELEMENTS2_MYCLASS_ID_OID (FK to owner) table
• Any discriminator column will be called DISCRIMINATOR
• Any index column in a List will be called IDX
• Any adapter column added to a join table to form part of the primary key will be called IDX
• Any version column for a table will be called VERSION

74.1.4 RDBMS IdentifierFactory 'datanucleus1'

This was the default in DataNucleus v1.x for JDO persistence and provided a reasonable default
naming of datastore identifiers using the class and field names as its basis.

Using the example above, the rules in this RDBMS IdentifierFactory mean that, assuming that the user
doesnt specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS
• When using datastore identity MYCLASS will have a column called MYCLASS_ID
• MyClass.myField1 will be persisted into a column called MY_FIELD1
• MyElement will be persisted into a table named MYELEMENT
• MyClass.elements1 will be persisted into a join table called MYCLASS_ELEMENTS1
• MYCLASS_ELEMENTS1 will have columns called MYCLASS_ID_OID (FK to owner table)

and MYELEMENT_ID_EID (FK to element table)
• MYCLASS_ELEMENTS1 will have column names like STRING_ELE, STRING_KEY,

STRING_VAL for non-PC elements/keys/values of collections/maps
• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID_OID or

ELEMENTS2_ID_OID (FK to owner) table
• Any discriminator column will be called DISCRIMINATOR
• Any index column in a List will be called INTEGER_IDX
• Any adapter column added to a join table to form part of the primary key will be called

ADPT_PK_IDX
• Any version column for a table will be called OPT_VERSION

7 4 D a t a s t o r e I d e n t i f i e r s 423

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

74.1.5 RDBMS IdentifierFactory 'jpa'

The RDBMS IdentifierFactory "jpa" aims at providing a naming policy consistent with the "JPA"
specification.

Using the same example above, the rules in this RDBMS IdentifierFactory mean that, assuming that
the user doesnt specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS
• When using datastore identity MYCLASS will have a column called MYCLASS_ID
• MyClass.myField1 will be persisted into a column called MYFIELD1
• MyElement will be persisted into a table named MYELEMENT
• MyClass.elements1 will be persisted into a join table called MYCLASS_MYELEMENT
• MYCLASS_ELEMENTS1 will have columns called MYCLASS_MYCLASS_ID (FK to

owner table) and ELEMENTS1_ELEMENT_ID (FK to element table)
• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID (FK to

owner) table
• Any discriminator column will be called DTYPE
• Any index column in a List for field MyClass.myField1 will be called MYFIELD1_ORDER
• Any adapter column added to a join table to form part of the primary key will be called IDX
• Any version column for a table will be called VERSION

74.1.6 RDBMS IdentifierFactory 'jpox'

This RDBMS IdentifierFactory exists for backward compatibility with JPOX 1.2.0. If you experience
changes of schema identifiers when migrating from JPOX 1.2.0 to datanucleus, you should give this
one a try.

Schema compatibility between JPOX 1.2.0 and datanucleus had been broken e.g. by the number of
characters used in hash codes when truncating identifiers: this has changed from 2 to 4.

74.1.7 Controlling the Case

The underlying datastore will define what case of identifiers are accepted. By default, DataNucleus
will capitalise names (assuming that the datastore supports it). You can however influence the case
used for identifiers. This is specifiable with the persistence property datanucleus.identifier.case,
having the following values

• UpperCase: identifiers are in upper case
• LowerCase: identifiers are in lower case
• MixedCase: No case changes are made to the name of the identifier provided by the user (class

name or metadata).
Please be aware that some datastores only support UPPERCASE or lowercase identifiers and
so setting this parameter may have no effect if your database doesn't support that option. Please
note also that this case control only applies to DataNucleus-generated identifiers. If you provide

7 4 D a t a s t o r e I d e n t i f i e r s 424

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

your own identifiers for things like schema/catalog etc then you need to specify those using the
case you wish to use in the datastore (including quoting as necessary)

7 5 S e c o n d a r y T a b l e s 425

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

75 Secondary Tables
...

75.1 JDO : Secondary Tables

Applicable to RDBMS

The standard JDO persistence strategy is to persist an object of a class into its own table. In some
situations you may wish to map the class to a primary table as well as one or more secondary tables.
For example when you have a Java class that could have been split up into 2 separate classes yet, for
whatever reason, has been written as a single class, however you have a legacy datastore and you need
to map objects of this class into 2 tables. JDO allows persistence of fields of a class into secondary
tables.

The process for managing this situation is best demonstrated with an example. Let's suppose we have
a class that represents a Printer. The Printer class contains within it various attributes of the toner
cartridge. So we have

package com.mydomain.samples.secondarytable;

public class Printer

{

 long id;

 String make;

 String model;

 String tonerModel;

 int tonerLifetime;

 /**

 * Constructor.

 * @param make Make of printer (e.g Hewlett-Packard)

 * @param model Model of Printer (e.g LaserJet 1200L)

 * @param tonerModel Model of toner cartridge

 * @param tonerLifetime lifetime of toner (number of prints)

 */

 public Printer(String make, String model, String tonerModel, int tonerLifetime)

 {

 this.make = make;

 this.model = model;

 this.tonerModel = tonerModel;

 this.tonerLifetime = tonerLifetime;

 }

}

Now we have a database schema that has 2 tables (PRINTER and PRINTER_TONER) in which to
store objects of this class. So we need to tell DataNucleus to perform this mapping. So we define the
MetaData for the Printer class like this

7 5 S e c o n d a r y T a b l e s 426

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Printer" table="PRINTER">

 <join table="PRINTER_TONER" column="PRINTER_REFID"/>

 <field name="id" primary-key="true">

 <column name="PRINTER_ID"/>

 </field>

 <field name="make">

 <column name="MAKE"/>

 </field>

 <field name="model">

 <column name="MODEL"/>

 </field>

 <field name="tonerModel" table="PRINTER_TONER">

 <column name="MODEL"/>

 </field>

 <field name="tonerLifetime" table="PRINTER_TONER">

 <column name="LIFETIME"/>

 </field>

</class>

So here we have defined that objects of the Printer class will be stored in the primary table
PRINTER. In addition we have defined that some fields are stored in the table PRINTER_TONER.
This is achieved by way of

• We will store tonerModel and tonerLifetime in the table PRINTER_TONER. This is achieved by
using <field table="PRINTER_TONER">

• The table PRINTER_TONER will use a primary key column called PRINTER_REFID. This is
achieved by using <join table="PRINTER_TONER" column="PRINTER_REFID"/>

You could equally specify this using annotations

@PersistenceCapable

@Join(table="PRINTER_TONER", column="PRINTER_REFID")

public class Printer

{

 @Persistent(primaryKey="true", column="PRINTER_ID")

 long id;

 @Column(name="MAKE")

 String make;

 @Column(name="MODEL")

 String model;

 @Persistent(table="PRINTER_TONER", column="MODEL")

 String tonerModel;

 @Persistent(table="PRINTER_TONER", column="LIFETIME")

 int tonerLifetime;

 ...

}

This results in the following database tables :-

7 5 S e c o n d a r y T a b l e s 427

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we now have our primary and secondary database tables. The primary key of the
PRINTER_TONER table serves as a foreign key to the primary class. Whenever we persist a Printer
object a row will be inserted into both of these tables.

75.1.1 Specifying the primary key

You saw above how we defined the column name that will be the primary key of the secondary table
(the PRINTER_REFID column). What we didn't show is how to specify the name of the primary key
constraint to be generated. To do this you change the MetaData to

<class name="Printer" identity-type="datastore" table="PRINTER">

 <join table="PRINTER_TONER" column="PRINTER_REFID">

 <primary-key name="TONER_PK"/>

 </join>

 <field name="id" primary-key="true">

 <column name="PRINTER_ID"/>

 </field>

 <field name="make">

 <column name="MAKE"/>

 </field>

 <field name="model">

 <column name="MODEL"/>

 </field>

 <field name="tonerModel" table="PRINTER_TONER">

 <column name="MODEL"/>

 </field>

 <field name="tonerLifetime" table="PRINTER_TONER">

 <column name="LIFETIME"/>

 </field>

</class>

So this will create the primary key constraint with the name "TONER_PK".

See also :-

• MetaData reference for <primary-key> element
• MetaData reference for <join> element
• Annotations reference for @PrimaryKey
• Annotations reference for @Join

75.2 Worked Example
The above process can be seen with an example

7 5 S e c o n d a r y T a b l e s 428

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Printer

{

 String make;

 String model;

 String tonerModel;

 int tonerLifetime;

 public Printer(String make, String model, String tonerModel, int tonerLife)

 {

 this.make = make;

 this.model = model;

 this.tonerModel = tonerModel;

 this.tonerLifetime = tonerLife;

 }

 ...

}

We now need to specify which fields we want to store in any secondary tables. To do this we can
define the metadata like this

<?xml version="1.0"?>

<!DOCTYPE jdo PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/jdo_2_0.dtd">

<jdo>

 <package name="mydomain">

 <class name="Printer" table="PRINTER">

 <datastore-identity>

 <column name="ID"/>

 </datastore-identity>

 <join table="TONER">

 <column name="ID"/>

 </join>

 <field name="make"/>

 <field name="model"/>

 <field name="tonerModel" table="TONER"/>

 <field name="tonerLifetime" table="TONER"/>

 </class>

 </package>

</jdo>

With this we have stated that the fields make and model will be stored in the default table, that we
named PRINTER, and that tonerModel and tonerLifetime we be stored in the table TONER. The
tables will both store the unique identity assigned to the objects we persist, in this case we have
specified the column name ID for both tables, though we would usually only do this when working to
an existing schema. When we retrieve any of our stored objects the tables will be joined automatically
by matching the identities.

We can see how this works in more detail by setting the query logging to DEBUG (set
log4j.category.DataNucleus.Query=DEBUG, in your log4j.properties file). We can retrieve all of
our stored Printer objects by performing the following query

7 5 S e c o n d a r y T a b l e s 429

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query q = pm.newQuery(Printer.class);

List<Printer> list = (List<Printer>)q.execute();

Now if we look in our log file we can see how this has been converted into the appropriate query
language for our datastore. With an RDBMS datastore using SQL, for example, we get

SELECT FROM mydomain.Printer Query compiled to datastore query

"SELECT 'mydomain.Printer' AS NUCLEUS_TYPE,`A0`.`MAKE`,`A0`.`MODEL`,`A1`.`TONER_MODEL`,

 `A1`.`TONER_LIFETIME`,`A0`.`ID`

FROM `PRINTER` `A0` INNER JOIN `TONER` `A1` ON `A0`.`ID` = `A1`.`ID`"

So we can see that in this case an INNER JOIN was performed using the ID columns as expected.

This worked example was provided by a DataNucleus user Tom Robson

7 6 C o n s t r a i n t s 430

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

76 Constraints
...

76.1 JDO : Constraints
A datastore often provides ways of constraining the storage of data to maintain relationships and
improve performance. These are known as constraints and they come in various forms. These are :-

• Indexes - these are used to mark fields that are referenced often as indexes so that when they are
used the performance is optimised.

• Unique constraints - these are placed on fields that should have a unique value. That is only one
object will have a particular value.

• Foreign-Keys - these are used to interrelate objects, and allow the datastore to keep the integrity
of the data in the datastore.

• Primary-Keys - allow the PK to be set, and also to have a name.

76.1.1 Indexes

Applicable to RDBMS, NeoDatis, MongoDB.

Many datastores provide the ability to have indexes defined to give performance benefits. With
RDBMS the indexes are specified on the table and the indexes to the rows are stored separately. In the
same way an ODBMS typically allows indexes to be specified on the fields of the class, and these are
managed by the datastore. JDO provides a mechanism for defining indexes, and hence if a developer
knows that a particular field is going to be highly used for querying, they can select that field to be
indexed in their (JDO) persistence solution. Let's take an example class, and show how to specify this

public class Booking

{

 private int bookingType;

 ...

}

We decide that our bookingType is going to be highly used and we want to index this in the
persistence tool. To do this we define the Meta-Data for our class as

<class name="Booking">

 <field name="bookingType">

 <index name="BOOKING_TYPE_INDEX"/>

 </field>

</class>

This will mean that DataNucleus will create an index in the datastore for the field and the index will
have the name BOOKING_TYPE_INDEX (for datastores that support using named indexes). If we had
wanted the index to provide uniqueness, we could have made this

 <index name="BOOKING_TYPE_INDEX" unique="true"/>

7 6 C o n s t r a i n t s 431

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

This has demonstrated indexing the fields of a class. The above example will index together all
columns for that field. In certain circumstances you want to be able to index from the column point of
view. So we are thinking more from a database perspective. Here we define our indexes at the <class>
level, like this

<class name="Booking">

 <index name="MY_BOOKING_INDEX">

 <column name="BOOKING"/>

 </index>

 ...

</class>

This creates an index for the specified column (where the datastore supports columns i.e RDBMS).

Should you have need to tailor the index creation, for example to generate a particular type of index
(where the datastore supports it) , you can specify extended settings that is appended to the end of any
CREATE INDEX statement.

<class name="Booking">

 <index name="MY_BOOKING_INDEX">

 <extension vendor-name="datanucleus" key="extended-setting" value=" USING HASH"/>

 </index>

 ...

</class>

See also :-

• MetaData reference for <index> element
• Annotations reference for @Index
• Annotations reference for @Index (class level)

76.1.2 Unique constraints

Applicable to RDBMS, NeoDatis, MongoDB.

Some datastores provide the ability to have unique constraints defined on tables to give extra control
over data integrity. JDO provides a mechanism for defining such unique constraints. Lets take the
previous class, and show how to specify this

<class name="Booking">

 <field name="bookingType">

 <unique name="BOOKING_TYPE_CONSTRAINT"/>

 </field>

</class>

So in an identical way to the specification of an index. This example specification will result in the
column(s) for "bookingType" being enforced as unique in the datastore. In the same way you can
specify unique constraints directly to columns - see the example above for indexes.

7 6 C o n s t r a i n t s 432

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Again, as for index, you can also specify unique constraints at "class" level in the MetaData file.
This is useful to specify where the composite of 2 or more columns or fields are unique. So with this
example

<class name="Booking">

 <unique name="UNIQUE_PERF">

 <field name="performanceDate"/>

 <field name="startTime"/>

 </unique>

 <field name="performanceDate"/>

 <field name="startTime"/>

</class>

The table for Booking has a unique constraint on the columns for the fields performanceDate and
startTime

See also :-

• MetaData reference for <unique> element
• Annotations reference for @Unique
• Annotations reference for @Unique (class level)

76.1.3 Foreign Keys

Applicable to RDBMS

When objects have relationships with one object containing, for example, a Collection of another
object, it is common to store a foreign key in the datastore representation to link the two associated
tables. Moreover, it is common to define behaviour about what happens to the dependent object when
the owning object is deleted. Should the deletion of the owner cause the deletion of the dependent
object maybe ? Lets take an example

public class Hotel

{

 private Set rooms;

 ...

}

public class Room

{

 private int numberOfBeds;

 ...

}

We now want to control the relationship so that it is linked by a named foreign key, and that we
cascade delete the Room object when we delete the Hotel. We define the Meta-Data like this

7 6 C o n s t r a i n t s 433

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Hotel">

 <field name="rooms">

 <collection element-type="com.mydomain.samples.hotel.Room"/>

 <foreign-key name="HOTEL_ROOMS_FK" delete-action="cascade"/>

 </field>

</class>

So we now have given the datastore control over the cascade deletion strategy for objects stored in
these tables. Please be aware that JDO2 provides Dependent Fields as a way of allowing cascade
deletion. The difference here is that Dependent Fields is controlled by DataNucleus, whereas foreign
key delete actions are controlled by the datastore (assuming the datastore supports it even)

DataNucleus provides an extension that can give significant benefit to users. This is provided via the
PersistenceManagerFactory datanucleus.rdbms.constraintCreateMode. This property has 2 values.
The default is DataNucleus which will automatically decide which foreign keys are required to satisfy
the relationships that have been specified, whilst utilising the information provided in the MetaData
for foreign keys. The other option is JDO2 which will simply create foreign keys that have been
specified in the MetaData file(s).

Note that the foreign-key for a 1-N FK relation can be specified as above, or under the element
element. Note that the foreign-key for a 1-N Join Table relation is specified under field for the FK
from owner to join table, and is specified under element for the FK from join table to element table.

In the special case of application-identity and inheritance there is a foreign-key from subclass to
superclass. You can define this as follows

<class name="MySubClass">

 <inheritance>

 <join>

 <foreign-key name="ID_FK"/>

 </join>

 </inheritance>

</class>

See also :-

• MetaData reference for <foreignkey> element
• Annotations reference for @ForeignKey
• Deletion of related objects using FK constraints

76.1.4 Primary Keys

Applicable to RDBMS

In RDBMS datastores, it is accepted as good practice to have a primary key on all tables. You specify
in other parts of the MetaData which fields are part of the primary key (if using applicatioin identity),
or you define the name of the column DataNucleus should use for the primary key (if using datastore
identity). What these other parts of the MetaData don't allow is specifying the constraint name for the
primary key. You can specify this if you wish, like this

7 6 C o n s t r a i n t s 434

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Booking">

 <primary-key name="BOOKING_PK"/>

 ...

</class>

When the schema is generated for this table, the primary key will be given the specified name, and
will use the column(s) specified by the identity type in use.

In the case where you have a 1-N/M-N relation using a join table you can specify the name of the
primary key constraint used as follows

<class name="Hotel">

 <field name="rooms">

 <collection element-type="com.mydomain.samples.hotel.Room"/>

 <join>

 <primary-key name="HOTEL_ROOM_PK"/>

 </join>

 </field>

</class>

This creates a PK constraint with name "HOTEL_ROOM_PK".

See also :-

• MetaData reference for <primary-key> element
• Annotations reference for @PrimaryKey
• Annotations reference for @PrimaryKey (class level)

7 7 E n h a n c e r 435

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

77 Enhancer
...

77.1 DataNucleus Enhancer
As is described in the Class Enhancement guide below, DataNucleus utilises the common technique
of byte-code manipulation to make your normal Java classes "persistable". The mechanism provided
by DataNucleus is to use an "enhancer" process to perform this manipulation before you use your
classes at runtime. The process is very quick and easy.

How to use the DataNucleus Enhancer depends on what environment you are using. Below are some
typical examples.

• Post-compilation
• Using Maven via the DataNucleus Maven plugin
• Using Ant
• Manual invocation at the command line
• Using the Eclipse DataNucleus plugin

• At runtime
• Runtime Enhancement
• Programmatically via an API

77.1.1 Maven

Maven operates from a series of plugins. There is a DataNucleus plugin for Maven that allows
enhancement of classes. Go to the Download section of the website and download this. Once you
have the Maven plugin, you then need to set any properties for the plugin in your pom.xml file. Some
properties that you may need to change are below

Property Default Description

persistenceUnitName Name of the persistence-
unit to enhance (if not using
metadataIncludes etc)

metadataDirectory ${project.build.outputDirectory} Directory to use for enhancement
files (classes/mappings). For
example, you could set this to
${project.build.testOutputDirectory}
when enhancing Maven test
classes

metadataIncludes **/*.jdo, **/*.class Fileset to include for enhancement
(if not using persistence-unit)

metadataExcludes Fileset to exclude for enhancement
(if not using persistence-unit)

log4jConfiguration Config file location for Log4J (if
using it)

jdkLogConfiguration Config file location for JDK1.4
logging (if using it)

alwaysDetachable false Whether to enhance all classes as
detachable irrespective of metadata

7 7 E n h a n c e r 436

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

ignoreMetaDataForMissingClasses false Whether to ignore classes that
have metadata but are not found

verbose false Verbose output?

quiet false No output?

targetDirectory Where the enhanced classes are
written (default is to overwrite them)

fork true Whether to fork the enhancer
process. Note that if you are
running on Windows and have
a large number of classes/
mapping-files then this will
result in a large command line,
so set this option to false to
avoid hitting Windows limit on
command line length

generatePK true Generate a PK class (of name
{MyClass}_PK) for cases where
there are multiple PK fields yet no
PK class is defined.

generateConstructor true Generate a default constructor
if not defined for the class being
enhanced.

detachListener false Whether to enhance classes to
make use of a detach listener for
attempts to access an undetached
field (see below)

You will need to add datanucleus-api-jdo.jar into the CLASSPATH (of the plugin, or your project)
for the enhancer to operate. Also if using JPA metadata then you also will need datanucleus-api-
jpa.jar and persistence-api.jar in the CLASSPATH. You then run the Maven DataNucleus plugin, as
follows

mvn datanucleus:enhance

This will enhance all classes found that correspond to the classes defined in the JDO files in your
source tree. If you want to check the current status of enhancement you can also type

mvn datanucleus:enhance-check

Or alternatively, you could add the following to your POM

7 7 E n h a n c e r 437

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <build>

 ...

 <plugins>

 <plugin>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-maven-plugin</artifactId>

 <version>4.0.0-release</version>

 <configuration>

 <log4jConfiguration>${basedir}/log4j.properties</log4jConfiguration>

 <verbose>true</verbose>

 </configuration>

 <executions>

 <execution>

 <phase>process-classes</phase>

 <goals>

 <goal>enhance</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 ...

 </build>

So you then get auto-enhancement after each compile. Please refer to the Maven JDO guide for more
details.

77.1.2 Ant

Ant provides a powerful framework for performing tasks and DataNucleus provides an Ant task
to enhance classes. The DataNucleus Enhancer is in datanucleus-core.jar, and you need to make
sure that the datanucleus-core.jar, datanucleus-api-jdo.jar, jdo-api.jar (and optionally log4j.jar)
are in your CLASSPATH. If using JPA metadata then you will also need persistence-api.jar and
datanucleus-api-jpa.jar in the CLASSPATH. In the DataNucleus Enhancer Ant task, the following
parameters are available

Parameter Description values

dir Optional. Directory containing the
JDO (class/metadata) files to use
for enhancing. Uses ant build file
directory if the parameter is not
specified.

destination Optional. Defining a directory
where enhanced classes will be
written. If omitted, the original
classes are updated.

alwaysDetachable Optional. Whether to enhance all
classes as detachable irrespective
of metadata

7 7 E n h a n c e r 438

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

ignoreMetaDataForMissingClasses Optional. Whether to ignore classes
that have metadata but aren't found

persistenceUnit Optional. Defines the "persistence-
unit" to enhance.

checkonly Whether to just check the
classes for enhancement status.
Will respond for each class
with "ENHANCED" or "NOT
ENHANCED". This will disable
the enhancement process and
just perform these checks.

true, false

verbose Whether to have verbose output. true, false

quiet Whether to have no output. true, false

generatePK Whether to generate PK classes as
required.

true, false

generateConstructor Whether to generate a default
constructor as required.

true, false

detachListener Whether to enhance classes to
make use of a detach listener for
attempts to access an undetached
field (see below)

false, true

filesuffixes Optional. Suffixes to accept for
the input files. The Enhancer Ant
Task will scan for the files having
these suffixes under the directory
specified by dir option. The value
can include comma-separated list
of suffixes. If using annotations you
can have "class" included as a valid
suffix here or use the fileset.

jdo

fileset Optional. Defines the files to
accept as the input files. Fileset
enables finer control to which
classes / metadata files are
accepted to enhanced. If one or
more files are found in the fileset,
the Enhancer Ant Task will not
scan for additional files defined by
the option filesuffixes. For more
information on defining a fileset,
see Apache FileSet Manual.

if Optional. The name of a property
that must be set in order to the
Enhancer Ant Task to execute.

The enhancer task extends the Apache Ant Java task, thus all parameters available to the Java task are
also available to the enhancer task.

So you could define something like the following, setting up the parameters enhancer.classpath,
jdo.file.dir, and log4j.config.file to suit your situation (the jdo.file.dir is a directory containing the
JDO files defining the classes to be enhanced). The classes specified by the XML Meta-Data files,
together with the XML Meta-Data files must be in the CLASSPATH (Please note that a CLASSPATH

http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTasks/java.html

7 7 E n h a n c e r 439

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

should contain a set of JAR's, and a set of directories. It should NOT explictly include class files, and
should NOT include parts of the package names. If in doubt please consult a Java book).

<target name="enhance" description="DataNucleus enhancement">

 <taskdef name="datanucleusenhancer" classpathref="enhancer.classpath"

 classname="org.datanucleus.enhancer.EnhancerTask" />

 <datanucleusenhancer classpathref="enhancer.classpath"

 dir="${jdo.file.dir}" failonerror="true" verbose="true">

 <jvmarg line="-Dlog4j.configuration=${log4j.config.file}"/>

 </datanucleusenhancer>

</target>

You can also define the files to be enhanced using a fileset. When a fileset is defined, the Enhancer
Ant Task will not scan for additional files, and the option filesuffixes is ignored.

<target name="enhance" description="DataNucleus enhancement">

 <taskdef name="datanucleusenhancer" classpathref="enhancer.classpath"

 classname="org.datanucleus.enhancer.EnhancerTask" />

 <datanucleusenhancer

 dir="${jdo.file.dir}" failonerror="true" verbose="true">

 <fileset dir="${classes.dir}">

 <include name="**/*.jdo"/>

 <include name="**/acme/annotated/persistentclasses/*.class"/>

 </fileset>

 <classpath>

 <path refid="enhancer.classpath"/>

 </classpath>

 </datanucleusenhancer>

</target>

You can disable the enhancement execution upon the existence of a property with the usage of the if
parameter.

<target name="enhance" description="DataNucleus enhancement">

 <taskdef name="datanucleusenhancer" classpathref="enhancer.classpath"

 classname="org.datanucleus.enhancer.EnhancerTask" if="aPropertyName"/>

 <datanucleusenhancer classpathref="enhancer.classpath"

 dir="${jdo.file.dir}" failonerror="true" verbose="true">

 <jvmarg line="-Dlog4j.configuration=${log4j.config.file}"/>

 </datanucleusenhancer>

</target>

77.1.3 Manually

DataNucleus provides an Enhancer in datanucleus-core.jar. If you are building your application
manually and want to enhance your classes you follow the instructions in this section. You invoke the
enhancer as follows

7 7 E n h a n c e r 440

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java -cp classpath org.datanucleus.enhancer.DataNucleusEnhancer [options] [mapping-files] [class-files]

 where options can be

 -pu {persistence-unit-name} : Name of a "persistence-unit" to enhance the classes for

 -dir {directory-name} : Name of a directory that contains all model classes/mapping-files to enhance

 -d {target-dir-name} : Write the enhanced classes to the specified directory

 -checkonly : Just check the classes for enhancement status

 -v : verbose output

 -q : quiet mode (no output, overrides verbose flag too)

 -alwaysDetachable : enhance all classes as detachable irrespective of metadata

 -ignoreMetaDataForMissingClasses : ignore classes that have metadata but aren't found

 -generatePK {flag} : generate any PK classes where needed

 ({flag} should be true or false - default=true)

 -generateConstructor {flag} : generate default constructor where needed

 ({flag} should be true or false - default=true)

 -detachListener {flag} : see

below (set to true if required)

 where "mapping-files" and "class-files" are provided when not enhancing a persistence-unit,

 and give the paths to the mapping files and class-files that define the classes being enhanced.

 where classpath must contain the following

 datanucleus-core.jar

 datanucleus-api-jdo.jar

 jdo-api.jar

 log4j.jar (optional)

 persistence-api.jar (optional - if using JPA metadata)

 your classes

 your meta-data files

The input to the enhancer should be either a set of MetaData/class files or the name of the
"persistence-unit" to enhance. In the first option, if any classes have annotations then they must be
specified. All classes and MetaData files should be in the CLASSPATH when enhancing. To give an
example of how you would invoke the enhancer

Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/jdo-api.jar:

 lib/datanucleus-api-jdo.jar:lib/log4j.jar

 -Dlog4j.configuration=file:log4j.properties

 org.datanucleus.enhancer.DataNucleusEnhancer

 **/*.jdo

Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\jdo-api.jar;

 lib\datanucleus-api-jdo.jar;lib\log4j.jar

 -Dlog4j.configuration=file:log4j.properties

 org.datanucleus.enhancer.DataNucleusEnhancer

 target/classes/org/mydomain/mypackage1/package.jdo

[should all be on same line. Shown like this for clarity]

7 7 E n h a n c e r 441

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So you pass in your JDO MetaData files (and/or the class files wihich use annotations) as the final
argument(s) in the list, and include the respective JAR's in the classpath (-cp). The enhancer responds
as follows

DataNucleus Enhancer (version 4.0.0.m2) for API "JDO"

DataNucleus Enhancer : Classpath

>> /home/andy/work/myproject//target/classes

>> /home/andy/work/myproject/lib/log4j.jar

>> /home/andy/work/myproject/lib/jdo-api.jar

>> /home/andy/work/myproject/lib/datanucleus-core.jar

>> /home/andy/work/myproject/lib/datanucleus-api-jdo.jar

ENHANCED (persistable): org.mydomain.mypackage1.Pack

ENHANCED (persistable): org.mydomain.mypackage1.Card

DataNucleus Enhancer completed with success for 2 classes. Timings : input=422 ms, enhance=490 ms, total=912 ms.

 ... Consult the log for full details

If you have errors here relating to "Log4J" then you must fix these first. If you receive no output about
which class was ENHANCED then you should look in the DataNucleus enhancer log for errors. The
enhancer performs much error checking on the validity of the passed MetaData and the majority of
errors are caught at this point. You can also use the DataNucleus Enhancer to check whether classes
are enhanced. To invoke the enhancer in this mode you specify the checkonly flag. This will return
a list of the classes, stating whether each class is enhanced for persistence under JDO or not. The
classes need to be in the CLASSPATH (Please note that a CLASSPATH should contain a set of
JAR's, and a set of directories. It should NOT explictly include class files, and should NOT include
parts of the package names. If in doubt please consult a Java book).

77.1.4 Runtime Enhancement

Enhancement of persistent classes at runtime is possible when using JRE 1.5+. Runtime Enhancement
requires the following runtime dependencies: DataNucleus Core library. To enable runtime
enhancement, the javaagent option must be set in the java command line. For example,

java -javaagent:datanucleus-core.jar=-api=JDO Main

The statement above will mean that all classes, when being loaded, will be processed by the
ClassFileTransformer (except class in packages "java.*", "javax.*", "org.datanucleus.*"). This means
that it can be slow since the MetaData search algorithm will be utilised for each. To speed this up
you can specify an argument to that command specifying the names of package(s) that should be
processed (and all others will be ignored). Like this

java -javaagent:datanucleus-core.jar=-api=JDO,mydomain.mypackage1,mydomain.mypackage2 Main

so in this case only classes being loaded that are in mydomain.mypackage1 and
mydomain.mypackage2 will be attempted to be enhanced.

Please take care over the following when using runtime enhancement
• When you have a class with a field of another persistable type make sure that you mark that field

as "persistent" (@Persistent, or in XML) since with runtime enhancement at that point the related
class is likely not yet enhanced so will likely not be marked as persistent otherwise. Be explicit

7 7 E n h a n c e r 442

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• If the agent jar is not found make sure it is specified with an absolute path.

77.1.5 Programmatic API

You could alternatively programmatively enhance classes from within your application. This is done
as follows

import javax.jdo.JDOEnhancer;

JDOEnhancer enhancer = JDOHelper.getEnhancer();

enhancer.setVerbose(true);

enhancer.addPersistenceUnit("MyPersistenceUnit");

enhancer.enhance();

This will look in META-INF/persistence.xml and enhance all classes defined by that unit. Please note
that you will need to load the enhanced version of the class into a different ClassLoader after
performing this operation to use them. See this guide

77.2 Class enhancement

DataNucleus requires that all classes that are persisted implement Persistable. Why should we do
this, Hibernate/TopLink dont need it ?. Well thats a simple question really

• DataNucleus uses this Persistable interface, and adds it using bytecode enhancement techniques
so that you never need to actually change your classes. This means that you get transparent
persistence, and your classes always remain your classes. ORM tools that use a mix of reflection
and/or proxies are not totally transparent.

• DataNucleus' use of Persistable provides transparent change tracking. When any change is
made to an object the change creates a notification to DataNucleus allowing it to be optimally
persisted. ORM tools that dont have access to such change tracking have to use reflection to
detect changes. The performance of this process will break down as soon as you read a large
number of objects, but modify just a handful, with these tools having to compare all object states
for modification at transaction commit time.

Why not also read this comparison of bytecode enhancement, and proxies. It gives a clear enough
comparison of the relative benefits.

In a JDO-enabled application there are 3 categories of classes. These are persistable,
PersistenceAware and normal classes. The Meta-Data defines which classes fit into these categories.
To give an example for JDO, we have 3 classes. The class A is to be persisted in the datastore. The
class B directly updates the fields of class A but doesn't need persisting. The class C is not involved in
the persistence process. We would define JDO MetaData for these classes like this

<class name="A" persistence-modifier="persistence-capable">

 <field name="myField">

 ...

 </field>

 ...

</class>

<class name="B" persistence-modifier="persistence-aware">

</class>

http://www.datanucleus.org/documentation/development/dynamic_class_metadata_enhance_runtime.html
http://www.datanucleus.org/javadocs/core/4.0/org/datanucleus/enhancer/Persistable.html
http://blog.bolkey.com/2009/05/hibernate-datanucleus-r1/

7 7 E n h a n c e r 443

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So our MetaData is mainly for those classes that are persistable and are to be persisted to the
datastore (we don't really need the persistence-modifier for thse classes since this is the default). For
PersistenceAware classes we simply notate that the class knows about persistence. We don't define
MetaData for any class that has no knowledge of persistence.

JDO allows implementations to bytecode enhance persistable classes to implement some interface
to provide them with change tracking etc. JDO provides a builtin PersistenceCapable interface
but we don't use that so we have full control over what information is stored in the class. Users
could manually make their classes implement this Persistable interface but this would impose work
on them. JDO permits the use of a byte-code enhancer that converts the users normal classes to
implement this interface. DataNucleus provides its own byte-code enhancer (in the datanucleus-
core.jar). This section describes how to use this enhancer with DataNucleus.

The example above doesn't show all Persistable methods, but demonstrates that all added methods
and fields are prefixed with "dn" to distinguish them from the users own methods and fields. Also
each persistent field of the class will be given a dnGetXXX, dnSetXXX method so that accesses of
these fields are intercepted so that DataNucleus can manage their "dirty" state.

The MetaData defines which classes are required to be persisted, and also defines which
aspects of persistence each class requires. For example if a class has the detachable
attribute set to true, then that class will be enhanced to also implement Detachable

http://www.datanucleus.org/javadocs/core/4.0/org/datanucleus/enhancer/Detachable.html
http://www.datanucleus.org/javadocs/core/4.0/org/datanucleus/enhancer/Detachable.html

7 7 E n h a n c e r 444

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Again, the example above doesn't show all methods added for the Detachable interface but the main
thing to know is that the detached state (object id of the datastore object, the version of the datastore
object when it was detached, and which fields were detached is stored in "dnDetachedState"). Please
see the JDO spec for more details.

If the MetaData is changed in any way during development, the classes should always be
recompiled and re-enhanced afterwards.

77.2.1 Byte-Code Enhancement Myths

Some groups (e.g Hibernate) perpetuated arguments against "byte-code enhancement" saying that it
was somehow 'evil'. The most common were :-

• Slows down the code-test cycle. This is erroneous since you only need to enhance just before test
and the provided tools for Ant, Eclipse and Maven all do the enhancement job automatically and
rapidly.

• Is less "lazy" than the proxy approach since you have to load the object as soon as you get a
pointer to it. In a 1-1 relation you have to load the object then since you would cause issues with
null pointers otherwise. With 1-N relations you load the elements of the collection/map only
when you access them and not the collection/map. Hardly an issue then is it!

• Fail to detect changes to public fields unless you enhance your client code. Firstly very few
people will be writing code with public fields since it is bad practice in an OO design, and
secondly, this is why we have "PersistenceAware" classes.

So as you can see, there are no valid reasons against byte-code enhancement, and the pluses are that
runtime detection of dirty events on objects is much quicker, hence your persistence layer operates
faster without any need for iterative reflection-based checks. The fact is that Hibernate itself also now
has a mode whereby you can do bytecode enhancement although not the default mode of Hibernate.
So maybe it wasn't so evil after all ?

7 7 E n h a n c e r 445

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

77.2.2 Decompilation

Many people will wonder what actually happens to a class upon bytecode enhancement. In simple
terms the necessary methods and fields are added so as to implement Persistable. If you want to check
this, just use a Java decompiler such as JD. It has a nice GUI allowing you to just select your class to
decompile and shows you the source.

77.2.3 Detach Listener

By default when you access the field of a detached object the bytecode enhanced class will check
if that field is detached and throw a JDODetachedFieldAccessException if it was not detached. An
alternative to this is to register a listener for such exceptions, and enable use of this listener when
enhancing your classes. To enhance your classes to do this set the detachListener to true and then
register the listener like this

org.datanucleus.util.DetachListener.setInstance(myListener);

where myListener is an instance of a class that extends/implements
org.datanucleus.util.DetachListener

http://jd.benow.ca/
http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/util/DetachListener.html
http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/util/DetachListener.html

7 8 D a t a s t o r e S c h e m a 446

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

78 Datastore Schema
...

78.1 JDO : Datastore Schema
Some datastores have a well-defined structure and when persisting/retrieving from these datastores
you have to have this schema in place. DataNucleus provides various controls for creation of any
necessary schema components. This creation can be performed as follows

• One off task before running your application using SchemaTool. This is the recommended
option since it separates schema from operation.

• At runtime, auto-generating tables as it requires them
• At runtime, as a one-off generate-schema step

The thing to remember when using DataNucleus is that the schema is under your control.
DataNucleus does not impose anything on you as such, and you have the power to turn on/off all
schema components. Some Java persistence tools add various types of information to the tables for
persisted classes, such as special columns, or meta information. DataNucleus is very unobtrusive as
far as the datastore schema is concerned. It minimises the addition of any implementation artifacts
to the datastore, and adds nothing (other than any datastore identities, and version columns where
requested) to any schema tables.

78.1.1 Schema Auto-Generation at runtime

If you want to create the schema ("tables"+"columns"+"constraints") during the persistence process,
the property datanucleus.schema.autoCreateAll provides a way of telling DataNucleus to do this.
It's a shortcut to setting the other 3 properties to true. Thereafter, during calls to DataNucleus to
persist classes or performs queries of persisted data, whenever it encounters a new class to persist that
it has no information about, it will use the MetaData to check the datastore for presence of the "table",
and if it doesn't exist, will create it. In addition it will validate the correctness of the table (compared
to the MetaData for the class), and any other constraints that it requires (to manage any relationships).
If any constraints are missing it will create them.

• If you wanted to only create the "tables" required, and none of the "constraints" the property
datanucleus.schema.autoCreateTables provides this, simply performing the tables part of the
above.

• If you want to create any missing "columns" that are required, the property
datanucleus.schema.autoCreateColumns provides this, validating and adding any missing
columns.

• If you wanted to only create the "constraints" required, and none of the "tables" the property
datanucleus.schema.autoCreateConstraints provides this, simply performing the "constraints"
part of the above.

• If you want to keep your schema fixed (i.e don't allow any modifications at runtime) then make
sure that the properties datanucleus.schema.autoCreate{XXX} are set to false

78.1.2 Schema Generation for persistence-unit

DataNucleus allows you to generate the schema for your persistence-unit when creating a PMF. You
can drop/create the schema either directly in the datastore, or create scripts (DDL) to apply later. See
the associated persistence properties (most of these only apply to RDBMS).

7 8 D a t a s t o r e S c h e m a 447

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• datanucleus.generateSchema.database.mode which can be set to create, drop, drop-and-
create or none to control the generation of the schema in the database.

• datanucleus.generateSchema.scripts.mode which can be set to create,
drop, drop-and-create or none to control the generation of the schema as
scripts (DDL). See also datanucleus.generateSchema.scripts.create.target and
datanucleus.generateSchema.scripts.drop.target which will be generated using this mode of
operation.

• datanucleus.generateSchema.scripts.create.target - this should be set to the name of a DDL
script file that will be generated when using datanucleus.generateSchema.scripts.mode

• datanucleus.generateSchema.scripts.drop.target - this should be set to the name of a DDL
script file that will be generated when using datanucleus.generateSchema.scripts.mode

• datanucleus.generateSchema.scripts.create.source - set this to an SQL script of your own that
will create some tables (prior to any schema generation from the persistable objects)

• datanucleus.generateSchema.scripts.drop.source - set this to an SQL script of your own that
will drop some tables (prior to any schema generation from the persistable objects)

• datanucleus.generateSchema.scripts.load - set this to an SQL script of your own that will
insert any data that you require to be available when your PMF is initialised

78.1.3 Schema Generation : Validation

DataNucleus can check any existing schema against what is implied by the MetaData.

The property datanucleus.schema.validateTables provides a way of telling DataNucleus to validate
any tables that it needs against their current definition in the datastore. If the user already has a
schema, and want to make sure that their tables match what DataNucleus requires (from the MetaData
definition) they would set this property to true. This can be useful for example where you are trying to
map to an existing schema and want to verify that you've got the correct MetaData definition.

The property datanucleus.schema.validateColumns provides a way of telling DataNucleus to
validate any columns of the tables that it needs against their current definition in the datastore. If the
user already has a schema, and want to make sure that their tables match what DataNucleus requires
(from the MetaData definition) they would set this property to true. This will validate the precise
column types and widths etc, including defaultability/nullability settings. Please be aware that many
JDBC drivers contain bugs that return incorrect column detail information and so having this
turned off is sometimes the only option (dependent on the JDBC driver quality).

The property datanucleus.schema.validateConstraints provides a way of telling DataNucleus
to validate any constraints (primary keys, foreign keys, indexes) that it needs against their current
definition in the datastore. If the user already has a schema, and want to make sure that their table
constraints match what DataNucleus requires (from the MetaData definition) they would set this
property to true.

78.1.4 Schema Generation : Naming Issues

Some datastores allow access to multiple "schemas" (such as with most RDBMS). DataNucleus will,
by default, use the "default" database schema for the Connection URL and user supplied. This may
cause issues where the user has been set up and in some databases (e.g Oracle) you want to write to
a different schema (which that user has access to). To achieve this in DataNucleus you would set the
persistence properties

7 8 D a t a s t o r e S c h e m a 448

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.mapping.Catalog={the_catalog_name}

datanucleus.mapping.Schema={the_schema_name}

This will mean that all RDBMS DDL and SQL statements will prefix table names with the necessary
catalog and schema names (specify which ones your datastore supports).

78.1.5 Schema Generation : Column Ordering

By default all tables are generated with columns in alphabetical order, starting with root class fields
followed by subclass fields (if present in the same table) etc. There is a JDO3.1 attribute that allows
you to specify the order of columns for schema generation. This is not present in JPA. It is achieved
by specifying the metadata attribute position against the column.

<column position="1"/>

Note that the values of the position start at 0, and should be specified completely for all columns of all
fields.

78.1.6 Read-Only

If your datastore is read-only (you can't add/update/delete any data in it), obviously you could just
configure your application to not perform these operations. An alternative is to set the PMF as "read-
only". You do this by setting the persistence property javax.jdo.option.ReadOnly to true.

From now on, whenever you perform a persistence operation that implies a change in datastore data,
the operation will throw a JDOReadOnlyException.

DataNucleus provides an additional control over the behaviour when an attempt is made to change
a read-only datastore. The default behaviour is to throw an exception. You can change this using the
persistence property datanucleus.readOnlyDatastoreAction with values of "EXCEPTION" (default),
and "IGNORE". "IGNORE" has the effect of simply ignoring all attempted updates to readonly
objects.

You can take this read-only control further and specify it just on specific classes. Like this

@Extension(vendorName="datanucleus", key="read-only", value="true")

public class MyClass {...}

78.2 SchemaTool

DataNucleus SchemaTool currently works with RDBMS, HBase, Excel, OOXML, ODF, MongoDB,
Cassandra datastores and is very simple to operate. It has the following modes of operation :

• createSchema - create the specified schema if the datastore supports that operation.
• deleteSchema - delete the specified schema if the datastore supports that operation.
• create - create all database tables required for the classes defined by the input data.
• delete - delete all database tables required for the classes defined by the input data.
• deletecreate - delete all database tables required for the classes defined by the input data, then

create the tables.

7 8 D a t a s t o r e S c h e m a 449

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• validate - validate all database tables required for the classes defined by the input data.
• dbinfo - provide detailed information about the database, it's limits and datatypes support. Only

for RDBMS currently.
• schemainfo - provide detailed information about the database schema. Only for RDBMS

currently.
Note that for RDBMS, the create/ delete modes can also be used by adding "-ddlFile {filename}" and
this will then not create/delete the schema, but instead output the DDL for the tables/constraints into
the specified file.

For the create, delete and validate modes DataNucleus SchemaTool accepts either of the following
types of input.

• A set of MetaData and class files. The MetaData files define the persistence of the classes they
contain. The class files are provided when the classes have annotations.

• The name of a persistence-unit. The persistence-unit name defines all classes, metadata
files, and jars that make up that unit. Consequently, running DataNucleus SchemaTool with a
persistence unit name will create the schema for all classes that are part of that unit.

Here we provide many different ways to invoke DataNucleus SchemaTool

• Invoke it using Maven, with the DataNucleus Maven plugin
• Invoke it using Ant, using the provided DataNucleus SchemaTool Ant task
• Invoke it manually from the command line
• Invoke it using the DataNucleus Eclipse plugin
• Invoke it programmatically from within an application

78.2.1 Maven

If you are using Maven to build your system, you will need the DataNucleus Maven plugin.
This provides 5 goals representing the different modes of DataNucleus SchemaTool. You can
use the goals datanucleus:schema-create, datanucleus:schema-delete, datanucleus:schema-
validate depending on whether you want to create, delete or validate the database tables. To use the
DataNucleus Maven plugin you will may need to set properties for the plugin (in your pom.xml). For
example

Property Default Description

metadataDirectory ${project.build.outputDirectory} Directory to use for schema
generation files (classes/mappings)

metadataIncludes **/*.jdo, **/*.class Fileset to include for schema
generation

metadataExcludes Fileset to exclude for schema
generation

schemaName Name of the schema (mandatory
when using createSchema or
deleteSchema options)

persistenceUnitName Name of the persistence-unit to
generate the schema for (defines
the classes and the properties
defining the datastore)

props Name of a properties file for the
datastore (PMF)

7 8 D a t a s t o r e S c h e m a 450

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

log4jConfiguration Config file location for Log4J (if
using it)

jdkLogConfiguration Config file location for JDK1.4
logging (if using it)

api JDO API in use for metadata (JDO, JPA)

verbose false Verbose output?

fork true Whether to fork the SchemaTool
process. Note that if you don't fork
the process, DataNucleus will likely
struggle to determine class names
from the input filenames, so you
need to use a persistence.xml file
defining the class names directly.

ddlFile Name of an output file to dump any
DDL to (for RDBMS)

completeDdl false Whether to generate DDL including
things that already exist? (for
RDBMS)

includeAutoStart false Whether to include auto-start
mechanisms in SchemaTool usage

So to give an example, I add the following to my pom.xml

 <build>

 ...

 <plugins>

 <plugin>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-maven-plugin</artifactId>

 <version>4.0.0-release</version>

 <configuration>

 <props>${basedir}/datanucleus.properties</props>

 <log4jConfiguration>${basedir}/log4j.properties</log4jConfiguration>

 <verbose>true</verbose>

 </configuration>

 </plugin>

 </plugins>

 ...

 </build>

So with these properties when I run SchemaTool it uses properties from the file
datanucleus.properties at the root of the Maven project. I am also specifying a log4j configuration file
defining the logging for the SchemaTool process. I then can invoke any of the Maven goals

7 8 D a t a s t o r e S c h e m a 451

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

mvn datanucleus:schema-createschema Create the Schema

mvn datanucleus:schema-deleteschema Delete the Schema

mvn datanucleus:schema-create Create the tables for the specified classes

mvn datanucleus:schema-delete Delete the tables for the specified classes

mvn datanucleus:schema-deletecreate Delete and create the tables for the specified classes

mvn datanucleus:schema-validate Validate the tables for the specified classes

mvn datanucleus:schema-info Output info for the Schema

mvn datanucleus:schema-dbinfo Output info for the datastore

78.2.2 Ant

An Ant task is provided for using DataNucleus SchemaTool. It has classname
org.datanucleus.store.schema.SchemaToolTask, and accepts the following parameters

Parameter Description values

mode Mode of operation. create, delete, deletecreate,
validate, dbinfo, schemainfo,
createSchema, deleteSchema

schemaName Schema name to use when used
in createSchema/ deleteSchema
modes

verbose Whether to give verbose output. true, false

props The filename to use for persistence
properties

ddlFile The filename where SchemaTool
should output the DDL.

completeDdl Whether to output complete DDL
(instead of just missing tables).
Only used with ddlFile

true, false

includeAutoStart Whether to include any auto-start
mechanism in SchemaTool usage

true, false

api API that we are using for metadata JDO | JPA

persistenceUnit Name of the persistence-unit that
we should manage the schema
for (defines the classes and the
properties defining the datastore).

The SchemaTool task extends the Apache Ant Java task, thus all parameters available to the Java task
are also available to the SchemaTool task.

In addition to the parameters that the Ant task accepts, you will need to set up your CLASSPATH
to include the classes and MetaData files, and to define the following system properties via the
sysproperty parameter (not required when specifying the persistence props via the properties file, or
when providing the persistence-unit)

Parameter Description Optional

datanucleus.ConnectionDriverName Name of JDBC driver class Mandatory

http://ant.apache.org/manual/Tasks/java.html

7 8 D a t a s t o r e S c h e m a 452

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.ConnectionURL URL for the database Mandatory

datanucleus.ConnectionUserName User name for the database Mandatory

datanucleus.ConnectionPassword Password for the database Mandatory

datanucleus.Mapping ORM Mapping name Optional

log4j.configuration Log4J configuration file, for
SchemaTool's Log

Optional

So you could define something like the following, setting up the parameters
schematool.classpath, datanucleus.ConnectionDriverName, datanucleus.ConnectionURL,
datanucleus.ConnectionUserName, and datanucleus.ConnectionPassword to suit your situation.

You define the jdo files to create the tables using fileset.

<taskdef name="schematool" classname="org.datanucleus.store.schema.SchemaToolTask" />

<schematool failonerror="true" verbose="true" mode="create">

 <classpath>

 <path refid="schematool.classpath"/>

 </classpath>

 <fileset dir="${classes.dir}">

 <include name="**/*.jdo"/>

 </fileset>

 <sysproperty key="datanucleus.ConnectionDriverName" value="${datanucleus.ConnectionDriverName}"/>

 <sysproperty key="datanucleus.ConnectionURL" value="${datanucleus.ConnectionURL}"/>

 <sysproperty key="datanucleus.ConnectionUserName" value="${datanucleus.ConnectionUserName}"/>

 <sysproperty key="datanucleus.ConnectionPassword" value="${datanucleus.ConnectionPassword}"/>

 <sysproperty key="datanucleus.Mapping" value="${datanucleus.Mapping}"/>

</schematool>

78.2.3 Manual Usage

If you wish to call DataNucleus SchemaTool manually, it can be called as follows

7 8 D a t a s t o r e S c h e m a 453

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java [-cp classpath] [system_props] org.datanucleus.store.schema.SchemaTool [modes] [options] [props]

 [mapping-files] [class-files]

 where system_props (when specified) should include

 -Ddatanucleus.ConnectionDriverName=db_driver_name

 -Ddatanucleus.ConnectionURL=db_url

 -Ddatanucleus.ConnectionUserName=db_username

 -Ddatanucleus.ConnectionPassword=db_password

 -Ddatanucleus.Mapping=orm_mapping_name (optional)

 -Dlog4j.configuration=file:{log4j.properties} (optional)

 where modes can be

 -createSchema {schemaName} : create the specified schema (if supported)

 -deleteSchema {schemaName} : delete the specified schema (if supported)

 -create : Create the tables specified by the mapping-files/class-files

 -delete : Delete the tables specified by the mapping-files/class-files

 -deletecreate : Delete the tables specified by the mapping-files/class-files and then create them

 -validate : Validate the tables specified by the mapping-files/class-files

 -dbinfo : Detailed information about the database

 -schemainfo : Detailed information about the database schema

 where options can be

 -ddlFile {filename} : RDBMS - only for use with "create"/"delete" mode to dump the DDL to the specified file

 -completeDdl : RDBMS - when using "ddlFile" in "create" mode to get all DDL output and not just missing tables/constraints

 -includeAutoStart : whether to include any auto-start mechanism in SchemaTool usage

 -api : The API that is being used (default is JDO, but can be set to JPA)

 -pu {persistence-unit-name} : Name of the persistence unit to manage the schema for

 -v : verbose output

 where props can be

 -props {propsfilename} : PMF properties to use in place of the "system_props"

All classes, MetaData files, "persistence.xml" files must be present in the CLASSPATH. In
terms of the schema to use, you either specify the "props" file (recommended), or you specify the
System properties defining the database connection, or the properties in the "persistence-unit". You
should only specify one of the [modes] above. Let's make a specific example and see the output from
SchemaTool. So we have the following files in our application

src/java/... (source files and MetaData files)

target/classes/... (enhanced classes, and MetaData files)

lib/log4j.jar (optional, for Log4J logging)

lib/datanucleus-core.jar

lib/datanucleus-api-jdo.jar

lib/datanucleus-rdbms.jar, lib/datanucleus-hbase.jar, etc

lib/jdo-api.jar

lib/mysql-connector-java.jar (driver for the datastore, whether RDBMS, HBase etc)

log4j.properties

So we want to create the schema for our persistent classes. So let's invoke DataNucleus SchemaTool
to do this, from the top level of our project. In this example we're using Linux (change the
CLASSPATH definition to suit for Windows)

7 8 D a t a s t o r e S c h e m a 454

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java -cp target/classes:lib/log4j.jar:lib/jdo-api.jar:lib/datanucleus-core.jar:lib/datanucleus-{datastore}.jar:

 lib/mysql-connector-java.jar

 -Dlog4j.configuration=file:log4j.properties

 org.datanucleus.store.schema.SchemaTool -create

 -props datanucleus.properties

 target/classes/org/datanucleus/examples/normal/package.jdo

 target/classes/org/datanucleus/examples/inverse/package.jdo

DataNucleus SchemaTool (version 4.0.4) : Creation of the schema

DataNucleus SchemaTool : Classpath

>> /home/andy/work/DataNucleus/samples/packofcards/target/classes

>> /home/andy/work/DataNucleus/samples/packofcards/lib/log4j.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/datanucleus-core.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/datanucleus-api-jdo.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/datanucleus-rdbms.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/jdo-api.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/mysql-connector-java.jar

DataNucleus SchemaTool : Input Files

>> /home/andy/work/DataNucleus/samples/packofcards/target/classes/org/datanucleus/examples/inverse/package.jdo

>> /home/andy/work/DataNucleus/samples/packofcards/target/classes/org/datanucleus/examples/normal/package.jdo

DataNucleus SchemaTool : Taking JDO properties from file "datanucleus.properties"

SchemaTool completed successfully

So as you see, DataNucleus SchemaTool prints out our input, the properties used, and finally
a success message. If an error occurs, then something will be printed to the screen, and more
information will be written to the log.

78.2.4 SchemaTool API

DataNucleus SchemaTool can also be called programmatically from an application. You need to get
hold of the StoreManager and cast it to SchemaAwareStoreManager. The API is shown below.

package org.datanucleus.store.schema;

public interface SchemaAwareStoreManager

{

 public int createSchema(String schemaName, Properties props);

 public int createSchemaForClasses(Set<String> classNames, Properties props);

 public int deleteSchema(String schemaName, Properties props);

 public int deleteSchemaForClasses(Set<String> classNames, Properties props);

 public int validateSchemaForClasses(Set<String> classNames, Properties props);

}

7 8 D a t a s t o r e S c h e m a 455

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So for example to create the schema for classes mydomain.A and mydomain.B you would do
something like this

JDOPersistenceManagerFactory pmf = (JDOPersistenceManagerFactory)JDOHelper.getPersistenceManagerFactory("datanucleus.properties");

NucleusContext ctx = pmf.getNucleusContext();

...

List classNames = new ArrayList();

classNames.add("mydomain.A");

classNames.add("mydomain.B");

try

{

 Properties props = new Properties();

 // Set any properties for schema generation

 ((SchemaAwareStoreManager)ctx.getStoreManager()).createSchemaForClasses(classNames, props);

}

catch(Exception e)

{

 ...

}

7 9 B e a n V a l i d a t i o n 456

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

79 Bean Validation
...

79.1 JDO : Bean Validation

The Bean Validation API (JSR0303) can be hooked up with JDO (DataNucleus extension) so that you
have validation of an objects values prior to persistence, update and deletion. To do this

• Put the javax.validation "validation-api" jar in your CLASSPATH, along with the Bean
Validation implementation jar of your choice (Apache BVAL, Hibernate Validator, etc)

• Set the persistence property datanucleus.validation.mode to one of auto, none (default), or
callback

• Optionally set the persistence property(s) datanucleus.validation.group.pre-persist,
datanucleus.validation.group.pre-update, datanucleus.validation.group.pre-remove to fine tune
the behaviour (the default is to run validation on pre-persist and pre-update if you don't specify
these).

• Use JDO as you normally would for persisting objects
To give a simple example of what you can do with the Bean Validation API

@PersistenceCapable

public class Person

{

 @PrimaryKey

 @NotNull

 private Long id;

 @NotNull

 @Size(min = 3, max = 80)

 private String name;

 ...

}

So we are validating that instances of the Person class will have an "id" that is not null and that the
"name" field is not null and between 3 and 80 characters. If it doesn't validate then at persist/update an
exception will be thrown.

A further use of the Bean Validation annotations @Size(max=...) and @NotNull is that if you specify
these then you have no need to specify the equivalent JDO "length" and "allowsNull" attributes since
they equate to the same thing.

8 0 P e r s i s t e n c e M a n a g e r F a c t o r y 457

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

80 PersistenceManagerFactory
...

80.1 JDO : PersistenceManagerFactory
Any JDO-enabled application will require at least one PersistenceManagerFactory (PMF).
Typically applications create one per datastore being utilised. A PersistenceManagerFactory
provides access to PersistenceManagers which allow objects to be persisted, and retrieved. The
PersistenceManagerFactory can be configured to provide particular behaviour.

Important : A PersistenceManagerFactory is designed to be thread-safe. A PersistenceManager
is not

There are many ways of creating a PersistenceManagerFactory

.

Properties properties = new Properties();

properties.setProperty("javax.jdo.PersistenceManagerFactoryClass",

 "org.datanucleus.api.jdo.JDOPersistenceManagerFactory");

properties.setProperty("javax.jdo.option.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("javax.jdo.option.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("javax.jdo.option.ConnectionUserName","login");

properties.setProperty("javax.jdo.option.ConnectionPassword","password");

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(properties);

A slight variation on this, is to have a file to specify these properties like this

javax.jdo.PersistenceManagerFactoryClass=org.datanucleus.api.jdo.JDOPersistenceManagerFactory

javax.jdo.option.ConnectionURL=jdbc:mysql://localhost/myDB

javax.jdo.option.ConnectionDriverName=com.mysql.jdbc.Driver

javax.jdo.option.ConnectionUserName=login

javax.jdo.option.ConnectionPassword=password

and then to create the PersistenceManagerFactory using this file

File propsFile = new File(filename);

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(propsFile);

or if the above file is in the CLASSPATH (at "datanucleus.properties" in the root of the
CLASSPATH), then

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("datanucleus.properties");

If using a named PMF file, you can create the PMF by providing the name of the PMF like this

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("myNamedPMF");

If using a META-INF/persistence.xml file, you can simply specify the persistence-unit name as

http://db.apache.org/jdo/api30/apidocs/javax/jdo/PersistenceManagerFactory.html
http://db.apache.org/jdo/api30/apidocs/javax/jdo/PersistenceManagerFactory.html

8 0 P e r s i s t e n c e M a n a g e r F a c t o r y 458

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("myPersistenceUnit");

Another alternative, when specifying your datastore via JNDI, would be to call
JDOHelper.getPersistenceManagerFactory(jndiLocation, context);, and then set the other persistence
properties on the received PMF.

Whichever way we wish to obtain the PersistenceManagerFactory we have defined a series of
properties to give the behaviour of the PersistenceManagerFactory. The first property specifies to
use the DataNucleus implementation, and the following 4 properties define the datastore that it should
connect to. There are many properties available. Some of these are standard JDO properties, and some
are DataNucleus extensions.

80.1.1 Specifying the datastore properties

With JDO you have 3 ways of specifying the datastore via persistence properties

• Specify the connection URL/driverName/userName/password and it will internally
create a DataSource for this URL (with optional connection pooling). This is achieved by
specifying javax.jdo.option.ConnectionDriverName, javax.jdo.option.ConnectionURL,
javax.jdo.option.ConnectionUserName, and javax.jdo.option.ConnectionPassword

• Specify the JNDI name of the connectionFactory This is achieved by specifying
javax.jdo.option.ConnectionFactoryName, and javax.jdo.option.ConnectionFactory2Name
(for secondary operations)

• Specify the DataSource of the connectionFactory This is achieved by specifying
javax.jdo.option.ConnectionFactory, and javax.jdo.option.ConnectionFactory2 (for
secondary operations)

80.1.2 JDO Persistence Properties

Name Values Description

javax.jdo.PersistenceManagerFactoryClass The name of the
PMF implementation.
org.datanucleus.api.jdo.JDOPersistenceManagerFactory
Only required if you have more
than one JDO implementation in
the CLASSPATH

javax.jdo.option.ConnectionFactory Alias for
datanucleus.ConnectionFactory

javax.jdo.option.ConnectionFactory2 Alias for
datanucleus.ConnectionFactory2

javax.jdo.option.ConnectionFactoryName Alias for
datanucleus.ConnectionFactoryName

javax.jdo.option.ConnectionFactory2Name Alias for
datanucleus.ConnectionFactory2Name

javax.jdo.option.ConnectionDriverName Alias for
datanucleus.ConnectionDriverName

javax.jdo.option.ConnectionURL Alias for
datanucleus.ConnectionURL

javax.jdo.option.ConnectionUserName Alias for
datanucleus.ConnectionUserName

8 0 P e r s i s t e n c e M a n a g e r F a c t o r y 459

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

javax.jdo.option.ConnectionPassword Alias for
datanucleus.ConnectionPassword

javax.jdo.option.IgnoreCache true | false Alias for datanucleus.IgnoreCache

javax.jdo.option.Multithreaded true | false Alias for
datanucleus.Multithreaded

javax.jdo.option.NontransactionalReadtrue | false Alias for
datanucleus.NontransactionalRead

javax.jdo.option.NontransactionalWritetrue | false Alias for
datanucleus.NontransactionalWrite

javax.jdo.option.Optimistic true | false Alias for datanucleus.Optimistic

javax.jdo.option.RetainValues true | false Alias for datanucleus.RetainValues

javax.jdo.option.RestoreValues true | false Alias for
datanucleus.RestoreValues

javax.jdo.option.DetachAllOnCommit true | false Alias for
datanucleus.DetachAllOnCommit

javax.jdo.option.CopyOnAttach true | false Alias for
datanucleus.CopyOnAttach

javax.jdo.option.TransactionType Alias for
datanucleus.TransactionType

javax.jdo.option.PersistenceUnitName Alias for
datanucleus.PersistenceUnitName

javax.jdo.option.ServerTimeZoneID Alias for
datanucleus.ServerTimeZoneID

javax.jdo.option.Name Name of the named PMF to use.
Refers to a PMF defined in "META-
INF/jdoconfig.xml".

javax.jdo.option.ReadOnly true | false Alias for
datanucleus.readOnlyDatastore

javax.jdo.option.TransactionIsolationLevel Alias for
datanucleus.transactionIsolation

javax.jdo.option.DatastoreReadTimeoutMillis Alias for
datanucleus.datastoreReadTimeout

javax.jdo.option.DatastoreWriteTimeoutMillis Alias for
datanucleus.datastoreWriteTimeout

javax.jdo.option.Mapping Alias for datanucleus.Mapping
Only for datastores with a "schema"

javax.jdo.mapping.Catalog Alias for datanucleus.Catalog Only
for datastores with a "schema"

javax.jdo.mapping.Schema Alias for datanucleus.Schema Only
for datastores with a "schema"

DataNucleus provides many properties to extend the control that JDO gives you. These can be used
alongside the above standard JDO properties, but will only work with DataNucleus. Please consult the
Persistence Properties Guide for full details.

8 0 P e r s i s t e n c e M a n a g e r F a c t o r y 460

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

80.2 PersistenceManagerFactory for Persistence-Unit

When designing an application you can usually nicely separate your persistable objects into
independent groupings that can be treated separately, perhaps within a different DAO object, if using
DAOs. JDO uses the (JPA) idea of a persistence-unit. A persistence-unit provides a convenient way
of specifying a set of metadata files, and classes, and jars that contain all classes to be persisted in a
grouping. The persistence-unit is named, and the name is used for identifying it. Consequently this
name can then be used when defining what classes are to be enhanced, for example.

To define a persistence-unit you first need to add a file persistence.xml to the META-INF/ directory
of the CLASSPATH (this may mean WEB-INF/classes/META-INF when using a web-application in
such as Tomcat). This file will be used to define your persistence-units. Lets show an example

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd" version="2.1">

 <!-- Online Store -->

 <persistence-unit name="OnlineStore">

 <class>org.datanucleus.samples.metadata.store.Product</class>

 <class>org.datanucleus.samples.metadata.store.Book</class>

 <class>org.datanucleus.samples.metadata.store.CompactDisc</class>

 <class>org.datanucleus.samples.metadata.store.Customer</class>

 <class>org.datanucleus.samples.metadata.store.Supplier</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="datanucleus.ConnectionDriverName" value="org.h2.Driver"/>

 <property name="datanucleus.ConnectionURL" value="jdbc:h2:mem:datanucleus"/>

 <property name="datanucleus.ConnectionUserName" value="sa"/>

 <property name="datanucleus.ConnectionPassword" value=""/>

 </properties>

 </persistence-unit>

 <!-- Accounting -->

 <persistence-unit name="Accounting">

 <mapping-file>/com/datanucleus/samples/metadata/accounts/package.jdo</mapping-file>

 <properties>

 <property name="datanucleus.ConnectionDriverName" value="org.h2.Driver"/>

 <property name="datanucleus.ConnectionURL" value="jdbc:h2:mem:datanucleus"/>

 <property name="datanucleus.ConnectionUserName" value="sa"/>

 <property name="datanucleus.ConnectionPassword" value=""/>

 </properties>

 </persistence-unit>

</persistence>

In this example we have defined 2 persistence-units. The first has the name "OnlineStore" and
contains 5 classes (annotated). The second has the name "Accounting" and contains a metadata file
called "package.jdo" in a particular package (which will define the classes being part of that unit).
This means that once we have defined this we can reference these persistence-units in our persistence
operations. You can find the XSD for persistence.xml here.

http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd

8 0 P e r s i s t e n c e M a n a g e r F a c t o r y 461

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

There are several sub-elements of this persistence.xml file

• provider - Not used by JDO
• jar-file - name of a JAR file to scan for annotated classes to include in this persistence-unit.
• mapping-file - name of an XML "mapping" file containing persistence information to be

included in this persistence-unit. This is the "JDO" mapping file (not the ORM)
• class - name of an annotated class to include in this persistence-unit
• properties - properties defining the persistence factory to be used.

80.2.1 Use with JDO

JDO accepts the "persistence-unit" name to be specified when creating the
PersistenceManagerFactory, like this

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("MyPersistenceUnit");

80.2.2 Dynamically generated Persistence-Unit

DataNucleus allows an extension to JDO to dynamically create persistence-units at runtime. Use the
following code sample as a guide. Obviously any classes defined in the persistence-unit need to have
been enhanced.

import org.datanucleus.metadata.PersistenceUnitMetaData;

import org.datanucleus.api.jdo.JDOPersistenceManagerFactory;

PersistenceUnitMetaData pumd = new PersistenceUnitMetaData("dynamic-unit", "RESOURCE_LOCAL", null);

pumd.addClassName("org.datanucleus.test.A");

pumd.setExcludeUnlistedClasses();

pumd.addProperty("javax.jdo.ConnectionURL", "jdbc:hsqldb:mem:nucleus");

pumd.addProperty("javax.jdo.ConnectionDriverName", "org.hsqldb.jdbcDriver");

pumd.addProperty("javax.jdo.ConnectionUserName", "sa");

pumd.addProperty("javax.jdo.ConnectionPassword", "");

pumd.addProperty("datanucleus.schema.autoCreateAll", "true");

PersistenceManagerFactory pmf = new JDOPersistenceManagerFactory(pumd, null);

It should be noted that if you call pumd.toString(); then this returns the text that would have been
found in a persistence.xml file.

80.3 Named PersistenceManagerFactory

Typically applications create one PMF per datastore being utilised. An alternate to persistence-unit is
to use a named PMF, defined in a file META-INF/jdoconfig.xml at the root of the CLASSPATH (this
may mean WEB-INF/classes/META-INF when using a web-application). Let's see an example of a
jdoconfig.xml

8 0 P e r s i s t e n c e M a n a g e r F a c t o r y 462

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="utf-8"?>

<jdoconfig xmlns="http://xmlns.jcp.org/xml/ns/jdo/jdoconfig"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://xmlns.jcp.org/xml/ns/jdo/jdoconfig">

 <!-- Datastore Txn PMF -->

 <persistence-manager-factory name="Datastore">

 <property name="javax.jdo.PersistenceManagerFactoryClass" value="org.datanucleus.api.jdo.JDOPersistenceManagerFactory"/>

 <property name="javax.jdo.option.ConnectionURL" value="jdbc:mysql://localhost/datanucleus?useServerPrepStmts=false"/>

 <property name="javax.jdo.option.ConnectionDriverName" value="com.mysql.jdbc.Driver"/>

 <property name="javax.jdo.option.ConnectionUserName" value="datanucleus"/>

 <property name="javax.jdo.option.ConnectionPassword" value=""/>

 <property name="javax.jdo.option.Optimistic" value="false"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 </persistence-manager-factory>

 <!-- Optimistic Txn PMF -->

 <persistence-manager-factory name="Optimistic">

 <property name="javax.jdo.PersistenceManagerFactoryClass" value="org.datanucleus.api.jdo.JDOPersistenceManagerFactory"/>

 <property name="javax.jdo.option.ConnectionURL" value="jdbc:mysql://localhost/datanucleus?useServerPrepStmts=false"/>

 <property name="javax.jdo.option.ConnectionDriverName" value="com.mysql.jdbc.Driver"/>

 <property name="javax.jdo.option.ConnectionUserName" value="datanucleus"/>

 <property name="javax.jdo.option.ConnectionPassword" value=""/>

 <property name="javax.jdo.option.Optimistic" value="true"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 </persistence-manager-factory>

</jdoconfig>

So in this example we have 2 named PMFs. The first is known by the name "Datastore" and utilises
datastore transactions. The second is known by the name "Optimistic" and utilises optimistic
transactions. You simply define all properties for the particular PMF within its specification block.
And finally we instantiate our PMF like this

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("Optimistic");

That's it. The PMF we are returned from JDOHelper will have all of the properties defined in META-
INF/jdoconfig.xml under the name of "Optimistic".

8 1 L 2 C a c h e 463

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

81 L2 Cache
...

81.1 JDO : Caching
Caching is an essential mechanism in providing efficient usage of resources in many systems. Data
management using JDO is no different and provides a definition of caching at 2 levels. Caching
allows objects to be retained and returned rapidly without having to make an extra call to the
datastore. The 2 levels of caching available with DataNucleus are

• Level 1 Cache - mandated by the JDO specification, and represents the caching of instances
within a PersistenceManager

• Level 2 Cache - represents the caching of instances within a PersistenceManagerFactory (across
multiple PersistenceManager's)

You can think of a cache as a Map, with values referred to by keys. In the case of JDO, the key is the
object identity (identity is unique in JDO).

81.1.1 Level 2 Cache

By default the Level 2 Cache is enabled. The user can configure the Level 2 Cache if they so wish.
This is controlled by use of the persistence property datanucleus.cache.level2.type. You set this to
"type" of cache required. With the Level 2 Cache you currently have the following options.

• none - turn OFF Level 2 caching.
• weak - use the internal (weak reference based) L2 cache. Provides support for the JDO 2

interface of being able to pin objects into the cache, and unpin them when required. This option
does not support distributed caching, solely running within the JVM of the client application.
Weak references are held to non pinned objects.

• soft - use the internal (soft reference based) L2 cache. Provides support for the JDO 2 interface
of being able to pin objects into the cache, and unpin them when required. This option does
not support distributed caching, solely running within the JVM of the client application. Soft
references are held to non pinned objects.

• EHCache - a simple wrapper to EHCache's caching product. Provides basic support for adding
items to the cache and retrieval from the cache. Doesn't support pinning and unpinning.

• EHCacheClassBased - similar to the EHCache option but class-based.
• OSCache - a simple wrapper to OSCache's caching product. Provides basic support for adding

items to the cache and retrieval from the cache. Doesn't support pinning and unpinning.
• SwarmCache - a simple wrapper to SwarmCache's caching product. Provides basic support for

adding items to the cache and retrieval from the cache. Doesn't support pinning and unpinning.
• Oracle Coherence - a simple wrapper to Oracle's Coherence caching product. Provides basic

support for adding items to the cache and retrieval from the cache. Doesn't support pinning
and unpinning. Oracle's caches support distributed caching, so you could, in principle, use
DataNucleus in a distributed environment with this option.

• javax.cache - a simple wrapper to the standard javax.cache's caching product. Provides basic
support for adding items to the cache and retrieval from the cache. Doesn't support pinning and
unpinning.

• JCache - a simple wrapper to the old version of javax.cache's caching product. Provides basic
support for adding items to the cache and retrieval from the cache. Doesn't support pinning and
unpinning.

8 1 L 2 C a c h e 464

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• spymemcached - a simple wrapper to the "spymemcached" client for memcached caching
product. Provides basic support for adding items to the cache and retrieval from the cache.
Doesn't support pinning and unpinning.

• xmemcached - a simple wrapper to the "xmemcached" client for memcached caching product.
Provides basic support for adding items to the cache and retrieval from the cache. Doesn't
support pinning and unpinning.

• cacheonix - a simple wrapper to the Cacheonix distributed caching software. Provides basic
support for adding items to the cache and retrieval from the cache. Doesn't support pinning and
unpinning.

The javax.cache cache is available in the datanucleus-core plugin. The EHCache, OSCache,
SwarmCache, Coherence, JCache, Cacheonix, and Memcache caches are available in the
datanucleus-cache plugin.

In addition you can control the mode of operation of the L2 cache. You do this using the persistence
property datanucleus.cache.level2.mode. The default is UNSPECIFIED which means that
DataNucleus will cache all objects of entities unless the entity is explicitly marked as not cacheable.
The other options are NONE (don't cache ever), ALL (cache all entities regardless of annotations),
ENABLE_SELECTIVE (cache entities explicitly marked as cacheable), or DISABLE_SELECTIVE
(cache entities unless explicitly marked as not cacheable - i.e same as our default).

Objects are placed in the L2 cache when you commit() the transaction of a PersistenceManager. This
means that you only have datastore-persisted objects in that cache. Also, if an object is deleted during
a transaction then at commit it will be removed from the L2 cache if it is present.

The Level 2 cache is a DataNucleus plugin point allowing you to provide your own cache where you
require it. Use the examples of the EHCache, Coherence caches etc as reference.

Note that you can have a PMF with L2 caching enabled yet have a PM with it disabled. This is
achieved by creating the PM as you would normally, and then call

pm.setProperty("datanucleus.cache.level2.type", "none");

81.1.2 Controlling the Level 2 Cache

The majority of times when using a JDO-enabled system you will not have to take control over any
aspect of the caching other than specification of whether to use a Level 2 Cache or not. With JDO and
DataNucleus you have the ability to control which objects remain in the cache. This is available via a
method on the PersistenceManagerFactory.

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(props);

DataStoreCache cache = pmf.getDataStoreCache();

The DataStoreCache interface

provides methods to control the retention of objects in the cache. You have 3 groups of methods

• evict - used to remove objects from the Level 2 Cache
• pin - used to pin objects into the cache, meaning that they will not get removed by garbage

collection, and will remain in the Level 2 cache until removed.
• unpin - used to reverse the effects of pinning an object in the Level 2 cache. This will mean that

the object can thereafter be garbage collected if not being used.

http://db.apache.org/jdo/api20/apidocs/javax/jdo/datastore/DataStoreCache.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/datastore/DataStoreCache.html

8 1 L 2 C a c h e 465

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

These methods can be called to pin objects into the cache that will be much used. Clearly this will
be very much application dependent, but it provides a mechanism for users to exploit the caching
features of JDO. If an object is not "pinned" into the L2 cache then it can typically be garbage
collected at any time, so you should utilise the pinning capability for objects that you wish to retain
access to during your application lifetime. For example, if you have an object that you want to be
found from the cache you can do

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(props);

DataStoreCache cache = pmf.getDataStoreCache();

cache.pinAll(MyClass.class, false); // Pin all objects of type MyClass from now on

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 pm.makePersistent(myObject);

 // "myObject" will now be pinned since we are pinning all objects of type MyClass.

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.close();

 }

}

Thereafter, whenever something refers to myObject, it will find it in the Level 2 cache. To turn this
behaviour off, the user can either unpin it or evict it.

JDO allows control over which classes are put into a Level 2 cache. You do this by specifying the
cacheable attribute to false (defaults to true). So with the following specification, no objects of type
MyClass will be put in the L2 cache.

Using XML:

<class name="MyClass" cacheable="false">

 ...

</class>

Using Annotations:

@Cacheable("false")

public class MyClass

{

 ...

}

JDO allows you control over which fields of an object are put in the Level 2 cache. You do this by
specifying the cacheable attribute to false (defaults to true). This setting is only required for fields
that are relationships to other persistable objects. Like this

8 1 L 2 C a c h e 466

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using XML:

<class name="MyClass">

 <field name="values"/>

 <field name="elements" cacheable="false"/>

 ...

</class>

Using Annotations:

public class MyClass

{

 ...

 Collection values;

 @Cacheable("false")

 Collection elements;

}

So in this example we will cache "values" but not "elements". If a field is cacheable then
• If it is a persistable object, the "identity" of the related object will be stored in the Level 2 cache

for this field of this object
• If it is a Collection of persistable elements, the "identity" of the elements will be stored in the

Level 2 cache for this field of this object
• If it is a Map of persistable keys/values, the "identity" of the keys/values will be stored in the

Level 2 cache for this field of this object
When pulling an object in from the Level 2 cache and it has a reference to another object Access
Platform uses the "identity" to find that object in the Level 1 or Level 2 caches to re-relate the objects.

DataNucleus has an extension in metadata allowing the user to define that all instances of a class are
automatically pinned in the Level 2 cache.

@PersistenceCapable

@Extension(vendorName="datanucleus", key="cache-pin", value="true")

public class MyClass

{

 ...

}

81.1.3 L2 Cache using javax.cache

DataNucleus provides a simple wrapper to javax.cache's caches. To enable this you should set the
persistence properties

datanucleus.cache.level2.type=javax.cache

datanucleus.cache.level2.cacheName={cache name}

datanucleus.cache.level2.timeout={expiration time in millis - optional}

http://jcp.org/en/jsr/detail?id=107

8 1 L 2 C a c h e 467

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

81.1.4 L2 Cache using JCache

DataNucleus provides a simple wrapper to JCache's caches. This is an old version of what will
become javax.cache (separate option). To enable this you should set the persistence properties

datanucleus.cache.level2.type=jcache

datanucleus.cache.level2.cacheName={cache name}

datanucleus.cache.level2.timeout={expiration time in millis - optional}

81.1.5 L2 Cache using Oracle Coherence

DataNucleus provides a simple wrapper to Oracle's Coherence caches. This currently takes the
NamedCache interface in Coherence and instantiates a cache of a user provided name. To enabled this
you should set the following persistence properties

datanucleus.cache.level2.type=coherence

datanucleus.cache.level2.cacheName={coherence cache name}

The Coherence cache name is the name that you would normally put into a call to
CacheFactory.getCache(name). As mentioned earlier, this cache does not support the pin/unpin
operations found in the standard JDO interface. However you do have the benefits of Oracle's
distributed/serialized caching. If you require more control over the Coherence cache whilst using it
with DataNucleus, you can just access the cache directly via

DataStoreCache cache = pmf.getDataStoreCache();

NamedCache coherenceCache = ((CoherenceLevel2Cache)cache).getCoherenceCache();

81.1.6 L2 Cache using EHCache

DataNucleus provides a simple wrapper to EHCache's caches. To enable this you should set the
persistence properties

datanucleus.cache.level2.type=ehcache

datanucleus.cache.level2.cacheName={cache name}

datanucleus.cache.level2.configurationFile={EHCache configuration file (in classpath)}

The EHCache plugin also provides an alternative L2 Cache that is class-based. To use this you would
need to replace "ehcache" above with "ehcacheclassbased".

81.1.7 L2 Cache using OSCache

DataNucleus provides a simple wrapper to OSCache's caches. To enable this you should set the
persistence properties

http://sourceforge.net/projects/jsr107cache/
http://www.oracle.com/technology/products/coherence/index.html
http://www.sf.net/projects/ehcache
http://www.opensymphony.com/oscache/

8 1 L 2 C a c h e 468

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.cache.level2.type=oscache

datanucleus.cache.level2.cacheName={cache name}

81.1.8 L2 Cache using SwarmCache

DataNucleus provides a simple wrapper to SwarmCache's caches. To enable this you should set the
persistence properties

datanucleus.cache.level2.type=swarmcache

datanucleus.cache.level2.cacheName={cache name}

81.1.9 L2 Cache using Spymemcached/Xmemcached

DataNucleus provides a simple wrapper to Spymemcached caches and Xmemcached caches. To
enable this you should set the persistence properties

datanucleus.cache.level2.type=spymemcached [or "xmemcached"]

datanucleus.cache.level2.cacheName={prefix for keys, to avoid clashes with other memcached objects}

datanucleus.cache.level2.memcached.servers=...

datanucleus.cache.level2.memcached.expireSeconds=...

datanucleus.cache.level2.memcached.servers is a space separated list of memcached hosts/ports,
e.g. host:port host2:port. datanucleus.cache.level2.memcached.expireSeconds if not set or set to 0
then no expire

81.1.10 L2 Cache using Cacheonix

DataNucleus provides a simple wrapper to Cacheonix. To enable this you should set the persistence
properties

datanucleus.cache.level2.type=cacheonix

datanucleus.cache.level2.cacheName={cache name}

Note that you can optionally also specify

datanucleus.cache.level2.timeout={timeout-in-millis (default=60)}

datanucleus.cache.level2.configurationFile={Cacheonix configuration file (in classpath)}

and define a cacheonix-config.xml like

http://swarmcache.sourceforge.net/
http://code.google.com/p/spymemcached/
http://code.google.com/p/xmemcached/
http://www.cacheonix.com/

8 1 L 2 C a c h e 469

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0"?>

<cacheonix>

 <local>

 <!-- One cache per class being stored. -->

 <localCache name="mydomain.MyClass">

 <store>

 <lru maxElements="1000" maxBytes="1mb"/>

 <expiration timeToLive="60s"/>

 </store>

 </localCache>

 <!-- Fallback cache for classes indeterminable from their id. -->

 <localCache name="datanucleus">

 <store>

 <lru maxElements="1000" maxBytes="10mb"/>

 <expiration timeToLive="60s"/>

 </store>

 </localCache>

 <localCache name="default" template="true">

 <store>

 <lru maxElements="10" maxBytes="10mb"/>

 <overflowToDisk maxOverflowBytes="1mb"/>

 <expiration timeToLive="1s"/>

 </store>

 </localCache>

 </local>

</cacheonix>

8 2 A u t o - S t a r t 470

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

82 Auto-Start
...

82.1 JDO : Automatic Startup

By default with JDO implementations when you open a PersistenceManagerFactory and obtain
a PersistenceManager DataNucleus knows nothing about which classes are to be persisted to that
datastore. JDO implementations only load the Meta-Data for any class when the class is first enlisted
in a PersistenceManager operation. For example you call makePersistent on an object. The first time
a particular class is encountered DataNucleus will dynamically load the Meta-Data for that class. This
typically works well since in an application in a particular operation the PersistenceManagerFactory
may well not encounter all classes that are persistable to that datastore. The reason for this dynamic
loading is that JDO implementations can't be expected to scan through the whole Java CLASSPATH
for classes that could be persisted there. That would be inefficient.

There are situations however where it is desirable for DataNucleus to have knowledge about what is
to be persisted, or what subclasses of a candidate are possible on executing a query, so that it can load
the Meta-Data at initialisation of the persistence factory and hence when the classes are encountered
for the first time nothing needs doing. There are several ways of achieving this

• Define your classes/MetaData in a Persistence Unit and when the PersistenceManagerFactory
is initialised it loads the persistence unit, and hence the MetaData for the defined classes and
mapping files. This is described on the linked page

• Put the package.jdo at the root of the CLASSPATH, containing all classes, and when the first
class is encountered it searches for its metadata, encounters and parses the root package.jdo, and
consequently loads the metadata for all classes

• Use a DataNucleus extension known as Auto-Start Mechanism. This is set with the persistence
property datanucleus.autoStartMechanism. This can be set to None, XML, Classes, MetaData.
In addition we have SchemaTable for RDBMS datastores. These are described below.

82.1.1 AutoStartMechanism : None

With this property set to "None" DataNucleus will have no knowledge about classes that are to be
persisted into that datastore and so will add the classes when the user utilises them in calls to the
various PersistenceManager methods.

82.1.2 AutoStartMechanism : XML

With XML, DataNucleus stores the information for starting up DataNucleus in an XML file. This is,
by default, located in datanucleusAutoStart.xml in the current working directory. The file name can
be configured using the persistence factory property datanucleus.autoStartMechanismXmlFile. The
file is read at startup and DataNucleus loads the classes using this information.

If the user changes their persistence definition a problem can occur when starting up DataNucleus.
DataNucleus loads up its existing data from the XML configuration file and finds that a table/class
required by the this file data no longer exists. There are 3 options for what DataNucleus will do
in this situation. The property datanucleus.autoStartMechanismMode defines the behaviour of
DataNucleus for this situation.

• Checked will mean that DataNucleus will throw an exception and the user will be expected to
manually fix their database mismatch (perhaps by removing the existing tables).

• Quiet (the default) will simply remove the entry from the XML file and continue without
exception.

8 2 A u t o - S t a r t 471

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Ignored will simply continue without doing anything.
See the DTD at this link. A sample file would look something like

<datanucleus_autostart>

 <class name="mydomain.MyClass" table="MY_TABLE_1" type="FCO" version="3.1.1"/>

</datanucleus_autostart>

82.1.3 AutoStartMechanism : Classes

With Classes, the user provides to the persistence factory the list of classes to use as
the initial list of classes to be persisted. They specify this via the persistence property
datanucleus.autoStartClassNames, specifying the list of classes as comma-separated. This gives
DataNucleus a head start meaning that it will not need to "discover" these classes later.

82.1.4 AutoStartMechanism : MetaData

With MetaData, the user provides to the persistence factory the list of metadata files to use
as the initial list of classes to be persisted. They specify this via the persistence property
datanucleus.autoStartMetaDataFiles, specifying the list of metadata files as comma-separated. This
gives DataNucleus a head start meaning that it will not need to "discover" these classes later.

82.1.5 AutoStartMechanism : SchemaTable (RDBMS only)

When using an RDBMS datastore the SchemaTable auto-start mechanism stores the list of classes
(and their tables, types and version of DataNucleus) in a datastore table NUCLEUS_TABLES. This
table is read at startup of DataNucleus, and provides DataNucleus with the necessary knowledge it
needs to continue persisting these classes. This table is continuously updated during a session of a
DataNucleus-enabled application.

If the user changes their persistence definition a problem can occur when starting up DataNucleus.
DataNucleus loads up its existing data from NUCLEUS_TABLES and finds that a table/class required
by the NUCLEUS_TABLES data no longer exists. There are 3 options for what DataNucleus will
do in this situation. The property datanucleus.autoStartMechanismMode defines the behaviour of
DataNucleus for this situation.

• Checked will mean that DataNucleus will throw an exception and the user will be expected to
manually fix their database mismatch (perhaps by removing the existing tables).

• Quiet (the default) will simply remove the entry from NUCLEUS_TABLES and continue
without exception.

• Ignored will simply continue without doing anything.
The default database schema used the SchemaTable is described below:

http://datanucleus.svn.sourceforge.net/viewvc/datanucleus/platform/core/trunk/src/java/org/datanucleus/store/autostart/datanucleus_autostart_1_0.dtd?revision=10795

8 2 A u t o - S t a r t 472

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

TABLE : NUCLEUS_TABLES

(

 COLUMN : CLASS_NAME VARCHAR(128) PRIMARY KEY, -- Fully qualified persistent Class name

 COLUMN : TABLE_NAME VARCHAR(128), -- Table name

 COLUMN : TYPE VARCHAR(4), -- FCO | SCO

 COLUMN : OWNER VARCHAR(2), -- 1 | 0

 COLUMN : VERSION VARCHAR(20), -- DataNucleus version

 COLUMN : INTERFACE_NAME VARCHAR(255) -- Fully qualified persistent Class type

 -- of the persistent Interface implemented

)

If you want to change the table name (from NUCLEUS_TABLES) you can set the persistence
property datanucleus.rdbms.schemaTable.tableName

8 3 D a t a F e d e r a t i o n 473

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

83 Data Federation
...

83.1 JDO : Data Federation

By default JDO provides a PersistenceManagerFactory (PMF) to represent a datastore. DataNucleus
extends this to allow for a PMF to represent multiple datastores. This is intended for use where you
have a data model for an application and maybe some classes are persisted into a different datastore.
Note that this is work-in-progress and only tested for basic persist/retrieve operations using
different schemas of the same datastore. Obviously if you have relations between one object in one
datastore and another object in another datastore you cannot have foreign-keys (or equivalent).

83.1.1 Defining Primary and Secondary Datastores

You could specify the datastores to be used for the PMF like this. Here we have
datanucleus.properties defining the primary datastore.

javax.jdo.option.ConnectionDriverName=com.mysql.jdbc.Driver

javax.jdo.option.ConnectionURL=jdbc:mysql://127.0.0.1/nucleus?useServerPrepStmts=false

javax.jdo.option.ConnectionUserName=mysql

javax.jdo.option.ConnectionPassword=

datanucleus.datastore.store2=datanucleus2.properties

You note that this refers to a store2, which is defined by datanucleus2.properties. So the secondary
datastore is defined by

javax.jdo.option.ConnectionURL=mongodb:/nucleus

83.1.2 Defining which class is persisted to which datastore

So now we need to notate which class is persisted to primary and which is persisted to secondary
datastores. We do it like this, for the classes persisted to the secondary datastore.

@PersistenceCapable

@Extension(vendorName="datanucleus", key="datastore", value="store2")

public class MyOtherClass

{

 ...

}

So for any persistence of objects of type MyOtherClass, they will be persisted into the MongoDB
secondary datastore.

8 4 P e r s i s t e n c e M a n a g e r 474

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

84 PersistenceManager
...

84.1 JDO : Persistence Manager
As you read in the guide for PersistenceManagerFactory, to control the persistence of your objects
you will require at least one PersistenceManagerFactory. Once you have obtained this object you
then use this to obtain a PersistenceManager (PM). A PersistenceManager provides access to the
operations for persistence of your objects. This short guide will demonstrate some of the more
common operations. For example with a web application you would have one PMF representing the
datastore, present for the duration of the application, and then have a PM per request that comes in,
closing it before responding.

Important : A PersistenceManagerFactory is designed to be thread-safe. A PersistenceManager
is not

You obtain a PersistenceManager

as follows

PersistenceManager pm = pmf.getPersistenceManager();

You likely will be performing all operations on a PersistenceManager within a transaction, whether
your transactions are controlled by your JavaEE container, by a framework such as Spring, or by
locally defined transactions. Alternatively you can perform your operations non-transactional. In the
examples below we will omit the transaction demarcation for clarity.

84.1.1 Persisting an Object

The main thing that you will want to do with the data layer of a JDO-enabled application is persist
your objects into the datastore. As we mentioned earlier, a PersistenceManagerFactory represents the
datastore where the objects will be persisted. So you create a normal Java object in your application,
and you then persist this as follows

pm.makePersistent(obj);

This will result in the object being persisted into the datastore, though clearly it will not be persistent
until you commit the transaction. The LifecycleState of the object changes from Transient to
PersistentClean (after makePersistent), to Hollow (at commit).

84.1.2 Finding an object by its identity

Once you have persisted an object, it has an "identity". This is a unique way of identifying it. You can
obtain the identity by calling

Object id = pm.getObjectId(obj);

Alternatively by calling

Object id = pm.newObjectIdInstance(cls, key);

So what ? Well the identity can be used to retrieve the object again at some other part in your
application. So you pass the identity into your application, and the user clicks on some button on a

http://db.apache.org/jdo/api30/apidocs/javax/jdo/PersistenceManager.html
http://db.apache.org/jdo/api30/apidocs/javax/jdo/PersistenceManager.html

8 4 P e r s i s t e n c e M a n a g e r 475

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

web page and that button corresponds to a particular object identity. You can then go back to your
data layer and retrieve the object as follows

Object obj = pm.getObjectById(id);

A DataNucleus extension is to pass in a String form of the identity to the above method. It accepts
identity strings of the form

• {fully-qualified-class-name}:{key}
• {discriminator-name}:{key}

where the key is the identity value (datastore-identity) or the result of PK.toString() (application-
identity). So for example we could input

obj = pm.getObjectById("mydomain.MyClass:3");

There is, of course, a bulk load variant too

Object[] objs = pm.getObjectsById(ids);

When you call the method getObjectById if an object with that identity is found in the cache then a
call is, by default, made to validate it still exists. You can avoid this call to the datastore by setting the
persistence property datanucleus.findObject.validateWhenCached to false.

84.1.3 Finding an object by its class and primary-key value

An alternate form of the getObjectById method is taking in the class of the object, and the "identity".
This is for use where you have a single field that is primary key. Like this

Object id = pm.getObjectId(MyClass.class, 123);

where 123 is the value of the primary key field (numeric). Note that the first argument could be a base
class and the real object could be an instance of a subclass of that.

84.1.4 Deleting an Object

When you need to delete an object that you had previous persisted, deleting it is simple. Firstly you
need to get the object itself, and then delete it as follows

Object obj = pm.getObjectById(id); // Retrieves the object to delete

pm.deletePersistent(obj);

Don't forget that you can also use deletion by query to delete objects. Alternatively use bulk deletion.

84.1.5 Modifying a persisted Object

To modify a previously persisted object you need to retrieve it (getObjectById, query, getExtent) and
then modify it and its changes will be propagated to the datastore at commit of the transaction.

Don't forget that you can also use bulk update to update a group of objects of a type.

8 4 P e r s i s t e n c e M a n a g e r 476

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

84.1.6 Detaching a persisted Object

You often have a previously persisted object and you want to use it away from the data-access layer
of your application. In this case you want to detach the object (and its related objects) so that they can
be passed across to the part of the application that requires it. To do this you do

Object detachedObj = pm.detachCopy(obj); // Returns a copy of the persisted object, in detached state

The detached object is like the original object except that it has no StateManager connected, and it
stores its JDO identity and version. It retains a list of all fields that are modified while it is detached.
This means that when you want to "attach" it to the data-access layer it knows what to update.

As an alternative, to make the detachment process transparent, you can set the PMF property
datanucleus.DetachAllOnCommit to true and when you commit your transaction all objects enlisted in
the transaction will be detached.

84.1.7 Attaching a persisted Object

You've detached an object (shown above), and have modified it in your application, and you now
want to attach it back to the persistence layer. You do this as follows

Object attachedObj = pm.makePersistent(obj); // Returns a copy of the detached object, in attached state

84.1.8 Refresh of objects

In the situation where you have an object and you think that its values may have changed in the
datastore you can update its values to the latest using the following

pm.refresh(obj);

What this will do is as follows
• Refresh the values of all FetchPlan fields in the object
• Unload all non-FetchPlan fields in the object

If the object had any changes they will be thrown away by this step, and replaced by the latest
datastore values.

84.1.9 Level 1 Cache

Each PersistenceManager maintains a cache of the objects that it has encountered (or have been
"enlisted") during its lifetime. This is termed the Level 1 Cache. It is enabled by default and you
should only ever disable it if you really know what you are doing. There are inbuilt types for the
Level 1 (L1) Cache available for selection. DataNucleus supports the following types of L1 Cache :-

• weak - uses a weak reference backing map. If JVM garbage collection clears the reference, then
the object is removed from the cache.

• soft - uses a soft reference backing map. If the map entry value object is not being actively used,
then garbage collection may garbage collect the reference, in which case the object is removed
from the cache.

• strong - uses a normal HashMap backing. With this option all references are strong meaning that
objects stay in the cache until they are explicitly removed by calling remove() on the cache.

8 4 P e r s i s t e n c e M a n a g e r 477

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• none - will turn off L1 caching. Only ever use this where the cache is of no use and you are
performing bulk operations and not requiring objects returned

You can specify the type of L1 cache by providing the persistence property
datanucleus.cache.level1.type. You set this to the value of the type required. If you want to remove
objects from the L1 cache programmatically you should use the pm.evict or pm.evictAll methods.

Objects are placed in the L1 cache (and updated there) during the course of the transaction. This
provides rapid access to the objects in use in the users application and is used to guarantee that there
is only one object with a particular identity at any one time for that PersistenceManager. When the
PersistenceManager is closed the L1 cache is cleared.

The L1 cache is a DataNucleus plugin point allowing you to provide your own cache where you
require it.

8 5 M a n a g i n g R e l a t i o n s h i p s 478

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

85 Managing Relationships
...

85.1 JDO : Managing Relationships
The power of a Java persistence solution like DataNucleus is demonstrated when persisting
relationships between objects. There are many types of relationships.

• 1-1 relationships - this is where you have an object A relates to a second object B. The relation
can be unidirectional where A knows about B, but B doesnt know about A. The relation can be
bidirectional where A knows about B and B knows about A.

• 1-N relationships - this is where you have an object A that has a collection of other objects of
type B. The relation can be unidirectional where A knows about the objects B but the Bs dont
know about A. The relation can be bidirectional where A knows about the objects B and the Bs
know about A

• N-1 relationships - this is where you have an object B1 that relates to an object A, and an object
B2 that relates to A also etc. The relation can be unidirectional where the A doesnt know about
the Bs. The relation can be bidirectional where the A has a collection of the Bs. [i.e a 1-N
relationship but from the point of view of the element]

• M-N relationships - this is where you have objects of type A that have a collection of objects
of type B and the objects of type B also have a collection of objects of type A. The relation is
always bidirectional by definition

• Compound Identity relationships when you have a relation and part of the primary key of the
related object is the other persistent object.

85.1.1 Assigning Relationships

When the relation is unidirectional you simply set the related field to refer to the other object. For
example we have classes A and B and the class A has a field of type B. So we set it like this

A a = new A();

B b = new B();

a.setB(b); // "a" knows about "b"

When the relation is bidirectional you have to set both sides of the relation. For example, we have
classes A and B and the class A has a collection of elements of type B, and B has a field of type A. So
we set it like this

A a = new A();

B b1 = new B();

a.addElement(b1); // "a" knows about "b1"

b1.setA(a); // "b1" knows about "a"

So it is really simple, with only 1 general rule. With a bidirectional relation you should set both
sides of the relation

85.1.2 Reachability

With JDO, when you persist an object, all related objects (reachable from the fields of the object
being persisted) will be persisted at the same time (unless already persistent). This is called
persistence-by-reachability. For example

8 5 M a n a g i n g R e l a t i o n s h i p s 479

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

A a = new A();

B b = new B();

a.setB(b);

pm.makePersistent(a); // "a" and "b" are now provisionally persistent

This additionally applies when you have an object managed by the PersistenceManager, and you set
a field to refer to a related object - this will make the related object provisionally persistent also. For
example

A a = new A();

pm.makePersistent(a); // "a" is now provisionally persistent

B b = new B();

a.setB(b); // "b" is now provisionally persistent

Persistence-By-Reachability-At-Commit : One additional feature of JDO is the ability to re-run
the persistence-by-reachability algorithm at commit so as to check whether the objects being made
persistent should definitely be persisted. This is for the following situation.

• Start a transaction
• Persist object A. This persists related object B.
• Delete object A from persistence
• Commit the transaction.

If you have property datanucleus.persistenceByReachabilityAtCommit set to true (default) then
this will recheck the persisted objects should remain persistent. In this case it will find B and realise
that it was only persisted due to A (which has since been deleted), hence B will not remain persistent
after the transaction.
If you had property datanucleus.persistenceByReachabilityAtCommit set to false then B will
remain persistent after the transaction.

85.1.3 Managed Relationships

As previously mentioned, users should really set both sides of a bidirectional relation. DataNucleus
provides a good level of managed relations in that it will attempt to correct any missing information
in relations to make both sides consistent. What it provides is defined below

For a 1-1 bidirectional relation, at persist you should set one side of the relation and the other
side will be set to make it consistent. If the respective sides are set to inconsistent objects then an
exception will be thrown at persist. At update of owner/non-owner side the other side will also be
updated to make them consistent.

For a 1-N bidirectional relation and you only specify the element owner then the collection must
be Set-based since DataNucleus cannot generate indexing information for you in that situation (you
must position the elements). At update of element or owner the other side will also be updated to
make them consistent. At delete of element the owner collection will also be updated to make them
consistent. If you are using a List you MUST set both sides of the relation

For an M-N bidirectional relation, at persist you MUST set one side and the other side will be
populated at commit/flush to make them consistent.

8 5 M a n a g i n g R e l a t i o n s h i p s 480

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

This management of relations can be turned on/off using a persistence property
datanucleus.manageRelationships. If you always set both sides of a relation at persist/update then
you could safely turn it off.

When performing management of relations there are some checks implemented to spot typical errors in user
operations e.g add an element to a collection and then remove it (why?!). You can disable these checks using
datanucleus.manageRelationshipsChecks, set to false.

8 6 P M P r o x y 481

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

86 PM Proxy
...

86.1 JDO : PersistenceManager Proxies
As you read in the guide for PersistenceManager, you perform all operations using a
PersistenceManager. This means that you need to obtain this when you want to start datastore
operations. In some architectures (e.g in a web environment) it can be convenient to maintain a single
PersistenceManager for use in a servlet init() method to initialise a static variable. Alternatively for
use in a SessionBean to initialise a static variable. Thereafter you just refer to the proxy. The proxy
isn't the actual PersistenceManager just a proxy, delegating to the real object. If you call close() on
the proxy the real PM will be closed, and when you next invoke an operation on the proxy it will
create a new PM delegate and work with that.

To create a PM proxy is simple

PersistenceManager pm = pmf.getPersistenceManagerProxy();

So we have our proxy, and now we can perform operations

8 7 O b j e c t L i f e c y c l e 482

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

87 Object Lifecycle
...

87.1 JDO : Object Lifecycle
During the persistence process, an object goes through lifecycle changes. Below we demonstrate the
primary object lifecycle changes for JDO

JDO has a very high degree of flexibility and so can be configured to operate in different modes. The
mode most consistent with JPA is shown below (this has the PMF property DetachAllOnCommit set
to true)

So a newly created object is transient. You then persist it and it becomes persistent. You then
commit the transaction and it is detached for use elsewhere in the application. You then attach any
changes back to persistence and it becomes persistent again. Finally when you delete the object from
persistence and commit that transaction it is in transient state.

An alternative JDO lifecycle occurs when you have DetachAllOnCommit as false. Now at commit the
object moves into hollow state (still has its identity, but its field values are optionally unloaded). Set
the persistence property datanucleus.RetainValues to not unset the values of any non-primary-key
fields when migrating to hollow state.

With JDO there are actually some additional lifecycle states, notably when an object has a field
changed, becoming dirty, so you get an object in "persistent-dirty", "detached-dirty" states for
example. The average user doesn't need to know about these so we don't cover them here. To inspect
the lifecycle state of an object, simply call

8 7 O b j e c t L i f e c y c l e 483

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

JDOHelper.getObjectState(obj);

See also :-

• Attach/Detach of objects

87.1.1 Helper Methods

In addition to the JDOHelper method above, JDO provides a series of other helper methods for
lifecycle operations. These are documented on the Apache JDO site.

Further to this DataNucleus provides yet more helper methods

String[] fieldNames = NucleusJDOHelper.getDirtyFields(pc, pm);

String[] fieldNames = NucleusJDOHelper.getLoadedFields(pc, pm);

These methods returns the names of the dirty/loaded fields in the supplied object. The pm argument is
only required if the object is detached

Boolean dirty = NucleusJDOHelper.isDirty(pc, "fieldName", pm);

Boolean loaded = NucleusJDOHelper.isLoaded(pc, "fieldName", pm);

These methods returns whether the specified field in the supplied object is dirty/loaded. The pm
argument is only required if the object is detached

87.1.2 State Transition Lookup

The JDO spec defines all lifecycles transitions. This table provides a summary of some of the
common ones. Please refer to the JDO spec for details. Key : T-Clean = Transient Clean, T-Dirty =
Transient Dirty, P-New = Persistent New, P-Clean = Persistent Clean, P-Dirty = Persistent-Dirty,
P-New-Deleted = Persistent New Deleted, P-Deleted = Persistent Deleted, P-Nontrans = Persistent
Nontransactional

Method /
Current
State T-Clean T-Dirty P-New P-Clean P-Dirty Hollow

P-New-
Deleted

P-
Deleted

P-
Nontrans

pm.makePersistentP-New P-New no
change

no
change

no
change

no
change

no
change

no
change

no
change

pm.deletePersistenterror error P-New-
Deleted

P-
Deleted

P-
Deleted

P-
Deleted

no
change

no
change

P-
Deleted

pm.makeTransactionalno
change

no
change

no
change

no
change

no
change

P-Clean no
change

no
change

P-Clean

pm.makeNontransactionalno
change

error error P-
Nontrans

error no
change

error error no
change

pm.makeTransientno
change

no
change

error T-Clean error T-Clean error error T-Clean

tx.commit
retainValues=false

no
change

T-Clean Hollow Hollow Hollow no
change

T-Clean T-Clean no
change

tx.commit
retainValues=true

no
change

T-Clean P-
Nontrans

P-
Nontrans

P-
Nontrans

no
change

T-Clean T-Clean no
change

http://db.apache.org/jdo/jdohelper.html

8 7 O b j e c t L i f e c y c l e 484

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

tx.commit
DetachAllOnCommit=true

no
change

T-Clean Detached-
Clean

Detached-
Clean

Detached-
Clean

Detached-
Clean

T-Clean T-Clean Detached-
Clean

tx.rollback
restoreValues=false

no
change

T-Clean T-Clean Hollow Hollow no
change

T-Clean Hollow no
change

tx.rollback
restoreValues=true

no
change

T-Clean Transient P-
Nontrans

P-
Nontrans

no
change

Transient P-
Nontrans

no
change

pm.refresh
active
Datastore
txn

no
change

no
change

no
change

no
change

P-Clean no
change

no
change

no
change

no
change

pm.refresh
active
Optimistic
txn

no
change

no
change

no
change

no
change

P-
Nontrans

no
change

no
change

no
change

no
change

pm.evict no
change

no
change

no
change

Hollow no
change

no
change

no
change

no
change

Hollow

read field
outside
txn

no
change

P-
Nontrans

no
change

read field
active
Datastore
txn

no
change

no
change

no
change

no
change

no
change

P-Clean error error P-Clean

read field
active
Optimistic
txn

no
change

no
change

no
change

no
change

no
change

P-
Nontrans

error error no
change

write
field/
makeDirty
outside
txn

no
change

P-
Nontrans

P-
Nontrans-
Dirty

write
field/
makeDirty
active
txn

T-Dirty no
change

no
change

P-Dirty no
change

P-Dirty error error P-Dirty

retrieve()
outside
txn or
with
active
Optimistic
txn

no
change

no
change

no
change

no
change

no
change

P-
Nontrans

no
change

no
change

no
change

pm.retrieve()
with
active
Datastore
txn

no
change

no
change

no
change

no
change

no
change

P-Clean no
change

no
change

P-Clean

8 7 O b j e c t L i f e c y c l e 485

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

pm.detachCopy()
outside
txn,
Nontx-
read=true

error Detached-
Clean

Detached-
Clean

pm.detachCopy()
outside
txn,
Nontx-
read=false

error error Detached-
Clean

pm.detachCopy()
active
txn

Detached-
Clean

Detached-
Clean

Detached-
Clean

Detached-
Clean

Detached-
Clean

Detached-
Clean

error error Detached-
Clean

8 8 L i f e c y c l e C a l l b a c k s 486

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

88 Lifecycle Callbacks
...

88.1 JDO : Lifecycle Callbacks
JDO defines a mechanism whereby a persistable class can be marked as a listener for lifecycle events.
Alternatively a separate listener class can be defined to receive these events. Thereafter when entities
of the particular class go through lifecycle changes events are passed to the provided methods. Let's
look at the two different mechanisms

88.1.1 Instance Callbacks

JDO defines an interface for persistable classes so that they can be notified of events in their own
lifecycle and perform any additional operations that are needed at these checkpoints. This is a
complement to the Lifecycle Listeners interface which provides listeners for all objects of particular
classes, with the events sent to a listener. With InstanceCallbacks the persistable class is the
destination of the lifecycle events. As a result the Instance Callbacks method is more intrusive
than the method of Lifecycle Listeners in that it requires methods adding to each class that wishes to
receive the callbacks.

DataNucleus supports the InstanceCallbacks interface

.

To give an example of this capability, let us define a class that needs to perform some operation just
before it's object is deleted.

public class MyClass implements InstanceCallbacks

{

 String name;

 ... (class methods)

 public void jdoPostLoad() {}

 public void jdoPreClear() {}

 public void jdoPreStore() {}

 public void jdoPreDelete()

 {

 // Perform some operation just before being deleted.

 }

}

So we have implemented InstanceCallbacks and have defined the 4 required methods. Only one of
these is of importance in this example.

These methods will be called just before storage in the data store (jdoPreStore), just before clearing (
jdoPreClear), just after being loaded from the datastore (jdoPostLoad) and just before being deleted (
jdoPreDelete).

http://db.apache.org/jdo/api20/apidocs//javax/jdo/InstanceCallbacks.html
http://db.apache.org/jdo/api20/apidocs//javax/jdo/InstanceCallbacks.html

8 8 L i f e c y c l e C a l l b a c k s 487

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

JDO2 adds 2 new callbacks to complement InstanceCallbacks. These are AttachCallback

and DetachCallback

. If you want to intercept attach/detach events your class can implement these interfaces. You will
then need to implement the following methods

public interface AttachCallback

{

 public void jdoPreAttach();

 public void jdoPostAttach(Object attached);

}

public interface DetachCallback

{

 public void jdoPreDetach();

 public void jdoPostDetach(Object detached);

}

88.1.2 Lifecycle Listeners

JDO defines an interface for the PersistenceManager and PersistenceManagerFactory whereby
a user can register a listener for persistence events. The user provides a listener for either all
classes, or a set of defined classes, and the JDO implementation calls methods on the listener
when the required events occur. This provides the user application with the power to monitor
the persistence process and, where necessary, append related behaviour. Specifying the listeners
on the PersistenceManagerFactory has the benefits that these listeners will be added to all
PersistenceManagers created by that factory, and so is for convenience really. This facility is a
complement to the Instance Callbacks facility which allows interception of events on an instance by
instance basis. The Lifecycle Listener process is much less intrusive than the process provided by
Instance Callbacks, allowing a class external to the persistence process to perform the listening.

DataNucleus supports the InstanceLifecycleListener interface.

.

To give an example of this capability, let us define a Listener for our persistence process.

http://db.apache.org/jdo/api20/apidocs/javax/jdo/listener/AttachCallback.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/listener/AttachCallback.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/listener/AttachCallback.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/listener/AttachCallback.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/listener/InstanceLifecycleListener.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/listener/InstanceLifecycleListener.html

8 8 L i f e c y c l e C a l l b a c k s 488

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class LoggingLifecycleListener implements CreateLifecycleListener,

 DeleteLifecycleListener, LoadLifecycleListener, StoreLifecycleListener

{

 public void postCreate(InstanceLifecycleEvent event)

 {

 log.info("Lifecycle : create for " +

 ((Persistable)event.getSource()).dnGetObjectId());

 }

 public void preDelete(InstanceLifecycleEvent event)

 {

 log.info("Lifecycle : preDelete for " +

 ((Persistable)event.getSource()).dnGetObjectId());

 }

 public void postDelete(InstanceLifecycleEvent event)

 {

 log.info("Lifecycle : postDelete for " +

 ((Persistable)event.getSource()).dnGetObjectId());

 }

 public void postLoad(InstanceLifecycleEvent event)

 {

 log.info("Lifecycle : load for " +

 ((Persistable)event.getSource()).dnGetObjectId());

 }

 public void preStore(InstanceLifecycleEvent event)

 {

 log.info("Lifecycle : preStore for " +

 ((Persistable)event.getSource()).dnGetObjectId());

 }

 public void postStore(InstanceLifecycleEvent event)

 {

 log.info("Lifecycle : postStore for " +

 ((Persistable)event.getSource()).dnGetObjectId());

 }

}

Here we've provided a listener to receive events for CREATE, DELETE, LOAD, and STORE
of objects. These are the main event types and in our simple case above we will simply log
the event. All that remains is for us to register this listener with the PersistenceManager, or
PersistenceManagerFactory

pm.addInstanceLifecycleListener(new LoggingLifecycleListener(), null);

When using this interface the user should always remember that the listener is called within the
same transaction as the operation being reported and so any changes they then make to the objects in
question will be reflected in that objects state.

Register the listener with the PersistenceManager or PersistenceManagerFactory provide different
effects. Registering with the PersistenceManagerFactory means that all PersistenceManagers created

8 8 L i f e c y c l e C a l l b a c k s 489

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

by it will have the listeners registered on the PersistenceManagerFactory called. Registering the
listener with the PersistenceManager will only have the listener called only on events raised only by
the PersistenceManager instance.

8 8 L i f e c y c l e C a l l b a c k s 490

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The above diagram displays the sequence of actions for a listener registered only in the
PersistenceManager. Note that a second PersistenceManager will not make calls to the listener
registered in the first PersistenceManager.

8 8 L i f e c y c l e C a l l b a c k s 491

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The above diagram displays the sequence of actions for a listener registered in the
PersistenceManagerFactory. All events raised in a PersistenceManager obtained

8 8 L i f e c y c l e C a l l b a c k s 492

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

from the PersistenceManagerFactory will make calls to the listener registered in the
PersistenceManagerFactory.

DataNucleus supports the following instance lifecycle listener types

• AttachLifecycleListener - all attach events
• ClearLifecycleListener - all clear events
• CreateLifecycelListener - all object create events
• DeleteLifecycleListener - all object delete events
• DetachLifecycleListener - all detach events
• DirtyLifecycleListener - all dirty events
• LoadLifecycleListener - all load events
• StoreLifecycleListener - all store events

The default JDO2 lifecycle listener StoreLifecycleListener only informs the listener of the
object being stored. It doesn't provide information about the fields being stored in that event.
DataNucleus extends the JDO2 specification and on the "preStore" event it will return an
instance of org.datanucleus.api.jdo.FieldInstanceLifecycleEvent (which extends the JDO2
InstanceLifecycleEvent) and provides access to the names of the fields being stored.

public class FieldInstanceLifecycleEvent extends InstanceLifecycleEvent

{

 ...

 /**

 * Accessor for the field names affected by this event

 * @return The field names

 */

 public String[] getFieldNames()

 ...

}

If the store event is the persistence of the object then this will return all field names. If
instead just particular fields are being stored then you just receive those fields in the event.
So the only thing to do to utilise this DataNucleus extension is cast the received event to
org.datanucleus.FieldInstanceLifecycleEvent

8 9 A t t a c h / D e t a c h 493

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

89 Attach/Detach
...

89.1 JDO : Attach/Detach
JDO provides an interface to the persistence of objects. JDO 1.0 doesn't provide a way of taking an
object that was just persisted and just work on it and update the persisted object later. The user has to
copy the fields manually and copy them back to the persisted object later. JDO 2.0 introduces a new
way of handling this situation, by detaching an object from the persistence graph, allowing it to be
worked on in the users application. It can then be attached to the persistence graph later. Please refer
to Object Lifecycle for where this fits in. The first thing to do to use a class with this facility is to tag
it as "detachable". This is done by adding the attribute

<class name="MyClass" detachable="true">

This acts as an instruction to the enhancement process to add methods necessary to utilise the attach/
detach process.

The following code fragment highlights how to use the attach/detach mechanism

8 9 A t t a c h / D e t a c h 494

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Product working_product=null;

Transaction tx=pm.currentTransaction();

try

{

 tx.begin();

 Product prod=new Product(name,description,price);

 pm.makePersistent(prod);

 // Detach the product for use

 working_product = (Product)pm.detachCopy(prod);

 tx.commit();

}

catch (Exception e)

{

 // Handle the exception

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

}

// Work on the detached object in our application

working_product.setPrice(new_price);

...

// Reattach the updated object

tx = pm.currentTransaction();

try

{

 tx.begin();

 Product attached_product = pm.makePersistent(working_product);

 tx.commit();

}

catch (Exception e)

{

 // Handle the exception

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

}

8 9 A t t a c h / D e t a c h 495

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we now don't need to do any manual copying of object fields just using a simple call to detach the
object, and then attach it again later. Here are a few things to note with attach/detach :-

• Calling detachCopy on an object that is not detachable will return a transient instance that is a
COPY of the original, so use the COPY thereafter.

• Calling detachCopy on an object that is detachable will return a detached instance that is a
COPY of the original, so use this COPY thereafter

• A detached object retain the id of its datastore entity. Detached objects should be used where you
want to update the objects and attach them later (updating the associated object in the datastore.
If you want to create copies of the objects in the datastore with their own identities you should
use makeTransient instead of detachCopy.

• Calling detachCopy will detach all fields of that object that are in the current Fetch Group for
that class for that PersistenceManager.

• By default the fields of the object that will be detached are those in the Default Fetch Group.
• You should choose your Fetch Group carefully, bearing in mind which object(s) you want to

access whilst detached. Detaching a relation field will detach the related object as well.
• If you don't detach a field of an object, you cannot access the value for that field while the object

is detached.
• If you don't detach a field of an object, you can update the value for that field while detached,

and thereafter you can access the value for that field.
• Calling makePersistent will return an (attached) copy of the detached object. It will attach all

fields that were originally detached, and will also attach any other fields that were modified
whilst detached.

When attaching an object graph (using makePersistent()) DataNucleus will, by default, make
a check if each detached object has been detached from this datastore (since they could have
been detached from a different datastore). This clearly can cause significant numbers of
additional datastore activity with a large object graph. Consequently we provide a PMF property
datanucleus.attachSameDatastore which, when set to true, will omit these checks and assume that we
are attaching to the same datastore they were detached from.

To read more about attach/detach and how to use it with fetch-groups you can look at our Tutorial
on DAO Layer design.

If you try to access a field in a detached object that was not detached when the object was
detached then you will likely have a JDODetachedFieldAccessException thrown. To avoid
this you should detach the field when detaching the object, so either you didn't specify a
large enough value for "maxFetchDepth" (pm.getFetchPlan().setMaxFetchDepth(val)), or
you didn't have a large enough value of "recursionDepth" for that field (where the field is
recursive), or maybe the FetchPlan simply didn't include that field.

89.1.1 Detach All On Commit

JDO2 also provides a mechanism whereby all objects that were enlisted in a transaction
are automatically detached when the transaction is committed. You can enable this
in one of 3 ways. If you want to use this mode globally for all PersistenceManagers
(PMs) from a PersistenceManagerFactory (PMF) you could either set the PMF property
"datanucleus.DetachAllOnCommit", or you could create your PMF and call the PMF method
setDetachAllOnCommit(true). If instead you wanted to use this mode only for a particular

8 9 A t t a c h / D e t a c h 496

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PM, or only for a particular transaction for a particular PM, then you can call the PM method
setDetachAllOnCommit(true) before the commit of the transaction, and it will apply for all
transaction commits thereafter, until turned off (setDetachAllOnCommit(false). Here's an example

// Create a PMF

...

// Create an object

MyObject my = new MyObject();

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 // We want our object to be detached when it's been persisted

 pm.setDetachAllOnCommit(true);

 // Persist the object that we created earlier

 pm.makePersistent(my);

 tx.commit();

 // The object "my" is now in detached state and can be used further

}

finally

{

 if (tx.isActive)

 {

 tx.rollback();

 }

}

89.1.2 Copy On Attach

By default when you are attaching a detached object it will return an attached copy of the detached
object. JDO2.1 provides a new feature that allows this attachment to just migrate the existing detached
object into attached state.

You enable this by setting the PersistenceManagerFactory (PMF) property
datanucleus.CopyOnAttach to false. Alternatively you can use the
methods PersistenceManagerFactory.setCopyOnAttach(boolean flag) or
PersistenceManager.setCopyOnAttach(boolean flag). If we return to the example at the start of this
page, this now becomes

8 9 A t t a c h / D e t a c h 497

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

// Reattach the updated object

pm.setCopyOnAttach(false);

tx = pm.currentTransaction();

try

{

 tx.begin();

 // working product is currently in detached state

 pm.makePersistent(working_product);

 // working_product is now in persistent (attached) state

 tx.commit();

}

catch (Exception e)

{

 // Handle the exception

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

}

Please note that if you try to attach two detached objects representing the same underlying persistent
object within the same transaction (i.e a persistent object with the same identity already exists in the
level 1 cache), then a JDOUserException will be thrown.

89.1.3 Detach On Close

A backup to the above programmatic detachment of instances is that when you close your
PersistenceManager you can opt to have all instances currently cached in the Level 1 Cache
of that PersistenceManager detached automatically. This means that you can persist instances,
and then when you close the PM the instances will be detached and ready for further work. This
is a DataNucleus extension. It is recommended that you use "detachAllOnCommit" since
that is standard JDO and since this option will not work in J2EE environments where the
PersistenceManager close is controlled by the J2EE container

You enable this by setting the PersistenceManagerFactory (PMF) property
datanucleus.DetachOnClose when you create the PMF. Let's give an example

8 9 A t t a c h / D e t a c h 498

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

// Create a PMF with the datanucleus.DetachOnClose property set to "true"

...

// Create an object

MyObject my = new MyObject();

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 // Persist the object that we created earlier

 pm.makePersistent(my);

 tx.commit();

 pm.close();

 // The object "my" is now in detached state and can be used further

}

finally

{

 if (tx.isActive)

 {

 tx.rollback();

 }

}

That is about as close to transparent persistence as you will find. When the PM is closed all instances
found in the L1 Cache are detached using the current FetchPlan, and so all fields in that plan for the
instances in question will be detached at that time.

89.1.4 Detached Fields

When an object is detached it is typically passed to a different layer of an application and potentially
changed. During the course of the operation of the system it may be required to know what is loaded
in the object and what is dirty (has been changed since detaching). DataNucleus provides an extension
to allow interrogation of the detached object.

String[] loadedFieldNames = NucleusJDOHelper.getLoadedFields(obj, pm);

String[] dirtyFieldNames = NucleusJDOHelper.getDirtyFields(obj, pm);

So you have access to the names of the fields that were loaded when detaching the object, and also to
the names of the fields that have been updated since detaching.

89.1.5 Serialization of Detachable classes

During enhancement of Detachable classes, a field called jdoDetachedState is added to the class
definition. This field allows reading and changing tracking of detached objects while they are not
managed by a PersistenceManager.

8 9 A t t a c h / D e t a c h 499

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

When serialization occurs on a Detachable object, the jdoDetachedState field is written to the
serialized object stream. On deserialize, this field is written back to the new deserialized instance.
This process occurs transparently to the application. However, if deserialization occurs with an un-
enhanced version of the class, the detached state is lost.

Serialization and deserialization of Detachable classes and un-enhanced versions of the same class
is only possible if the field serialVersionUID is added. It's recommended during development of
the class, to define the serialVersionUID and make the class to implement the java.io.Serializable
interface, as the following example:

class MyClass implements java.io.Serializable

{

 private static final long serialVersionUID = 2765740961462495537L; // any random value here

 //.... other fields

}

9 0 D a t a s t o r e C o n n e c t i o n 500

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

90 Datastore Connection
...

90.1 JDO : Datastore Connections
DataNucleus utilises datastore connections as follows

• PMF : single connection at any one time for datastore-based value generation. Obtained just for
the operation, then released

• PMF : single connection at any one time for schema-generation. Obtained just for the operation,
then released

• PM : single connection at any one time. When in a transaction the connection is held from
the point of retrieval until the transaction commits or rolls back; the exact point at which the
connection is obtained is defined more fully below. When used for non-transactional operations
the connection is obtained just for the specific operation (unless configured to retain it).

If you have multiple threads using the same PersistenceManager then you can get "ConnectionInUse"
problems where another operation on another thread comes in and tries to perform something while
that first operation is still in use. This happens because the JDO spec requires an implementation to
use a single datastore connection at any one time. When this situation crops up the user ought to use
multiple PersistenceManagers.

Another important aspect is use of queries for Optimistic transactions, or for non-transactional
contexts. In these situations it isn't possible to keep the datastore connection open indefinitely and so
when the Query is executed the ResultSet is then read into core making the queried objects available
thereafter.

90.1.1 Transactional Context

For pessimistic/datastore transactions a connection will be obtained from the datastore when the
first persistence operation is initiated. This datastore connection will be held for the duration of the
transaction until such time as either commit() or rollback() are called.

For optimistic transactions the connection is only obtained when flush()/commit() is called. When
flush() is called, or the transaction committed a datastore connection is finally obtained and it is
held open until commit/rollback completes. when a datastore operation is required. The connection
is typically released after performing that operation. So datastore connections, in general, are held
for much smaller periods of time. This is complicated slightly by use of the persistence property
java.jdo.option.IgnoreCache. When this is set to false, the connection, once obtained, is not released
until the call to commit()/rollback().

Note that for Neo4j/MongoDB a single connection is used for the duration of the PM for all
transactional and nontransactional operations.

90.1.2 Nontransactional Context

When performing non-transactional operations, the default behaviour is to obtain a connection when
needed, and release it after use. With RDBMS you have the option of retaining this connection ready
for the next operation to save the time needed to obtain it; this is enabled by setting the persistence
property datanucleus.connection.nontx.releaseAfterUse to false.

Note that for Neo4j/MongoDB a single connection is used for the duration of the PM for all
transactional and nontransactional operations.

9 0 D a t a s t o r e C o n n e c t i o n 501

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

90.1.3 User Connection

JDO defines a mechanism for users to access the native connection to the datastore, so that they can
perform other operations as necessary. You obtain a connection as follows (for RDBMS)

// Obtain the connection from the JDO implementation

JDOConnection conn = pm.getDataStoreConnection();

try

{

 Object native = conn.getNativeConnection();

 ... use the "sqlConn" connection to perform some operations.

}

finally

{

 // Hand the connection back to the JDO implementation

 conn.close();

}

For the datastores supported by DataNucleus, the "native" object is of the following types
• RDBMS : java.sql.Connection
• Excel : org.apache.poi.hssf.usermodel.HSSFWorkbook
• OOXML : org.apache.poi.hssf.usermodel.XSSFWorkbook
• ODF : org.odftoolkit.odfdom.doc.OdfDocument
• LDAP : javax.naming.ldap.LdapContext
• MongoDB : com.mongodb.DB
• HBase : NOT SUPPORTED
• JSON : NOT SUPPORTED
• XML : org.w3c.dom.Document
• NeoDatis : org.neodatis.odb.ODB
• GAE Datastore : com.google.appengine.api.datastore.DatastoreService
• Neo4j : org.neo4j.graphdb.GraphDatabaseService
• Cassandra : com.datastax.driver.core.Session

The "JDOConnection"

in the case of DataNucleus is a wrapper to the native connection for the type of datastore being used.
You now have a connection allowing direct access to the datastore. Things to bear in mind with this
connection

• You must return the connection back to the PersistenceManager before performing any JDO PM
operation. You do this by calling conn.close()

• If you don't return the connection and try to perform a JDO PM operation which requires the
connection then a JDOUserException is thrown.

90.2 Connection Pooling : when specifying the connection via URL

When you create a PersistenceManagerFactory using a connection URL, driver name, and the
username/password, this does not necessarily pool the connections (so they would be efficiently
opened/closed when needed to utilise datastore resources in an optimum way). For some of the

http://db.apache.org/jdo/api20/apidocs/javax/jdo/datastore/JDOConnection.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/datastore/JDOConnection.html

9 0 D a t a s t o r e C o n n e c t i o n 502

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

supported datastores DataNucleus allows you to utilise a connection pool to efficiently manage the
connections to the datastore when specifying the datastore via the URL. We currently provide support
for the following

• RDBMS : Apache DBCP we allow use of externally-defined DBCP, but also provide a builtin
DBCP v1.4

• RDBMS : Apache DBCP v2+
• RDBMS : C3P0
• RDBMS : Proxool
• RDBMS : BoneCP
• RDBMS : HikariCP
• RDBMS : Tomcat
• RDBMS : Manually creating a DataSource for a 3rd party software package
• RDBMS : Custom Connection Pooling Plugins for RDBMS using the DataNucleus

ConnectionPoolFactory interface
• RDBMS : Using JNDI, and lookup a connection DataSource.
• LDAP : Using JNDI

You need to specify the persistence property datanucleus.connectionPoolingType to be whichever
of the external pooling libraries you wish to use (or "None" if you explicitly want no pooling).
DataNucleus provides two sets of connections to the datastore - one for transactional usage, and
one for non-transactional usage. If you want to define a different pooling for nontransactional usage
then you can also specify the persistence property datanucleus.connectionPoolingType.nontx to
whichever is required.

90.2.1 RDBMS : JDBC driver properties with connection pool

If using RDBMS and you have a JDBC driver that supports custom properties, you can still use
DataNucleus connection pooling and you need to specify the properties in with your normal
persistence properties, but add the prefix datanucleus.connectionPool.driver. to the property name
that the driver requires. For example if an Oracle JDBC driver accepts defaultRowPrefetch then you
would specify something like

datanucleus.connectionPool.driver.defaultRowPrefetch=50

and it will pass in defaultRowPrefetch as "50" into the driver used by the connection pool.

90.2.2 RDBMS : Apache DBCP

DataNucleus provides a builtin version of DBCP to provide pooling. This is automatically selected
if using RDBMS, unless you specify otherwise. An alternative is to use an external DBCP (DBCP).
This is accessed by specifying the persistence property datanucleus.connectionPoolingType etc like
this

http://jakarta.apache.org/commons/dbcp/

9 0 D a t a s t o r e C o n n e c t i o n 503

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

// Specify our persistence properties used for creating our PMF

Properties props = new Properties();

properties.setProperty("datanucleus.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("datanucleus.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("datanucleus.ConnectionUserName","login");

properties.setProperty("datanucleus.ConnectionPassword","password");

properties.setProperty("datanucleus.connectionPoolingType", "DBCP");

So the PMF will use connection pooling using DBCP. To do this you will need commons-dbcp,
commons-pool and commons-collections JARs to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for DBCP are shown below

Pooling of Connections

datanucleus.connectionPool.maxIdle=10

datanucleus.connectionPool.minIdle=3

datanucleus.connectionPool.maxActive=5

datanucleus.connectionPool.maxWait=60

Pooling of PreparedStatements

datanucleus.connectionPool.maxStatements=0

datanucleus.connectionPool.testSQL=SELECT 1

datanucleus.connectionPool.timeBetweenEvictionRunsMillis=2400000

datanucleus.connectionPool.minEvictableIdleTimeMillis=18000000

90.2.3 RDBMS : Apache DBCP v2+

DataNucleus allows you to utilise a connection pool using Apache DBCP version 2 to efficiently
manage the connections to the datastore. DBCP is a third-party library providing connection pooling.
This is accessed by specifying the persistence property datanucleus.connectionPoolingType. To
utilise DBCP-based connection pooling we do this

// Specify our persistence properties used for creating our PMF

Properties props = new Properties();

properties.setProperty("datanucleus.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("datanucleus.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("datanucleus.ConnectionUserName","login");

properties.setProperty("datanucleus.ConnectionPassword","password");

properties.setProperty("datanucleus.connectionPoolingType", "dbcp2");

So the PMF will use connection pooling using DBCP. To do this you will need commons-dbcp2,
commons-pool2 JARs to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for DBCP2 are shown below

http://jakarta.apache.org/commons/dbcp/

9 0 D a t a s t o r e C o n n e c t i o n 504

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Pooling of Connections

datanucleus.connectionPool.maxIdle=10

datanucleus.connectionPool.minIdle=3

datanucleus.connectionPool.maxActive=5

datanucleus.connectionPool.maxWait=60

datanucleus.connectionPool.testSQL=SELECT 1

datanucleus.connectionPool.timeBetweenEvictionRunsMillis=2400000

90.2.4 RDBMS : C3P0

DataNucleus allows you to utilise a connection pool using C3P0 to efficiently manage the connections
to the datastore. C3P0 is a third-party library providing connection pooling. This is accessed by
specifying the persistence property datanucleus.connectionPoolingType. To utilise C3P0-based
connection pooling we do this

// Specify our persistence properties used for creating our PMF

Properties props = new Properties();

properties.setProperty("datanucleus.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("datanucleus.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("datanucleus.ConnectionUserName","login");

properties.setProperty("datanucleus.ConnectionPassword","password");

properties.setProperty("datanucleus.connectionPoolingType", "C3P0");

So the PMF will use connection pooling using C3P0. To do this you will need the C3P0 JAR to be in
the CLASSPATH. If you want to configure C3P0 further you can include a "c3p0.properties" in your
CLASSPATH - see the C3P0 documentation for details.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for C3P0 are shown below

Pooling of Connections

datanucleus.connectionPool.maxPoolSize=5

datanucleus.connectionPool.minPoolSize=3

datanucleus.connectionPool.initialPoolSize=3

Pooling of PreparedStatements

datanucleus.connectionPool.maxStatements=0

90.2.5 RDBMS : Proxool

DataNucleus allows you to utilise a connection pool using Proxool to efficiently manage the
connections to the datastore. Proxool is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType. To utilise
Proxool-based connection pooling we do this

http://www.sf.net/projects/c3p0
http://proxool.sourceforge.net/

9 0 D a t a s t o r e C o n n e c t i o n 505

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

// Specify our persistence properties used for creating our PMF

Properties props = new Properties();

properties.setProperty("datanucleus.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("datanucleus.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("datanucleus.ConnectionUserName","login");

properties.setProperty("datanucleus.ConnectionPassword","password");

properties.setProperty("datanucleus.connectionPoolingType", "Proxool");

So the PMF will use connection pooling using Proxool. To do this you will need the proxool and
commons-logging JARs to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for Proxool are shown below

datanucleus.connectionPool.maxConnections=10

datanucleus.connectionPool.testSQL=SELECT 1

90.2.6 RDBMS : BoneCP

DataNucleus allows you to utilise a connection pool using BoneCP to efficiently manage the
connections to the datastore. BoneCP is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType. To utilise
BoneCP-based connection pooling we do this

// Specify our persistence properties used for creating our PMF

Properties props = new Properties();

properties.setProperty("datanucleus.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("datanucleus.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("datanucleus.ConnectionUserName","login");

properties.setProperty("datanucleus.ConnectionPassword","password");

properties.setProperty("datanucleus.connectionPoolingType", "BoneCP");

So the PMF will use connection pooling using BoneCP. To do this you will need the BoneCP JAR
(and SLF4J, google-collections) to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for BoneCP are shown below

Pooling of Connections

datanucleus.connectionPool.maxPoolSize=5

datanucleus.connectionPool.minPoolSize=3

Pooling of PreparedStatements

datanucleus.connectionPool.maxStatements=0

http://www.jolbox.com

9 0 D a t a s t o r e C o n n e c t i o n 506

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

90.2.7 RDBMS : HikariCP

DataNucleus allows you to utilise a connection pool using HikariCP to efficiently manage the
connections to the datastore. HikariCP is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType. To utilise this
connection pooling we do this

// Specify our persistence properties used for creating our PMF

Properties props = new Properties();

properties.setProperty("datanucleus.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("datanucleus.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("datanucleus.ConnectionUserName","login");

properties.setProperty("datanucleus.ConnectionPassword","password");

properties.setProperty("datanucleus.connectionPoolingType", "HikariCP");

So the PMF will use connection pooling using HikariCP. To do this you will need the HikariCP JAR
(and SLF4J, javassist as required) to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for HikariCP are shown below

Pooling of Connections

datanucleus.connectionPool.maxPoolSize=5

datanucleus.connectionPool.maxIdle=5

datanucleus.connectionPool.leakThreshold=1

datanucleus.connectionPool.maxLifetime=240

90.2.8 RDBMS : Tomcat

DataNucleus allows you to utilise a connection pool using Tomcats JDBC Pool to efficiently
manage the connections to the datastore. This is accessed by specifying the persistence property
datanucleus.connectionPoolingType. To utilise Tomcat-based connection pooling we do this

// Specify our persistence properties used for creating our PMF

Properties props = new Properties();

properties.setProperty("datanucleus.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("datanucleus.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("datanucleus.ConnectionUserName","login");

properties.setProperty("datanucleus.ConnectionPassword","password");

properties.setProperty("datanucleus.connectionPoolingType", "Tomcat");

So the PMF will use a DataSource with connection pooling using Tomcat. To do this you will need
the tomcat-jdbc JAR to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling, just like other pools.

90.2.9 RDBMS : Manually create a DataSource (e.g DBCP, C3P0, Proxool, etc)

We could have used the built-in DBCP support which internally creates a DataSource
ConnectionFactory, alternatively the support for external DBCP, C3P0, Proxool, BoneCP etc,

https://github.com/brettwooldridge/HikariCP

9 0 D a t a s t o r e C o n n e c t i o n 507

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

however we can also do this manually if we so wish. Let's demonstrate how to do this with one of the
most used pools Apache Commons DBCP

With DBCP you need to generate a javax.sql.DataSource, which you will then pass to DataNucleus.
You do this as follows

// Load the JDBC driver

Class.forName(dbDriver);

// Create the actual pool of connections

ObjectPool connectionPool = new GenericObjectPool(null);

// Create the factory to be used by the pool to create the connections

ConnectionFactory connectionFactory = new DriverManagerConnectionFactory(dbURL, dbUser, dbPassword);

// Create a factory for caching the PreparedStatements

KeyedObjectPoolFactory kpf = new StackKeyedObjectPoolFactory(null, 20);

// Wrap the connections with pooled variants

PoolableConnectionFactory pcf =

 new PoolableConnectionFactory(connectionFactory, connectionPool, kpf, null, false, true);

// Create the datasource

DataSource ds = new PoolingDataSource(connectionPool);

// Create our PMF

Map properties = new HashMap();

properties.put("javax.jdo.option.ConnectionFactory", ds);

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(properties);

Note that we haven't passed the dbUser and dbPassword to the PMF since we no longer need to
specify them - they are defined for the pool so we let it do the work. As you also see, we set the data
source for the PMF. Thereafter we can sit back and enjoy the performance benefits. Please refer to the
documentation for DBCP for details of its configurability (you will need commons-dbcp, commons-
pool, and commons-collections in your CLASSPATH to use this above example).

90.2.10 RDBMS : Lookup a DataSource using JNDI

DataNucleus allows you to use connection pools (java.sql.DataSource) bound to
a javax.naming.InitialContext with a JNDI name. You first need to create the
DataSource in the container (application server/web server), and secondly you define the
datanucleus.ConnectionFactoryName property with the DataSource JDNI name.

The following example uses a properties file that is loaded before creating the
PersistenceManagerFactory. The PersistenceManagerFactory is created using the JDOHelper.

datanucleus.ConnectionFactoryName=YOUR_DATASOURCE_JNDI_NAME

http://commons.apache.org/dbcp

9 0 D a t a s t o r e C o n n e c t i o n 508

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Properties properties = new Properties();

// the properties file is in your classpath

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("/yourpath/yourfile.properties");

Please read more about this in RDBMS DataSources.

90.2.11 LDAP : JNDI

If using an LDAP datastore you can use the following persistence properties to enable connection
pooling

datanucleus.connectionPoolingType=JNDI

Once you have turned connection pooling on if you want more control over the pooling you can also
set the following persistence properties

• datanucleus.connectionPool.maxPoolSize : max size of pool
• datanucleus.connectionPool.initialPoolSize : initial size of pool

90.3 RDBMS : Data Sources

DataNucleus allows use of a data source that represents the datastore in use. This is often just a URL
defining the location of the datastore, but there are in fact several ways of specifying this data source
depending on the environment in which you are running.

• Nonmanaged Context - Java Client
• Managed Context - Servlet
• Managed Context - JEE

90.3.1 Java Client Environment : Non-managed Context

DataNucleus permits you to take advantage of using database connection pooling that is available
on an application server. The application server could be a full JEE server (e.g WebLogic) or could
equally be a servlet engine (e.g Tomcat, Jetty). Here we are in a non-managed context, and we use the
following properties when creating our PersistenceManagerFactory, and refer to the JNDI data source
of the server.

If the data source is avaiable in WebLogic, the simplest way of using a data source outside the
application server is as follows.

9 0 D a t a s t o r e C o n n e c t i o n 509

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Hashtable ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory");

ht.put(Context.PROVIDER_URL,"t3://localhost:7001");

Context ctx = new InitialContext(ht);

DataSource ds = (DataSource) ctx.lookup("jdbc/datanucleus");

Map properties = new HashMap();

properties.setProperty("datanucleus.ConnectionFactory",ds);

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(properties);

If the data source is avaiable in Websphere, the simplest way of using a data source outside the
application server is as follows.

Hashtable ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,"com.ibm.websphere.naming.WsnInitialContextFactory");

ht.put(Context.PROVIDER_URL,"iiop://server:orb port");

Context ctx = new InitialContext(ht);

DataSource ds = (DataSource) ctx.lookup("jdbc/datanucleus");

Map properties = new HashMap();

properties.setProperty("javax.jdo.PersistenceManagerFactoryClass",

 "org.datanucleus.api.jdo.JDOPersistenceManagerFactory");

properties.setProperty("datanucleus.ConnectionFactory",ds);

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(properties);

90.3.2 Servlet Environment : Managed Context

As an example of setting up such a JNDI data source for Tomcat 5.0, here we would add the
following file to $TOMCAT/conf/Catalina/localhost/ as "datanucleus.xml"

9 0 D a t a s t o r e C o n n e c t i o n 510

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version='1.0' encoding='utf-8'?>

<Context docBase="/home/datanucleus/" path="/datanucleus">

 <Resource name="jdbc/datanucleus" type="javax.sql.DataSource"/>

 <ResourceParams name="jdbc/datanucleus">

 <parameter>

 <name>maxWait</name>

 <value>5000</value>

 </parameter>

 <parameter>

 <name>maxActive</name>

 <value>20</value>

 </parameter>

 <parameter>

 <name>maxIdle</name>

 <value>2</value>

 </parameter>

 <parameter>

 <name>url</name>

 <value>jdbc:mysql://127.0.0.1:3306/datanucleus?autoReconnect=true</value>

 </parameter>

 <parameter>

 <name>driverClassName</name>

 <value>com.mysql.jdbc.Driver</value>

 </parameter>

 <parameter>

 <name>username</name>

 <value>mysql</value>

 </parameter>

 <parameter>

 <name>password</name>

 <value></value>

 </parameter>

 </ResourceParams>

</Context>

With this Tomcat JNDI data source we would then specify the PMF ConnectionFactoryName as
java:comp/env/jdbc/datanucleus.

Properties properties = new Properties();

properties.setProperty("datanucleus.ConnectionFactoryName","java:comp/env/jdbc/datanucleus");

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(properties);

90.3.3 JEE Environment : Managed Context

As in the above example, we can also run in a managed context, in a JEE/Servlet environment, and
here we would make a minor change to the specification of the JNDI data source depending on the
application server or the scope of the jndi: global or component.

Using JNDI deployed in global environment:

9 0 D a t a s t o r e C o n n e c t i o n 511

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Properties properties = new Properties();

properties.setProperty("datanucleus.ConnectionFactoryName","jdbc/datanucleus");

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(properties);

Using JNDI deployed in component environment:

Properties properties = new Properties();

properties.setProperty("datanucleus.ConnectionFactoryName","java:comp/env/jdbc/datanucleus");

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(properties);

See also : JEE Tutorial for JDO

9 1 T r a n s a c t i o n s 512

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

91 Transactions
...

91.1 JDO : Transactions
A Transaction forms a unit of work. The Transaction manages what happens within that unit of work,
and when an error occurs the Transaction can roll back any changes performed. Transactions can be
managed by the users application, or can be managed by a framework (such as Spring), or can be
managed by a JEE container. These are described below.

• Local transactions : managed using the JDO Transaction API
• JTA transactions : managed using the JTA UserTransaction API, or using the JDO Transaction

API
• Container-managed transactions : managed by a JEE environment
• Spring-managed transactions : managed by SpringFramework
• No transactions
• Flushing a Transaction
• Controlling transaction isolation level
• Read-Only transactions

91.1.1 Locally-Managed Transactions

When using a JDO implementation such as DataNucleus in a J2SE environment, the
transactions are by default Locally Managed Transactions. The users code will manage the
transactions by starting, and commiting the transaction itself. With these transactions with JDO

you would do something like

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 {users code to persist objects}

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

}

pm.close();

The basic idea with Locally-Managed transactions is that you are managing the transaction start and
end.

http://db.apache.org/jdo/api20/apidocs/javax/jdo/Transaction.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/Transaction.html

9 1 T r a n s a c t i o n s 513

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

91.1.2 JTA Transactions

When using a JDO implementation such as DataNucleus in a J2SE environment, you can also make
use of JTA Transactions. You define the persistence property javax.jdo.option.TransactionType
setting it to "JTA". Then you make use of JTA (or JDO) to demarcate the transactions. So you could
do something like

UserTransaction ut = (UserTransaction)

 new InitialContext().lookup("java:comp/UserTransaction");

PersistenceManager pm = pmf.getPersistenceManager();

try

{

 ut.begin();

 {users code to persist objects}

 ut.commit();

}

finally

{

 pm.close();

}

So here we used the JTA API to begin/commit the controlling (javax.transaction.UserTransaction).

An alternative is where you don't have a UserTransaction started and just use the JDO API, which will
start the UserTransaction for you.

UserTransaction ut = (UserTransaction)

 new InitialContext().lookup("java:comp/UserTransaction");

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try

{

 tx.begin(); // Starts the UserTransaction

 {users code to persist objects}

 tx.commit(); // Commits the UserTransaction

}

finally

{

 pm.close();

}

Important : please note that you need to set both transactional and nontransactional datasources, and
the nontransactional cannot be JTA.

91.1.3 Container-Managed Transactions

When using a JEE container you are giving over control of the transactions to the container. Here
you have Container-Managed Transactions. In terms of your code, you would do like the previous

9 1 T r a n s a c t i o n s 514

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

example except that you would OMIT the tx.begin(), tx.commit(), tx.rollback() since the JEE
container will be doing this for you.

91.1.4 Spring-Managed Transactions

When you use a framework like Spring you would not need to specify the tx.begin(), tx.commit(),
tx.rollback() since that would be done for you.

91.1.5 No Transactions

DataNucleus allows the ability to operate without transactions. With JDO this is enabled by default
(see the 2 properties datanucleus.NontransactionalRead, datanucleus.NontransactionalWrite
set to true). This means that you can read objects and make updates outside of transactions. This is
effectively "auto-commit" mode.

PersistenceManager pm = pmf.getPersistenceManager();

{users code to persist objects}

pm.close();

When using non-transactional operations, you need to pay attention to the persistence property
datanucleus.nontx.atomic. If this is true then any persist/delete/update will be committed to the
datastore immediately. If this is false then any persist/delete/update will be queued up until the next
transaction (or pm.close()) and committed with that.

91.1.6 Flushing

During a transaction, depending on the configuration, operations don't necessarily go to the datastore
immediately, often waiting until commit. In some situations you need persists/updates/deletes to be in
the datastore so that subsequent operations can be performed that rely on those being handled first. In
this case you can flush all outstanding changes to the datastore using

pm.flush();

A convenient vendor extension is to find which objects are waiting to be flushed at any time, like this

List<ObjectProvider> objs =

 ((JDOPersistenceManager)pm).getExecutionContext().getObjectsToBeFlushed();

http://www.springframework.org

9 1 T r a n s a c t i o n s 515

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

91.1.7 Transaction Isolation

JDO provides a mechanism for specification of the transaction isolation level. This can be
specified globally via the PersistenceManagerFactory property datanucleus.transactionIsolation
(javax.jdo.option.TransactionIsolationLevel). It accepts the following values

• read-uncommitted : dirty reads, non-repeatable reads and phantom reads can occur
• read-committed : dirty reads are prevented; non-repeatable reads and phantom reads can occur
• repeatable-read : dirty reads and non-repeatable reads are prevented; phantom reads can occur
• serializable : dirty reads, non-repeatable reads and phantom reads are prevented

The default (in DataNucleus) is read-committed. An attempt to set the isolation level to an
unsupported value (for the datastore) will throw a JDOUserException. As an alternative you can also
specify it on a per-transaction basis as follows (using the names above).

Transaction tx = pm.currentTransaction();

...

tx.setIsolationLevel("read-committed");

91.1.8 JDO Transaction Synchronisation

There are situations where you may want to get notified that a transaction is in course of being
committed or rolling back. To make that happen, you would do something like

9 1 T r a n s a c t i o n s 516

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 tx.setSynchronization(new javax.transaction.Synchronization()

 {

 public void beforeCompletion()

 {

 // before commit or rollback

 }

 public void afterCompletion(int status)

 {

 if (status == javax.transaction.Status.STATUS_ROLLEDBACK)

 {

 // rollback

 }

 else if (status == javax.transaction.Status.STATUS_COMMITTED)

 {

 // commit

 }

 }

 });

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

}

pm.close();

91.1.9 Read-Only Transactions

Obviously transactions are intended for committing changes. If you come across a situation where you
don't want to commit anything under any circumstances you can mark the transaction as "read-only"
by calling

9 1 T r a n s a c t i o n s 517

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 tx.setRollbackOnly();

 {users code to persist objects}

 tx.rollback();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

}

pm.close();

Any call to commit on the transaction will throw an exception forcing the user to roll it back.

91.2 JDO : Transaction Locking
A Transaction forms a unit of work. The Transaction manages what happens within that unit of
work, and when an error occurs the Transaction can roll back any changes performed. There are the
following types of locking :-

• Transactions can lock all records in a datastore and keep them locked until they are ready to
commit their changes. These are known as Pessimistic (or datastore) Locking.

• Transactions can simply assume that things in the datastore will not change until they are ready
to commit, not lock any records and then just before committing make a check for changes. This
is known as Optimistic Locking.

91.2.1 Pessimistic (Datastore) Locking

Pessimistic locking is the default in JDO. It is suitable for short lived operations where no user
interaction is taking place and so it is possible to block access to datastore entities for the duration of
the transaction.

By default DataNucleus does not currently lock the objects fetched with pessimistic locking,
but you can configure this behaviour for RDBMS datastores by setting the persistence property
datanucleus.SerializeRead to true. This will result in all "SELECT ... FROM ..." statements being
changed to be "SELECT ... FROM ... FOR UPDATE". This will be applied only where the underlying
RDBMS supports the "FOR UPDATE" syntax. This can be done on a transaction-by-transaction basis
by doing

Transaction tx = pm.currentTransaction();

tx.setSerializeRead(true);

Alternatively, on a per query basis, you would do

9 1 T r a n s a c t i o n s 518

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query q = pm.newQuery(...);

q.setSerializeRead(true);

With pessimistic locking DataNucleus will grab a datastore connection at the first operation, and
maintain it for the duration of the transaction. A single connection is used for the transaction (with the
exception of any Identity Generation operations which need datastore access, so these can use their
own connection).

In terms of the process of pessimistic (datastore) locking, we demonstrate this below.

Operation DataNucleus process Datastore process

Start transaction

Persist object Prepare object (1) for persistence Open connection.
Insert the object (1) into the
datastore

Update object Prepare object (2) for update Update the object (2) into the
datastore

Persist object Prepare object (3) for persistence Insert the object (3) into the
datastore

Update object Prepare object (4) for update Update the object (4) into the
datastore

Flush No outstanding changes so do
nothing

Perform query Generate query in datastore
language

Query the datastore and return
selected objects

Persist object Prepare object (5) for persistence Insert the object (5) into the
datastore

Update object Prepare object (6) for update Update the object (6) into the
datastore

Commit transaction Commit connection

So here whenever an operation is performed, DataNucleus pushes it straight to the datastore.
Consequently any queries will always reflect the current state of all objects in use. However this mode
of operation has no version checking of objects and so if they were updated by external processes in
the meantime then they will overwrite those changes.

It should be noted that DataNucleus provides two persistence properties that allow an amount of
control over when flushing happens with datastore transactions.

• datanucleus.flush.mode when set to MANUAL will try to delay all datastore operations until
commit/flush.

• datanucleus.datastoreTransactionFlushLimit represents the number of dirty objects before a
flush is performed. This defaults to 1.

91.2.2 Optimistic Locking

Optimistic locking is the other option in JDO. It is suitable for longer lived operations maybe
where user interaction is taking place and where it would be undesirable to block access to datastore
entities for the duration of the transaction. The assumption is that data altered in this transaction will

9 1 T r a n s a c t i o n s 519

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

not be updated by other transactions during the duration of this transaction, so the changes are not
propagated to the datastore until commit()/flush(). The data is checked just before commit to ensure
the integrity in this respect. The most convenient way of checking data for updates is to maintain a
column on each table that handles optimistic locking data. The user will decide this when generating
their MetaData.

Rather than placing version/timestamp columns on all user datastore tables, JDO2 allows the user
to notate particular classes as requiring optimistic treatment. This is performed by specifying in
MetaData or annotations the details of the field/column to use for storing the version - see versioning
for JDO. With JDO the version is added in a surrogate column, whereas a vendor extension allows
you to have a field in your class ready to store the version.

In JDO2 the version is stored in a surrogate column in the datastore so it also provides a method for
accessing the version of an object. You can call JDOHelper.getVersion(object) and this returns the
version as an Object (typically Long or Timestamp). This will return null for a transient object, and
will return the version for a persistent object. If the object is not persistable then it will also return
null.

In terms of the process of optimistic locking, we demonstrate this below.

Operation DataNucleus process Datastore process

Start transaction

Persist object Prepare object (1) for persistence

Update object Prepare object (2) for update

Persist object Prepare object (3) for persistence

Update object Prepare object (4) for update

Flush Flush all outstanding changes to
the datastore

Open connection.
Version check of object (1)
Insert the object (1) in the
datastore.
Version check of object (2)
Update the object (2) in the
datastore.
Version check of object (3)
Insert the object (3) in the
datastore.
Version check of object (4)
Update the object (4) in the
datastore.

Perform query Generate query in datastore
language

Query the datastore and return
selected objects

Persist object Prepare object (5) for persistence

Update object Prepare object (6) for update

Commit transaction Flush all outstanding changes to
the datastore

Version check of object (5)
Insert the object (5) in the datastore
Version check of object (6)
Update the object (6) in the
datastore.
Commit connection.

Here no changes make it to the datastore until the user either commits the transaction, or they invoke
flush(). The impact of this is that when performing a query, by default, the results may not contain

9 1 T r a n s a c t i o n s 520

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

the modified objects unless they are flushed to the datastore before invoking the query. Depending
on whether you need the modified objects to be reflected in the results of the query governs what you
do about that. If you invoke flush() just before running the query the query results will include the
changes. The obvious benefit of optimistic locking is that all changes are made in a block and version
checking of objects is performed before application of changes, hence this mode copes better with
external processes updating the objects.

Please note that for some datastores (e.g RDBMS) the version check followed by update/delete is
performed in a single statement.

See also :-

• JDO MetaData reference for <version> element
• JDO Annotations reference for @Version

91.2.3 Persistence-by-Reachability at commit()

When a transaction is committed JDO will, by default, run its reachability algorithm to check if any
reachable objects have been persisted and are no longer reachable. If an object is found to be no
longer reachable and was only persisted by being reachable (not by an explicit persist operation) then
it will be removed from the datastore. You can turn off this reachability check for JDO by setting the
persistence property datanucleus.persistenceByReachabilityAtCommit to false.

9 2 F e t c h G r o u p s 521

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

92 Fetch Groups
...

92.1 JDO : Fetch Groups
When an object is retrieved from the datastore by JDO typically not all fields are retrieved
immediately. This is because for efficiency purposes only particular field types are retrieved in the
initial access of the object, and then any other objects are retrieved when accessed (lazy loading). The
group of fields that are loaded is called a fetch group. There are 3 types of "fetch groups" to consider

• Default Fetch Group : defined in all JDO specs, containing the fields of a class that will be
retrieved by default (with no user specification).

• Named Fetch Groups : defined by the JDO2 specification, and defined in MetaData (XML/
annotations) with the fields of a class that are part of that fetch group. The definition here is
static

• Dynamic Fetch Groups : Programmatic definition of fetch groups at runtime via an API
The fetch group in use for a class is controled via the FetchPlan

interface. To get a handle on the current FetchPlan we do

FetchPlan fp = pm.getFetchPlan();

92.1.1 Default Fetch Group

JDO provides an initial fetch group, comprising the fields that will be retrieved when an object is
retrieved if the user does nothing to define the required behaviour. By default the default fetch group
comprises all fields of the following types :-

• primitives : boolean, byte, char, double, float, int, long, short
• Object wrappers of primitives : Boolean, Byte, Character, Double, Float, Integer, Long, Short
• java.lang.String, java.lang.Number, java.lang.Enum
• java.math.BigDecimal, java.math.BigInteger
• java.util.Date

If you wish to change the Default Fetch Group for a class you can update the Meta-Data for the class
as follows (for XML)

<class name="MyClass">

 ...

 <field name="fieldX" default-fetch-group="true"/>

</class>

or using annotations

@Persistent(defaultFetchGroup="true")

SomeType fieldX;

When a PersistenceManager is created it starts with a FetchPlan of the "default" fetch group. That is,
if we call

Collection fetchGroups = fp.getGroups();

http://db.apache.org/jdo/api20/apidocs/javax/jdo/FetchPlan.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/FetchPlan.html

9 2 F e t c h G r o u p s 522

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

this will have one group, called "default". At runtime, if you have been using other fetch groups and
want to revert back to the default fetch group at any time you simply do

fp.setGroup(FetchPlan.DEFAULT);

92.1.2 Named Fetch Groups

As mentioned above, JDO2 allows specification of users own fetch groups. These are specified in the
MetaData of the class. For example, if we have the following class

class MyClass

{

 String name;

 HashSet coll;

 MyOtherClass other;

}

and we want to have the other field loaded whenever we load objects of this class, we define our
MetaData as

<package name="mydomain">

 <class name="MyClass">

 <field name="name">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="coll" persistence-modifier="persistent">

 <collection element-type="mydomain.Address"/>

 <join/>

 </field>

 <field name="other" persistence-modifier="persistent"/>

 <fetch-group name="otherfield">

 <field name="other"/>

 </fetch-group>

 </class>

</package>

or using annotations

@PersistenceCapable

@FetchGroup(name="otherfield", members={@Persistent(name="other")})

public class MyClass

{

 ...

}

So we have defined a fetch group called "otherfield" that just includes the field with name other. We
can then use this at runtime in our persistence code.

9 2 F e t c h G r o u p s 523

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PersistenceManager pm = pmf.getPersistenceManager();

pm.getFetchPlan().addGroup("otherfield");

... (load MyClass object)

By default the FetchPlan will include the default fetch group. We have changed this above by adding
the fetch group "otherfield", so when we retrieve an object using this PersistenceManager we will be
retrieving the fields name AND other since they are both in the current FetchPlan. We can take the
above much further than what is shown by defining nested fetch groups in the MetaData. In addition
we can change the FetchPlan just before any PersistenceManager operation to control what is fetched
during that operation. The user has full flexibility to add many groups to the current Fetch Plan. This
gives much power and control over what will be loaded and when. A big improvement over JDO 1.0

The FetchPlan applies not just to calls to PersistenceManager.getObjectById(), but also to
PersistenceManager.newQuery(), PersistenceManager.getExtent(), PersistenceManager.detachCopy
and much more besides.

To read more about named fetch-groups and how to use it with attach/detach you can look at our
Tutorial on DAO Layer design.

92.1.3 Dynamic Fetch Groups

The mechanism above provides static fetch groups defined in XML or annotations. That is great
when you know in advance what fields you want to fetch. In some situations you may want to define
your fields to fetch at run time. This became standard in JDO2.2 (was previously a DataNucleus
extension). It operates as follows

import org.datanucleus.FetchGroup;

// Create a FetchGroup on the PMF called "TestGroup" for MyClass

FetchGroup grp = myPMF.getFetchGroup(MyClass.class, "TestGroup");

grp.addMember("field1").addMember("field2");

// Add this group to the fetch plan (using its name)

fp.addGroup("TestGroup");

So we use the DataNucleus PMF as a way of creating a FetchGroup, and then register that
FetchGroup with the PMF for use by all PMs. We then enable our FetchGroup for use in the
FetchPlan by using its group name (as we do for a static group). The FetchGroup allows you to add/
remove the fields necessary so you have full API control over the fields to be fetched.

92.1.4 Fetch Depth

The basic fetch group defines which fields are to be fetched. It doesn't explicitly define how far down
an object graph is to be fetched. JDO2 provides two ways of controlling this.

The first is to set the maxFetchDepth for the FetchPlan. This value specifies how far out from
the root object the related objects will be fetched. A positive value means that this number of
relationships will be traversed from the root object. A value of -1 means that no limit will be placed
on the fetching traversal. The default is 1. Let's take an example

9 2 F e t c h G r o u p s 524

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class MyClass1

{

 MyClass2 field1;

 ...

}

public class MyClass2

{

 MyClass3 field2;

 ...

}

public class MyClass3

{

 MyClass4 field3;

 ...

}

and we want to detach field1 of instances of MyClass1, down 2 levels - so detaching the initial
"field1" MyClass2 object, and its "field2" MyClass3 instance. So we define our fetch-groups like this

<class name="MyClass1">

 ...

 <fetch-group name="includingField1">

 <field name="field1"/>

 </fetch-group>

</class>

<class name="MyClass2">

 ...

 <fetch-group name="includingField2">

 <field name="field2"/>

 </fetch-group>

</class>

and we then define the maxFetchDepth as 2, like this

pm.getFetchPlan().setMaxFetchDepth(2);

A further refinement to this global fetch depth setting is to control the fetching of recursive fields.
This is performed via a MetaData setting "recursion-depth". A value of 1 means that only 1 level of
objects will be fetched. A value of -1 means there is no limit on the amount of recursion. The default
is 1. Let's take an example

public class Directory

{

 Collection children;

 ...

}

9 2 F e t c h G r o u p s 525

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<class name="Directory">

 <field name="children">

 <collection element-type="Directory"/>

 </field>

 <fetch-group name="grandchildren">

 <field name="children" recursion-depth="2"/>

 </fetch-group>

 ...

</class>

So when we fetch a Directory, it will fetch 2 levels of the children field, hence fetching the children
and the grandchildren.

92.1.5 Fetch Size

A FetchPlan can also be used for defining the fetching policy when using queries. This can be set
using

pm.getFetchPlan().setFetchSize(value);

The default is FetchPlan.FETCH_SIZE_OPTIMAL which leaves it to DataNucleus to optimise
the fetching of instances. A positive value defines the number of instances to be fetched. Using
FetchPlan.FETCH_SIZE_GREEDY means that all instances will be fetched immediately.

9 3 Q u e r y A P I 526

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

93 Query API
...

93.1 JDO : Query API
Once you have persisted objects you need to query them. For example if you have a web application
representing an online store, the user asks to see all products of a particular type, ordered by the price.
This requires you to query the datastore for these products. JDO allows support for several query
languages using its API. DataNucleus provides querying using

• an object-oriented query language (JDOQL)
• a relational query language (SQL) for RDBMS datastores
• the pseudo-OO query language for JPA (JPQL)
• Stored Procedures for RDBMS datastores

Note that for some datastores additional query languages may be available specific to that datastore -
please check the datastores documentation. The query language you choose is your choice, typically
dependent on the skillset of the developers of your application.

We recommend using JDOQL for queries wherever possible since it is object-based and datastore agnostic,
giving you extra flexibility in the future. If not possible using JDOQL, only then use a language appropriate to
the datastore in question

93.1.1 Creating a query

The principal ways of creating a query are
• Specifying the query language, and using a single-string form of the query

Query q = pm.newQuery("javax.jdo.query.JDOQL",

 "SELECT FROM mydomain.MyClass WHERE field2 < threshold " +

 "PARAMETERS java.util.Date threshold");

or alternatively

Query q = pm.newQuery("SQL", "SELECT * FROM MYTABLE WHERE COL1 == 25);

• A "named" query, (pre-)defined in metadata (refer to metadata docs).

Query q = pm.newNamedQuery(MyClass.class, "MyQuery1");

• JDOQL : Use the single-string form of the query

Query q = pm.newQuery("SELECT FROM mydomain.MyClass WHERE field2 < threshold " +

 "PARAMETERS java.util.Date threshold");

• JDOQL : Use the declarative API to define the query

Query q = pm.newQuery(MyClass.class);

q.setFilter("field2 < threshold");

q.declareParameters("java.util.Date threshold");

• JDOQL : Use the typesafe API to define the query

9 3 Q u e r y A P I 527

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

TypesafeQuery<MyClass> q = pm.newTypesafeQuery(MyClass.class);

QMyClass cand = QMyClass.candidate();

List<Product> results =

 q.filter(cand.field2.lt(q.doubleParameter("threshold"))).executeList();

Please note that with the query API you can also specify execution time information for the query,
such as whether it executes in memory, or whether to apply a datastore timeout etc.

93.1.2 Compiling a query

An intermediate step once you have your query defined, if you want to check its validity is to compile
it. You do this as follows

q.compile();

If the query is invalid, then a JDO exception will be thrown.

93.1.3 Executing a query

So we have set up our query. We now execute it

Object result = q.execute();

If we have parameters to pass in we can also do any of

Object result = q.execute(paramVal1);

Object result = q.execute(paramVal1, paramVal2);

Object result = q.executeWithArray(new Object[]{paramVal1, paramVal2});

Map paramMap = new HashMap();

paramMap("param1", paramVal1);

paramMap("param2", paramVal2);

Object result = q.executeWithMap(paramMap);

By default, when a query is executed, it will execute in the datastore with what is present in the
datastore at that time. If there are outstanding changes waiting to be flushed then these will not feature
in the results. To flush these changes before execution, set the following query "extension" before
calling execute

q.addExtension("datanucleus.query.flushBeforeExecution","true");

9 3 Q u e r y A P I 528

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

93.1.4 Controlling the execution : Vendor extensions

JDO's query API allows implementations to support extensions and provides a simple interface for
enabling the use of such extensions on queries.

q.addExtension("extension_name", "value");

HashMap exts = new HashMap();

exts.put("extension1", value1);

exts.put("extension2", value2);

q.setExtensions(exts);

93.1.5 Named Query

With the JDO API you can either define a query at runtime, or define it in the MetaData/annotations
for a class and refer to it at runtime using a symbolic name. This second option means that the method
of invoking the query at runtime is much simplified. To demonstrate the process, lets say we have a
class called Product (something to sell in a store). We define the JDO Meta-Data for the class in the
normal way, but we also have some query that we know we will require, so we define the following in
the Meta-Data.

<jdo>

 <package name="mydomain">

 <class name="Product">

 ...

 <query name="SoldOut" language="javax.jdo.query.JDOQL"><![CDATA[

 SELECT FROM mydomain.Product WHERE status == "Sold Out"

]]></query>

 </class>

 </package>

</jdo>

So we have a JDOQL query called "SoldOut" defined for the class Product that returns all Products
(and subclasses) that have a status of "Sold Out". Out of interest, what we would then do in our
application to execute this query woule be

Query q = pm.newNamedQuery(mydomain.Product.class,"SoldOut");

Collection results = (Collection)q.execute();

The above example was for the JDOQL object-based query language. We can do a similar thing using
SQL, so we define the following in our MetaData for our Product class

9 3 Q u e r y A P I 529

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="mydomain">

 <class name="Product">

 ...

 <query name="PriceBelowValue" language="javax.jdo.query.SQL"><![CDATA[

 SELECT NAME FROM PRODUCT WHERE PRICE < ?

]]></query>

 </class>

 </package>

</jdo>

So here we have an SQL query that will return the names of all Products that have a price less than
a specified value. This leaves us the flexibility to specify the value at runtime. So here we run our
named query, asking for the names of all Products with price below 20 euros.

Query q = pm.newNamedQuery(mydomain.Product.class,"PriceBelowValue");

Collection results = (Collection)q.execute(20.0);

All of the examples above have been specifed within the <class> element of the MetaData. You can,
however, specify queries below <jdo> in which case the query is not scoped by a particular candidate
class. In this case you must put your queries in any of the following MetaData files

/META-INF/package.jdo

/WEB-INF/package.jdo

/package.jdo

/META-INF/package-{mapping}.orm

/WEB-INF/package-{mapping}.orm

/package-{mapping}.orm

/META-INF/package.jdoquery

/WEB-INF/package.jdoquery

/package.jdoquery

93.1.6 Saving a Query as a Named Query

DataNucleus also allows you to create a query, and then save it as a "named" query for later reuse.
You do this as follows

Query q = pm.newQuery("SELECT FROM Product p WHERE ...");

((org.datanucleus.api.jdo.JDOQuery)q).saveAsNamedQuery("MyQuery");

and you can thereafter access the query via

Query q = pm.newNamedQuery(Product.class, "MyQuery");

9 3 Q u e r y A P I 530

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

93.1.7 Controlling the execution : FetchPlan

When a Query is executed it executes in the datastore, which returns a set of results. DataNucleus
could clearly read all results from this ResultSet in one go and return them all to the user, or could
allow control over this fetching process. JDO provides a fetch size on the Fetch Plan to allow this
control. You would set this as follows

Query q = pm.newQuery(...);

q.getFetchPlan().setFetchSize(FetchPlan.FETCH_SIZE_OPTIMAL);

fetch size has 3 possible values.

• FETCH_SIZE_OPTIMAL - allows DataNucleus full control over the fetching. In this
case DataNucleus will fetch each object when they are requested, and then when the owning
transaction is committed will retrieve all remaining rows (so that the Query is still usable after
the close of the transaction).

• FETCH_SIZE_GREEDY - DataNucleus will read all objects in at query execution. This can be
efficient for queries with few results, and very inefficient for queries returning large result sets.

• A positive value - DataNucleus will read this number of objects at query execution. Thereafter it
will read the objects when requested.

In addition to the number of objects fetched, you can also control which fields are fetched for each
object of the candidate type. This is controlled via the FetchPlan. For RDBMS any single-valued
member will be fetched in the original SQL query, but with multiple-valued members this is not
supported. However what will happen is that any collection field will be retrieved in a single SQL
query for all candidate objects; this avoids the "N+1" problem, resulting in 1 original SQL query plus
1 SQL query per collection member. Note that you can disable this by either not putting multi-valued
fields in the FetchPlan, or by setting the query extension "datanucleus.rdbms.query.multivaluedFetch"
to "none" (default is "exists" using the single SQL per field). For non-RDBMS datastores the
collection/map is stored by way of a Collection of ids of the related objects in a single "column" of the
object and so is retrievable in the same query. See also Fetch Groups.

DataNucleus also allows an extension to give further control. As mentioned above, when the
transaction containing the Query is committed, all remaining results are read so that they can then be
accessed later (meaning that the query is still usable). Where you have a large result set and you don't
want this behaviour you can turn it off by specifying a Query extension

q.addExtension("datanucleus.query.loadResultsAtCommit", "false");

so when the transaction is committed, no more results will be available from the query.

In some situations you don't want all FetchPlan fields retrieving, and DataNucleus provides an
extension to turn this off, like this

q.addExtension("datanucleus.query.useFetchPlan", "false");

9 3 Q u e r y A P I 531

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

93.1.8 Control over locking of fetched objects

JDO allows control over whether objects found by a query are locked during that transaction so that
other transactions can't update them in the meantime. To do this you would do

Query q = pm.newQuery(...);

q.setSerializeRead(true);

You can also specify this for all queries for all PMs using a PMF property
datanucleus.SerializeRead. In addition you can perform this on a per-transaction basis by doing

tx.setSerializeRead(true);

If the datastore in use doesn't support locking of objects then this will do nothing

93.1.9 Flush changes before execution

When using optimistic transactions all updates to data are held until flush()/commit(). This means
that executing a query may not take into account changes made during that transaction in some
objects. DataNucleus allows a convenience of calling flush() just before execution of queries so that
all updates are taken into account. The property name is datanucleus.query.flushBeforeExecution
and defaults to "false".

To do this on a per query basis for JDO you would do

query.addExtension("datanucleus.query.flushBeforeExecution","true");

You can also specify this for all queries using a persistence property
datanucleus.query.flushBeforeExecution which would then apply to ALL queries for that PMF.

93.1.10 Controlling the execution : timeout on datastore reads

q.setDatastoreReadTimeout(1000);

Sets the timeout for this query (in milliseconds). Will throw a JDOUnsupportedOperationException if
the query implementation doesn't support timeouts.

93.1.11 Controlling the execution : timeout on datastore writes

q.setDatastoreWriteTimeout(1000);

Sets the timeout for this query (in milliseconds) when it is a delete/update. Will throw a
JDOUnsupportedOperationException if the query implementation doesn't support timeouts.

9 4 Q u e r y C a c h e 532

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

94 Query Cache
...

94.1 JDO : Query Caching

JDO doesn't currently define a mechanism for caching of queries. DataNucleus provides 3 levels of
caching

• Generic Compilation : when a query is compiled it is initially compiled generically into
expression trees. This generic compilation is independent of the datastore in use, so can be used
for other datastores. This can be cached.

• Datastore Compilation : after a query is compiled into expression trees (above) it is then
converted into the native language of the datastore in use. For example with RDBMS, it is
converted into SQL. This can be cached

• Results : when a query is run and returns objects of the candidate type, you can cache the
identities of the result objects.

94.1.1 Generic Query Compilation Cache

This cache is by default set to soft, meaning that the generic query compilation is cached using soft
references. This is set using the persistence property datanucleus.cache.queryCompilation.type.
You can also set it to strong meaning that strong references are used, or weak meaning that weak
references are used, or finally to none meaning that there is no caching of generic query compilation
information

You can turn caching on/off (default = on) on a query-by-query basis by specifying the query
extension datanucleus.query.compilation.cached as true/false.

query.addExtension("datanucleus.query.compilation.cached", "true");

94.1.2 Datastore Query Compilation Cache

This cache is by default set to soft, meaning that the datastore query compilation
is cached using soft references. This is set using the persistence property
datanucleus.cache.queryCompilationDatastore.type. You can also set it to strong meaning that
strong references are used, or weak meaning that weak references are used, or finally to none meaning
that there is no caching of datastore-specific query compilation information

You can turn caching on/off (default = on) on a query-by-query basis by specifying the query
extension datanucleus.query.compilation.cached as true/false.

9 4 Q u e r y C a c h e 533

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

query.addExtension("datanucleus.query.compilation.cached", "true");

94.1.3 Query Results Cache

This cache is by default set to soft, meaning that the datastore query results are cached using soft
references. This is set using the persistence property datanucleus.cache.queryResult.type. You can
also set it to strong meaning that strong references are used, or weak meaning that weak references are
used, or finally to none meaning that there is no caching of query results information. You can also
specify datanucleus.cache.queryResult.cacheName to define the name of the cache used for the
query results cache.

You can turn caching on/off (default = off) on a query-by-query basis by specifying the query
extension datanucleus.query.results.cached as true/false. As a finer degree of control, where cached
results are used, you can omit the validation of object existence in the datastore by setting the query
extension datanucleus.query.resultCache.validateObjects.

query.addExtension("datanucleus.query.results.cached", "true");

query.addExtension("datanucleus.query.resultCache.validateObjects", "false");

Obviously with a cache of query results, you don't necessarily want to retain this cached over a long
period. In this situation you can evict results from the cache like this.

import org.datanucleus.api.jdo.JDOQueryCache;

import org.datanucleus.api.jdo.JDOPersistenceManagerFactory;

...

JDOQueryCache cache = ((JDOPersistenceManagerFactory)pmf).getQueryCache();

cache.evict(query);

which evicts the results of the specific query. The JDOQueryCache has more options available should
you need them ...

.

http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/jdo/JDOQueryCache.html
http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/jdo/JDOQueryCache.html

9 5 J D O Q L 534

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

95 JDOQL
...

95.1 JDO : JDOQL Queries
JDO defines ways of querying objects persisted into the datastore. It provides its own object-based
query language (JDOQL). JDOQL is designed as the Java developers way of having the power of
SQL queries, yet retaining the Java object relationship that exist in their application model. A typical
JDOQL query may be created in several ways. Here's an example expressed in the 3 supported ways

Single-String JDOQL :

Query q = pm.newQuery(

 "SELECT FROM mydomain.Person WHERE lastName == 'Jones' && " +

 "age < age_limit PARAMETERS int age_limit");

List<Person> results = (List<Person>)q.execute(20);

Declarative JDOQL :

Query q = pm.newQuery(Person.class);

q.setFilter("lastName == 'Jones' && age < age_limit");

q.declareParameters("int age_limit");

List<Person> results = (List<Person>)q.execute(20);

Typesafe JDOQL (DataNucleus) :

TypesafeQuery<Person> tq = pm.newTypesafeQuery(Person.class);

QPerson cand = QPerson.candidate();

List<Person> results =

 tq.filter(cand.lastName.eq("Jones").and(cand.age.lt(tq.intParameter("age_limit"))))

 .setParameter("age_limit", "20").executeList();

So here in our example we select all "Person" objects with surname of "Jones" and where the persons
age is below 20. The language is intuitive for Java developers, and is intended as their interface to
accessing the persisted data model. As can be seen above, the query is made up of distinct parts. The
class being selected (the SELECT clause in SQL), the filter (which equates to the WHERE clause in
SQL), together with any sorting (the ORDER BY clause in SQL), etc.

In this section we will express all examples using the single-string format since it is the simplest
to highlight how to use JDOQL, so please refer to the Declarative JDOQL and Typesafe JDOQL
guides for details if wanting to use those.

95.1.1 JDOQL Single-String syntax

JDOQL queries can be defined in a single-string form, as follows

9 5 J D O Q L 535

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

SELECT [UNIQUE] [<result>] [INTO <result-class>]

 [FROM <candidate-class> [EXCLUDE SUBCLASSES]]

 [WHERE <filter>]

 [VARIABLES <variable declarations>]

 [PARAMETERS <parameter declarations>]

 [<import declarations>]

 [GROUP BY <grouping>]

 [ORDER BY <ordering>]

 [RANGE <start>, <end>]>

The "keywords" in the query are shown in UPPER CASE but can be in UPPER or lower case (but not
MiXeD case). So giving an example

SELECT UNIQUE FROM mydomain.Employee ORDER BY departmentNumber

95.1.2 Candidate Class

By default the candidate "class" with JDOQL has to be a persistable class. This can then be referred
to in the query using the this keyword (just like in Java). Also by default your query will return
instances of subclasses of the candidate class. You can restrict to just instances of the candidate by
specifying to exclude subclasses (see EXCLUDE SUBCLASSES in the single-string syntax, or by
setSubclasses(false) when using the declarative API).

DataNucleus also allows you to specify a candidate class as persistent interface. This is used where
we want to query for instances of implementations of the interface. Let's take an example. We have an
interface

@PersistenceCapable

public interface ComputerPeripheral

{

 @PrimaryKey

 long getId();

 void setId(long val);

 @Persistent

 String getManufacturer();

 void setManufacturer(String name);

 @Persistent

 String getModel();

 void setModel(String name);

}

and we have the following implementations

9 5 J D O Q L 536

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceCapable

public class Mouse implements ComputerPeripheral

{

 ...

}

@PersistenceCapable

public class Keyboard implements ComputerPeripheral

{

 ...

}

So we have made our interface persistable, and defined the identity property(ies) there. The
implementations of the interface will use the identity defined in the interface. To query it we simply
do

Query q = pm.newQuery("SELECT FROM " + ComputerPeripheral.class.getName());

List<ComputerPeripheral> results = (List<ComputerPeripheral>)q.execute();

The key rules are

• You must define the interface as persistent
• The interface must define the identity/primary key member(s)
• The implementations must have the same definition of identity and primary key

95.1.3 Filter

The most important thing to remember when defining the filter for JDOQL is that think how you
would write it in Java, and its likely the same. The filter has to be a boolean expression, and can
include the candidate, fields/properties, literals, methods, parameters, variables, operators,
instanceof, subqueries and casts.

95.1.4 Fields/Properties

In JDOQL you refer to fields/properties in the query by referring to the field/bean name. For example,
if you are querying a candidate class called Product and it has a field "price", then you access it like
this

price < 150.0

Note that, just like in Java, if you want to refer to a field/property of the candidate you can prefix the
field by this

this.price < 150.0

You can also chain field references if you have a candidate class Product with a field of (persistable)
type Inventory, which has a field name, so you could do

this.inventory.name == 'Backup'

9 5 J D O Q L 537

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In addition to the persistent fields, you can also access "public static final" fields of any class. You can
do this as follows

taxPercent < mydomain.Product.TAX_BAND_A

So this will find all products that include a tax percentage less than some "BAND A" level. Where
you are using "public static final" fields you can either fully-qualify the class name or you can include
it in the "imports" section of the query (see later).

An important thing to remember with JDOQL is that you do not do explicit joins. You instead
use the fields/properties and navigate to the object you want to make use of in your query.

With 1-1/N-1 relations this is simply a reference to the field/property, and place some restriction on it,
like this

this.inventory.name == 'MyInventory'

With 1-N/M-N relations you would use something like

containerField.contains(elemVar)

and thereafter refer to elemVar for the element in the collection to place restrictions on the element.
Similarly you can use elemVar in the result clause

95.1.5 Methods

When writing the "filter" for a JDOQL Query you can make use of some methods on the various Java
types. The range of methods included as standard in JDOQL is not as flexible as with the true Java
types, but the ones that are available are typically of much use. While DataNucleus supports all of the
methods in the JDO standard, it also supports several yet to be standardised (extension) method. The
tables below also mark whether a particular method is supported for evaluation in-memory.

Please note that you can easily add support for other methods for evaluation "in-memory" using this
DataNucleus plugin point

Please note that you can easily add support for other methods with RDBMS datastore using this
DataNucleus plugin point

95.1.5.1 String Methods

Method Description Standard In-Memory

startsWith(String) Returns if the string starts
with the passed string

startsWith(String, int) Returns if the string starts
with the passed string,
from the passed position

endsWith(String) Returns if the string ends
with the passed string

9 5 J D O Q L 538

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

indexOf(String) Returns the first position
of the passed string

indexOf(String,int) Returns the position of the
passed string, after the
passed position

substring(int) Returns the substring
starting from the passed
position

substring(int,int) Returns the substring
between the passed
positions

toLowerCase() Returns the string in
lowercase

toUpperCase() Retuns the string in
UPPERCASE

matches(String pattern) Returns whether
string matches the
passed expression.
The pattern argument
follows the rules of
java.lang.String.matches
method.

charAt(int) Returns the character at
the passed position

length() Returns the length of the
string

trim() Returns a trimmed
version of the string

concat(String) Concatenates the current
string and the passed
string

equals(String) Returns if the strings are
equal

equalsIgnoreCase(String) Returns if the strings are
equal ignoring case

replaceAll(String, String) Returns the string with all
instances of str1 replaced
by str2

trimLeft() Returns a trimmed
version of the string
(trimmed for leading
spaces). Only on
RDBMS

trimRight() Returns a trimmed
version of the string
(trimmed for trailing
spaces) Only on RDBMS

Here's an example using a Product class, looking for objects which their abbreviation is the beginning
of a trade name. The trade name is provided as parameter.

9 5 J D O Q L 539

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Declarative JDOQL :

Query query = pm.newQuery(mydomain.Product.class);

query.setFilter(":tradeName.startsWith(this.abbreviation)");

List results = (List)query.execute("Workbook Advanced");

Single-String JDOQL :

Query query = pm.newQuery(

 "SELECT FROM mydomain.Product " +

 "WHERE :tradeName.startsWith(this.abbreviation)");

List results = (List)query.execute("Workbook Advanced");

95.1.5.2 Collection Methods

Method Description Standard In-Memory

isEmpty() Returns whether the
collection is empty

contains(value) Returns whether the
collection contains the
passed element

size() Returns the number of
elements in the collection

get(int) Returns the element at
that position of the List

Here's an example demonstrating use of contains(). We have an Inventory class that has a Collection
of Product objects, and we want to find the Inventory objects with 2 particular Products in it. Here we
make use of a variable (prd to represent the Product being contained

Declarative JDOQL :

Query query = pm.newQuery(mydomain.Inventory.class);

query.setFilter("products.contains(prd) && (prd.name=='product 1' || prd.name=='product 2')");

List results = (List)query.execute();

Single-String JDOQL:

Query query = pm.newQuery(

 "SELECT FROM mydomain.Inventory " +

 "WHERE products.contains(prd) && (prd.name=='product 1' || prd.name=='product 2')");

List results = (List)query.execute();

95.1.5.3 Map Methods

Method Description Standard In-Memory

isEmpty() Returns whether the map
is empty

9 5 J D O Q L 540

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

containsKey(key) Returns whether the map
contains the passed key

containsValue(value) Returns whether the map
contains the passed value

get(key) Returns the value from
the map with the passed
key

size() Returns the number of
entries in the map

containsEntry(key, value) Returns whether the map
contains the passed entry

Here's an example using a Product class as a value in a Map. Our example represents an organisation
that has several Inventories of products. Each Inventory of products is stored using a Map, keyed
by the Product name. The query searches for all Inventories that contain a product with the name
"product 1".

Declarative JDOQL :

Query query = pm.newQuery(mydomain.Inventory.class, "products.containsKey('product 1')");

List results = (List)query.execute();

Single-String JDOQL :

Query query = pm.newQuery(

 "SELECT FROM mydomain.Inventory " +

 "WHERE products.containsKey('product 1')");

List results = (List)query.execute();

Here's the source code for reference

class Inventory

{

 Map<String, Product> products;

 ...

}

class Product

{

 ...

}

95.1.5.4 java.util.Date Temporal Methods

Method Description Standard In-Memory

getDate() Returns the day (of the
month) for the date

getMonth() Returns the month for the
date

9 5 J D O Q L 541

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

getYear() Returns the year for the
date

getHour() Returns the hour for the
time

getMinute() Returns the minute for the
time

getSecond() Returns the second for
the time

95.1.5.5 java.time Temporal Methods

Method Description Standard In-Memory

getDayOfMonth() Returns the day (of
the month) for the date
(java.time.LocalXXX
types)

getMonthValue() Returns the month for the
date (java.time.LocalXXX
types)

getYear() Returns the year for the
date (java.util.Date types)

getHour() Returns the hour for the
time (java.time.LocalXXX
types)

getMinute() Returns the minute for the
time (java.time.LocalXXX
types)

getSecond() Returns the
second for the time
(java.time.LocalXXX
types)

95.1.5.6 Jodatime Temporal Methods

Method Description Standard In-Memory

getStart() Returns the start of an
org.joda.time.Interval

getEnd() Returns the end of an
org.joda.time.Interval

9 5 J D O Q L 542

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

95.1.5.7 Enum Methods

Method Description Standard In-Memory

ordinal() Returns the ordinal of the
enum (not implemented
for enum expression
when persisted as a
string)

toString() Returns the string
form of the enum
(not implemented for
enum expression when
persisted as a numeric)

95.1.5.8 Other Methods

Class Method Description Standard In-Memory

java.awt.Point getX() Returns the X
coordinate. Only on
RDBMS

java.awt.Point getY() Returns the Y
coordinate. Only on
RDBMS

java.awt.Rectangle getX() Returns the X
coordinate. Only on
RDBMS

java.awt.Rectangle getY() Returns the Y
coordinate. Only on
RDBMS

java.awt.Rectangle getWidth() Returns the width.
Only on RDBMS

java.awt.Rectangle getHeight() Returns the height.
Only on RDBMS

{} length Returns the length
of an array. Only on
RDBMS

{} contains(object) Returns true if the
array contains the
object. Only on
RDBMS

95.1.5.9 Static Methods

Method Description Standard In-Memory

9 5 J D O Q L 543

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Math.abs(number) Returns the absolute
value of the passed
number

Math.sqrt(number) Returns the square root of
the passed number

Math.cos(number) Returns the cosine of the
passed number

Math.sin(number) Returns the absolute
value of the passed
number

Math.tan(number) Returns the tangent of the
passed number

Math.acos(number) Returns the arc cosine of
the passed number

Math.asin(number) Returns the arc sine of
the passed number

Math.atan(number) Returns the arc tangent of
the passed number

Math.ceil(number) Returns the ceiling of the
passed number

Math.exp(number) Returns the exponent of
the passed number

Math.floor(number) Returns the floor of the
passed number

Math.log(number) Returns the log(base e) of
the passed number

Math.toDegrees(number) Returns the degrees of
the passed radians value

Math.toRadians(number) Returns the radians of the
passed degrees value

JDOHelper.getObjectId(object)Returns the object identity
of the passed persistent
object

JDOHelper.getVersion(object)Returns the version of the
passed persistent object

SQL_rollup({object}) Perform a rollup operation
over the results. Only for
some RDBMS e.g DB2,
MSSQL, Oracle

SQL_cube({object}) Perform a cube operation
over the results. Only for
some RDBMS e.g DB2,
MSSQL, Oracle

SQL_boolean({sql}) Embed the provided SQL
and return a boolean
result. Only on RDBMS

9 5 J D O Q L 544

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

SQL_numeric({sql}) Embed the provided SQL
and return a numeric
result. Only on RDBMS

95.1.6 Literals

JDOQL supports literals of the following types : Number, boolean, character, String, and null. When
String literals are specified using single-string format they should be surrounded by single-quotes '.

95.1.7 Parameters

With a query you can pass values into the query as parameters. This is useful where you don't want to
embed particular values in the query itself, so making it reusable with different values. JDOQL allows
two types of parameters.

95.1.7.1 Explicit Parameters

If you declare the parameters when defining the query (using the PARAMETERS keyword in the
single-string form, or via the declareParameters method) then these are explicit parameters. This
sets the type of the parameter, and when you pass the value in at execute it has to be of that type. For
example

Query query = pm.newQuery(

 "SELECT FROM mydomain.Product WHERE price < limit PARAMETERS double limit");

List results = (List)query.execute(150.00);

Note that if declaring multiple parameters then they should be comma-separated.

95.1.7.2 Implicit Parameters

If you don't declare the parameters when defining the query but instead prefix identifiers in the query
with : (colon) then these are implicit parameters. For example

Query query = pm.newQuery(

 "SELECT FROM mydomain.Product WHERE price < :limit");

List results = (List)query.execute(150.00);

In some situations you may have a map of parameters keyed by their name, yet the query in question
doesn't need all parameters. Normal JDO execution would throw an exception here since they are
inconsistent with the query. You can omit this check by setting

q.addExtension("datanucleus.query.checkUnusedParameters", "false");

9 5 J D O Q L 545

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

95.1.8 Variables

In JDOQL you can connect two parts of a query using something known as a variable. For example,
we want to retrieve all objects with a collection that contains a particular element, and where the
element has a particular field value. We define a query like this

Query query = pm.newQuery("SELECT FROM mydomain.Supplier " +

 "WHERE this.products.contains(prod) && prod.name == 'Beans' VARIABLES mydomain.Product prod");

So we have a variable in our query called prod that connects the two parts. You can declare your
variables (using the VARIABLES keyword in the single-string form, or via the declareVariables
method) if you want to define the type like here (explicit), or you can leave them for the query
compilation to determine (implicit).

Another example, in this case our candidate (Product) has no relation, but a class (Inventory) has
a relation (1-N) to it (field "products") and we want to query based on that relation, returning the
product name for a particular inventory.

Query q = pm.newQuery("SELECT this.name FROM mydomain.Product WHERE inv.products.contains(this) AND inv.name == 'Sale' VARIABLES mydomain.Inventory inv");

Note that if declaring multiple variables then they should be semicolon-separated. See also this blog
post which demonstrates variables across 1-1 "relations" where you only have the "id" stored rather
than a real relation.

95.1.9 Imports

JDOQL uses the imports declaration to create a type namespace for the query. During query
compilation, the classes used in the query, if not fully qualified, are searched in this namespace. The
type namespace is built with primitives types, java.lang.* package, package of the candidate class,
import declarations (if any).

To resolve a class, the JDOQL compiler will use the class fully qualified name to load it, but if the
class is not fully qualified, it will search by prefixing the class name with the imported package
names declared in the type namespace. All classes loaded by the query must be acessible by either the
candidate class classloader, the PersistenceManager classloader or the current Thread classloader. The
search algorithm for a class in the JDOQL compiler is the following:

• if the class is fully qualified, load the class.
• if the class is not fully qualified, iterate each package in the type namespace and try to load the

class from that package. This is done until the class is loaded, or the type namespace package
names are exausted. If the class cannot be loaded an exception is thrown.

Note that the search algorithm can be problematic in performance terms if the class is not fully
qualified or declared in imports using package notation. To avoid such problems, either use fully
qualified class names or import the class in the imports declaration.

95.1.10 IF ELSE expressions

For particular use in the result clause, you can make use of a IF ELSE expression where you want to
return different things based on some condition(s). Like this

https://datanucleus.wordpress.com/2015/03/12/jdo-querying-between-classes-without-relation/
https://datanucleus.wordpress.com/2015/03/12/jdo-querying-between-classes-without-relation/

9 5 J D O Q L 546

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

SELECT p.personNum, IF (p.age < 18) 'Youth' ELSE IF (p.age >= 18 && p.age < 65) 'Adult' ELSE 'Old' FROM mydomain.Person p");

So in this case the second result value will be a String, either "Youth", "Adult" or "Old" depending on
the age of the person. Note that this is new in JDO3.1. The BNF structure of the JDOQL IF ELSE
expression is

IF (conditional_expression) scalar_expression {ELSE IF (conditional_expression) scalar_expression}* ELSE scalar_expression

95.1.11 Operators

The following list describes the operator precedence in JDOQL.

1. Cast
2. Unary ("~") ("!")
3. Unary ("+") ("-")
4. Multiplicative ("*") ("/") ("%")
5. Additive ("+") ("-")
6. Relational (">=") (">") ("<=") ("<") ("instanceof")
7. Equality ("==") ("!=")
8. Boolean logical AND ("&")
9. Boolean logical OR ("|")
10.Conditional AND ("&&")
11.Conditional OR ("||")

The concatenation operator(+) concatenates a String to either another String or Number.
Concatenations of String or Numbers to null results in null.

95.1.12 instanceof

JDOQL allows the Java keyword instanceof so you can compare objects against a class.

Let's take an example. We have a class A that has a field "b" of type B and B has subclasses B1, B2,
B3. Clearly the field "b" of A can be of type B, B1, B2, B3 etc, and we want to find all objects of type
A that have the field "b" that is of type B2. We do it like this

Declarative JDOQL :

Query query = pm.newQuery(A.class);

query.setFilter("b instanceof mydomain.B2");

List results = (List)query.execute();

Single-String JDOQL :

Query query = pm.newQuery("SELECT FROM mydomain.A WHERE b instanceof mydomain.B2");

List results = (List)query.execute();

9 5 J D O Q L 547

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

95.1.13 casting

JDOQL allows use of Java-style casting so you can type-convert fields etc.

Let's take an example. We have a class A that has a field "b" of type B and B has subclasses B1, B2,
B3. The B2 subtype has a field "other", and we know that the filtered A will have a B2. You could
specify a filter using the "B2.other" field like this

((mydomain.B2)b).other == :someVal"

95.1.14 Subqueries

With JDOQL the user has a very flexible query syntax which allows for querying of the vast majority
of data components in a single query. In some situations it is desirable for the query to utilise the
results of a separate query in its calculations. JDO allows subqueries, so that both calculations can be
performed in one query. Here's an example, using single-string JDOQL

SELECT FROM org.datanucleus.Employee WHERE salary >

 (SELECT avg(salary) FROM org.datanucleus.Employee e)

So we want to find all Employees that have a salary greater than the average salary. In single-string
JDOQL the subquery must be in parentheses (brackets). Note that we have defined the subquery with
an alias of "e", whereas in the outer query the alias is "this".

We can specify the same query using the Declarative API, like this

Query averageSalaryQuery = pm.newQuery(Employee.class);

averageSalaryQuery.setResult("avg(this.salary)");

Query q = pm.newQuery(Employee.class, "salary > averageSalary");

q.declareVariables("double averageSalary");

q.addSubquery(averageSalaryQuery, "double averageSalary", null, null);

List results = (List)q.execute();

So we define a subquery as its own Query (that could be executed just like any query if so desired),
and the in the main query have an implicit variable that we define as being represented by the
subquery.

95.1.14.1 Referring to the outer query in the subquery

JDOQL subqueries allows use of the outer query fields within the subquery if so desired. Taking the
above example and extending it, here is how we do it in single-string JDOQL

SELECT FROM org.datanucleus.Employee WHERE salary >

 (SELECT avg(salary) FROM org.datanucleus.Employee e WHERE e.lastName == this.lastName)

So with single-string JDOQL we make use of the alias identifier "this" to link back to the outer query.

Using the Declarative API, to achieve the same thing we would do

9 5 J D O Q L 548

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query averageSalaryQuery = pm.newQuery(Employee.class);

averageSalaryQuery.setResult("avg(this.salary)");

averageSalaryQuery.setFilter("this.lastName == :lastNameParam");

Query q = pm.newQuery(Employee.class, "salary > averageSalary");

q.declareVariables("double averageSalary");

q.addSubquery(averageSalaryQuery, "double averageSalary", null, "this.lastName");

List results = (List)q.execute();

So with the Declarative API we make use of parameters, and the last argument to addSubquery is the
value of the parameter lastNameParam.

95.1.14.2 Candidate of the subquery being part of the outer query

There are occasions where we want the candidate of the subquery to be part of the outer query, so
JDOQL subqueries has the notion of a candidate expression. This is an expression relative to the
candidate of the outer query. An example

SELECT FROM org.datanucleus.Employee WHERE this.weeklyhours >

 (SELECT AVG(e.weeklyhours) FROM this.department.employees e)

so the candidate of the subquery is this.department.employees. If using a candidate expression we
must provide an alias.

You can do the same with the Declarative API. Like this

Query averageHoursQuery = pm.newQuery(Employee.class);

averageHoursQuery.setResult("avg(this.weeklyhours)");

Query q = pm.newQuery(Employee.class);

q.setFilter("this.weeklyhours > averageWeeklyhours");

q.addSubquery(averageHoursQuery, "double averageWeeklyhours", "this.department.employees", null);

so now our subquery has a candidate related to the outer query candidate.

In strict JDOQL you can only have the subquery in the "filter" (WHERE) clause. DataNucleus
additionally allows it in the "result" (SELECT) clause.

95.1.15 Result clause

By default (when not specifying the result) the objects returned will be of the candidate class type,
where they match the query filter. The result clause can contain (any of) the following

• DISTINCT - optional keyword at the start of the results to make them distinct
• this - the candidate instance
• A field name
• A variable
• A parameter (though why you would want a parameter returning is hard to see since you input

the value in the first place)
• An aggregate (count(), avg(), sum(), min(), max())

9 5 J D O Q L 549

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• An expression involving a field (e.g "field1 + 1")
• A navigational expression (navigating from one field to another ... e.g "field1.field4")

so you could specify something like

count(field1), field2

There are situations when you want to return a single number for a column, representing an aggregate
of the values of all records. There are 5 standard JDO aggregate functions available. These are

• avg(val) - returns the average of "val". "val" can be a field, numeric field expression or "distinct
field". Returns double.

• sum(val) - returns the sum of "val". "val" can be a field, numeric field expression, or "distinct
field". Returns the same type as the type being summed

• count(val) - returns the count of records of "val". "val" can be a field, or can be "this", or
"distinct field". Returns long

• min(val) - returns the minimum of "val". "val" can be a field. Returns the same type as the type
used in "min"

• max(val) - returns the maximum of "val". "val" can be a field. Returns the same type as the type
used in "max"

So to utilise these you could specify a result like

max(price), min(price)

This will return a single row of results with 2 values, the maximum price and the minimum price.

Note that what you specify in the result defines what form of result you get back when executing the
query.

• {ResultClass} - this is returned if you have only a single row in the results and you specified a
result class.

• Object - this is returned if you have only a single row in the results and a single column. This is
achived when you specified either UNIQUE, or just an aggregate (e.g "max(field2)")

• Object[] - this is returned if you have only a single row in the results, but more than 1 column
(e.g "max(field1), avg(field2)")

• List<{ResultClass}> - this is returned if you specified a result class.
• List<Object> - this is returned if you have only a single column in the result, and you don't have

only aggregates in the result (e.g "field2")
• List<Object[]> - this is returned if you have more than 1 column in the result, and you don't

have only aggregates in the result (e.g "field2, avg(field3)")

95.1.16 Result Class

By default a JDOQL query will return a result matching the result clause. You can override this if you
wish by specifying a result class. If your query has only a single row in the results then you will get an
object of your result class back, otherwise you get a List of result class objects. The Result Class has
to meet certain requirements. These are

• Can be one of Integer, Long, Short, Float, Double, Character, Byte, Boolean, String,
java.math.BigInteger, java.math.BigDecimal, java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp, or Object[]

• Can be a user defined class, that has either a constructor taking arguments of the same type as
those returned by the query (in the same order), or has a public put(Object, Object) method, or
public setXXX() methods, or public fields.

9 5 J D O Q L 550

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In terms of how the Result Class looks, you have two options

• Constructor taking arguments of the same types and the same order as the result clause. An
instance of the result class is created using this constructor. For example

public class Price

{

 protected double amount = 0.0;

 protected String currency = null;

 public Price(double amount, String currency)

 {

 this.amount = amount;

 this.currency = currency;

 }

 ...

}

• Default constructor, and setters for the different result columns, using the alias name for each
column as the property name of the setter. For example

public class Price

{

 protected double amount = 0.0;

 protected String currency = null;

 public Price()

 {

 }

 public void setAmount(double amt) {this.amount = amt;}

 public void setCurrency(String curr) {this.currency = curr;}

 ...

}

95.1.17 Grouping of Results

By default your results will have no specified "grouping". You can specify a grouping with optional
having expression. When grouping is specified, each result expression must either be an expression
contained in the grouping, or an aggregate evaluated once per group.

95.1.18 Ordering of Results

By default your results will be returned in the order determined by the datastore, so don't rely on
any particular order. You can, of course, specify the order yourself. You do this using field/property
names and ASC/ DESC keywords. For example

field1 ASC, field2 DESC

9 5 J D O Q L 551

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

which will sort primarily by field1 in ascending order, then secondarily by field2 in descending order.

JDO3.1 introduces a directive for where NULL values of the ordered field/property go in the order, so
the full syntax supported is

fieldName [ASC|DESC] [NULLS FIRST|NULLS LAST]

Note that this is only supported for a few RDBMS (H2, HSQLDB, PostgreSQL, DB2, Oracle, Derby,
Firebird, SQLServer v11+).

95.1.19 Range of Results

By default your query will return all results matching the specified filter. You can select just a
particular range of results by specifying the RANGE part of the query (or by using setRange when
using the declarative API). For example

RANGE 10,20

which will return just the results numbers 10-19 inclusive. Obviously bear in mind that if specifying
the range then you should really specify an ordering otherwise the range positions will be not
defined.

95.2 JDOQL In-Memory queries

The typical use of a JDOQL query is to translate it into the native query language of the datastore
and return objects matched by the query. Sometimes you want to query over a set of objects that you
have to hand, or for some datastores it is simply impossible to support the full JDOQL syntax in the
datastore native query language. In these situation we need to evaluate the query in-memory. In the
latter case of the datastore not supported the full JDOQL syntax we evaluate as much as we can in the
datastore and then instantiate those objects and evaluate further in-memory. Here we document the
current capabilities of in-memory evaluation in DataNucleus.

To enable evaluation in memory you specify the query extension
datanucleus.query.evaluateInMemory to true as follows

query.addExtension("datanucleus.query.evaluateInMemory","true");

This is also useful where you have a Collection of (persisted) objects and want to run a query over the
Collection. Simply turn on in-memory evaluation, and supply the candidate collection to the query,
and no communication with the datastore will be needed.

95.2.1 Specify candidates to query over

With JDO you can define a set of candidate objects that should be queried, rather than just going to
the datastore to retrieve those objects. When you specify this you will automatically be switched to
evaluate the query in-memory. You set the candidates like this

9 5 J D O Q L 552

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query query = pm.newQuery(...);

query.setCandidates(myCandidates);

List<Product> results = (List<Product>)query.execute();

95.3 Update/Delete queries
JDOQL offers some possibilities for updating/deleting data in the datastore via query. Note that only
the first of these is standard JDOQL, whereas the others are DataNucleus extensions.

95.3.1 Deletion by Query

If you want to delete instances of a candidate using a query, you simply define the query
candidate/filter in the normal way, and then instead of calling query.execute() you call
query.deletePersistentAll(). Like this

Query query = pm.newQuery("SELECT FROM mydomain.A WHERE this.value < 50");

Long number = (Long)query.deletePersistentAll();

The value returned is the number of instances that were deleted. Note that this will perform any
cascade deletes that are defined for these instances. In addition, all instances in memory will reflect
this deletion.

95.3.2 Bulk Delete

DataNucleus provides an extension to allow bulk deletion. This differs from the "Deletion by Query"
above in that it simply goes straight to the datastore and performs a bulk delete, leaving it to the
datastore referential integrity to handle relationships. To enable "bulk delete" you need the persistence
property datanucleus.query.jdoql.allowAll set to true. You then perform "bulk delete" like this

Query query = pm.newQuery("DELETE FROM mydomain.A WHERE this.value < 50");

Long number = (Long)query.execute();

Again, the number returned is the number of records deleted.

95.3.3 Bulk Update

DataNucleus provides an extension to allow bulk update. This allows you to do bulk updates direct to
the datastore without having to load objects into memory etc. To enable "bulk update" you need the
persistence property datanucleus.query.jdoql.allowAll set to true. You then perform "bulk update"
like this

9 5 J D O Q L 553

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query query = pm.newQuery("UPDATE mydomain.A SET this.value=this.value-5.0 WHERE this.value > 100");

Long number = (Long)query.execute();

Again, the number returned is the number of records updated.

9 6 J D O Q L D e c l a r a t i v e 554

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

96 JDOQL Declarative
...

96.1 JDO : JDOQL Declarative API
As shown earlier, there are two primary ways of defining a JDOQL query.
In this guide we describe the declarative approach, defining the individual
components of the query via an API. You can also refer to the API javadoc

, We firstly need to look at a typical declarative JDOQL Query.

Query query = pm.newQuery(MyClass.class);

query.setFilter("field2 < threshold");

query.declareImports("import java.util.Date");

query.declareParameters("Date threshold");

query.setOrdering("field1 ascending");

List results = (List)query.execute(my_threshold);

In this Query, we create it to return objects of type mydomain.MyClass (or subclasses), and set the
filter to restrict to instances of that type which have the field field2 less than some threshold value,
which we don't know at that point. We've specified the query like this because we want to pass
the threshold value in dynamically. We then import the type of our threshold parameter, and the
parameter itself, and set the ordering of the results from the Query to be in ascending order of some
field field1. The Query is then executed, passing in the threshold value. The example is to highlight
the typical methods specified for a Query. Clearly you may only specify the Query line if you wanted
something very simple. The result of the Query is cast to a List since in this case it returns a List of
results.

96.1.1 setClass()

Set the class of the candidate instances of the query. The class specifies the class of the candidates of
the query. Elements of the candidate collection that are of the specified class are filtered before being
put into the results.

96.1.2 setUnique()

Specify that only the first result of the query should be returned, rather than a collection. The execute
method will return null if the query result size is 0.

Sometimes you know that the query can only every return 0 or 1 objects. In this case you can simplify
your job by adding

query.setUnique(true);

In this case the return from the execution of the Query will be a single Object, so you've no need to
use iterators, just cast it to your candidate class type. Note that if you specify unique and there are
more results than just 1 then it will throw a JDOUserException.

http://db.apache.org/jdo/api20/apidocs/javax/jdo/Query.html
http://db.apache.org/jdo/api20/apidocs/javax/jdo/Query.html

9 6 J D O Q L D e c l a r a t i v e 555

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

96.1.3 setResult()

Specifies what type of data this query should return. If this is unset or set to null, this query returns
instances of the query's candidate class. If set, this query will return expressions, including field
values (projections) and aggregate function results.

The normal behaviour of JDOQL queries is to return a List of Objects of the type of the candidate
class. Sometimes you want to have the query perform some processing and return things like count(),
min(), max() etc. You specify this with

query.setResult("count(param1), max(param2), param3");

In this case the results will be List<Object[]> since there are more than 1 column in each row. If you
have only 1 column in the results then the results would be List<Object>. If you have only aggregates
(sum, avg, min, max, count) in the result clause then there will be only 1 row in the results and so the
results will be of the form Object[] (or Object if only 1 aggregate). Please refer to JDOQL Result
Clauses for more details.

96.1.4 setResultClass()

Specify the type of object in which to return each element of the result of invoking execute(). If the
result is not set or set to null, the result class defaults to the candidate class of the query. If the result
consists of one expression, the result class defaults to the type of that expression. If the result consists
of more than one expression, the result class defaults to Object[].

When you perform a query, using JDOQL or SQL the query will, in general, return a List of objects.
These objects are by default of the same type as the candidate class. This is good for the majority of
situations but there are some situations where you would like to control the output object. This can be
achieved by specifying the Result Class.

query.setResultClass(myResultClass);

The Result Class has to meet certain requirements. These are

• Can be one of Integer, Long, Short, Float, Double, Character, Byte, Boolean, String,
java.math.BigInteger, java.math.BigDecimal, java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp, or Object[]

• Can be a user defined class, that has either a constructor taking arguments of the same type as
those returned by the query (in the same order), or has a public put(Object, Object) method, or
public setXXX() methods, or public fields.

Where you have a query returning a single field, you could specify the Result Class to be one of the
first group for example. Where your query returns multiple fields then you can set the Result Class to
be your own class. So we could have a query like this

Query query = pm.newQuery(pm.getExtent(Payment.class,false));

query.setFilter("amount > 10.0");

query.setResultClass(Price.class);

query.setResult("amount, currency");

List results = (List)query.execute();

and we define our Result Class Price as follows

9 6 J D O Q L D e c l a r a t i v e 556

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Price

{

 protected double amount = 0.0;

 protected String currency = null;

 public Price(double amount, String currency)

 {

 this.amount = amount;

 this.currency = currency;

 }

 ...

}

In this case our query is returning 2 fields (a Double and a String), and these map onto the constructor
arguments, so DataNucleus will create objects of the Price class using that constructor. We could
have provided a class with public fields instead, or provided setXXX methods or a put method. They
all work in the same way.

96.1.5 setRange()

Set the range of results to return. The execution of the query is modified to return only a subset of
results. If the filter would normally return 100 instances, and fromIncl is set to 50, and toExcl is set
to 70, then the first 50 results that would have been returned are skipped, the next 20 results are
returned and the remaining 30 results are ignored. An implementation should execute the query such
that the range algorithm is done at the data store.

Sometimes you have a Query that returns a large number of objects. You may want to just display a
range of these to your user. In this case you can do

query.setRange(10, 20);

This has the effect of only returning items 10 through to 19 (inclusive) of the query's results. The clear
use of this is where you have a web system and you're displaying paginated data, and so the user hits
page down, so you get the next "n" results.

setRange is implemented efficiently for MySQL, Postgresql, HSQL (using the LIMIT SQL keyword)
and Oracle (using the ROWNUM keyword), with the query only finding the objects required by
the user directly in the datastore. For other RDBMS the query will retrieve all objects up to the "to"
record, and will not pass any unnecessary objects that are before the "from" record.

96.1.6 setFilter()

Set the filter for the query. The filter specification is a String containing a Boolean expression that is
to be evaluated for each of the instances in the candidate collection. If the filter is not specified, then
it defaults to "true", which has the effect of filtering the input Collection only for class type.

9 6 J D O Q L D e c l a r a t i v e 557

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

96.1.7 declareImports()

Set the import statements to be used to identify the fully qualified name of variables or parameters.
Parameters and unbound variables might come from a different class from the candidate class, and
the names need to be declared in an import statement to eliminate ambiguity. Import statements are
specified as a String with semicolon-separated statements.

In JDOQL you can declare parameters and variables. Just like in Java it is often convenient to just
declare a variable as say Date, and then have an import in your Java file importing the java.util.Date
class. The same applies in JDOQL. Where you have defined parameters or variables in shorthand
form, you can specify their imports like this

query.declareVariables("Date startDate");

query.declareParameters("Locale myLocale");

query.declareImports("import java.util.Locale; import java.util.Date;");

Just like in Java, if you declare your parameters or variables in fully-specified form (for example
"java.util.Date myDate") then you do not need any import.

The JDOQL uses the imports declaration to create a type namespace for the query. During query
compilation, the classes used in the query, if not fully qualified, are searched in this namespace. The
type namespace is built with the following:

• primitives types
• java.lang.* package
• package of the candidate class
• import declarations (if any)

To resolve a class, the JDOQL compiler will use the class fully qualified name to load it, but if the
class is not fully qualified, it will search by prefixing the class name with the imported package
names declared in the type namespace. All classes loaded by the query must be acessible by either the
candidate class classloader, the PersistenceManager classloader or the current Thread classloader. The
search algorithm for a class in the JDOQL compiler is the following:

• if the class is fully qualified, load the class.
• if the class is not fully qualified, iterate each package in the type namespace and try to load the

class from that package. This is done until the class is loaded, or the type namespace package
names are exausted. If the class cannot be loaded an exception is thrown.

Note that the search algorithm can be problematic in performance terms if the class is not fully
qualified or declared in imports using package notation. To avoid such problems, either use fully
qualified class names or import the class in the imports declaration. The 2 queries below are examples
of good usage:

query.declareImports("import java.util.Locale;");

query.declareParameters("Locale myLocale");

or

query.declareParameters("java.util.Locale myLocale");

However, the below example will suffer in performance, due to the search algorithm.

9 6 J D O Q L D e c l a r a t i v e 558

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

query.declareImports("import java.math.*; import java.util.*;");

query.declareParameters("Locale myLocale");

96.1.8 declareParameters()

Declare the list of parameters query execution. The parameter declaration is a String containing
one or more query parameter declarations separated with commas. Each parameter named in the
parameter declaration must be bound to a value when the query is executed.

When using explicit parameters you need to declare them and their types. With the declarative API
you do it like this

query.declareImports("import java.util.*");

query.declareParameters("String myparam1, Date myparam2");

So we make use of imports to define some package names (just like in Java). You can use * notation
too. Note that java.lang is not needed to be imported. Alternatively you could have just done

query.declareParameters("java.lang.String myparam1, java.util.Date myparam2");

96.1.9 declareVariables()

Declare the unbound variables to be used in the query. Variables might be used in the filter, and these
variables must be declared with their type. The unbound variable declaration is a String containing
one or more unbound variable declarations separated with semicolons.

With explicit variables, you declare your variables and their types. In declarative JDOQL it is like this

query.declareVariables("mydomain.Product prod");

Multiple variables can be declared using semi-colon (;) to separate variable declarations.

query.declareVariables("String var1; String var2");

96.1.10 setOrdering()

Set the ordering specification for the result Collection. The ordering specification is a String
containing one or more ordering declarations separated by commas. Each ordering declaration is the
name of the field on which to order the results followed by one of the following words: "ascending"
or "descending". The field must be declared in the candidate class or must be a navigation expression
starting with a field in the candidate class.

With JDOQL you can specify the ordering using the normal JDOQL syntax for a parameter, and
then add ascending or descending (UPPER or lower case are both valid) are to give the direction. In

9 6 J D O Q L D e c l a r a t i v e 559

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

addition the abbreviated forms of asc and desc (again, UPPER and lower case forms are accepted) to
save typing. For example, you may set the ordering as follows

query.setOrdering("productId DESC");

96.1.11 setGrouping()

Set the grouping expressions, optionally including a "having" clause. When grouping is specified,
each result expression must either be an expression contained in the grouping, or an aggregate
evaluated once per group.

9 7 J D O Q L T y p e s a f e 560

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

97 JDOQL Typesafe
...

97.1 JDO : Typesafe JDOQL Queries
In JPA there is a query API referred to as "criteria". This is really an API allowing the construction
of queries expression by expression, and optionally making it type safe so that if you refactor a field
name then it is changed in the queries. JDO has no such feature currently, but there exist third party
extensions providing this. One is called QueryDSL. DataNucleus now provides its own typesafe
JDOQL query API, inspired by the ideas in QueryDSL (and some others), and is proposed for
inclusion in JDO3.2.

With this API you can express your queries in a typesafe way and allow easier refactoring. This
API produces queries that are much more elegant and simpler than the equivalent "Criteria"
API in JPA, or the Hibernate Criteria API. See this comparison of JPA Criteria and JDO Typesafe

97.1.1 Preparation

To set up your environment to use this typesafe query API you need to enable annotation processing
(JDK1.7+), place some DataNucleus jars in your build path, and specify an @PersistenceCapable
annotation on your classes to be used in queries (you can still provide the remaining information in
XML metadata if you wish to).

With Maven you need to have the following in your POM

 <dependencies>

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-api-jdo</artifactId>

 <version>(4.0.99, 4.1.99)</version>

 </dependency>

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-jdo-query</artifactId>

 <version>(4.0.99, 4.1.99)</version>

 </dependency>

 <dependency>

 <groupId>javax.jdo</groupId>

 <artifactId>jdo-api</artifactId>

 <version>3.1</version>

 </dependency>

 ...

 </dependencies>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.7</source>

 <target>1.7</target>

 </configuration>

 </plugin>

http://source.mysema.com/static/querydsl/2.0.0/reference/html/ch02.html#jdoql_integration
http://datanucleus.wordpress.com/2010/11/jdo-typesafe-vs-jpa-criteria.html

9 7 J D O Q L T y p e s a f e 561

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

With Eclipse you need to

• Go to Java Compiler and make sure the compiler compliance level is 1.7 or above (needed for
DN 4.0+ anyway)

• Go to Java Compiler -> Annotation Processing and enable the project specific settings and
enable annotation processing

• Go to Java Compiler -> Annotation Processing -> Factory Path, enable the project specific
settings and then add the following jars to the list: "datanucleus-jdo-query.jar", "datanucleus-api-
jdo.jar", "jdo-api.jar"

97.1.2 Query Classes

The above preparation will mean that whenever you compile, the DataNucleus annotation processor
will generate a query class for each model class that is annotated as persistable. So what is a query
class you ask. It is simply a mechanism for providing an intuitive API to generating queries. If we
have the following model class

@PersistenceCapable

public class Product

{

 @PrimaryKey

 long id;

 String name;

 double value;

 ...

}

then the query class for this will be

public class QProduct

 extends org.datanucleus.api.jdo.query.PersistableExpressionImpl<Product>

 implements PersistableExpression<Product>

{

 public static QProduct candidate(String name) {...}

 public static QProduct candidate() {...}

 public static QProduct variable(String name) {...}

 public static QProduct parameter(String name) {...}

 public NumericExpression<Long> id;

 public StringExpression name;

 public NumericExpression<Double> value;

 ...

}

Note that it has the name Q{className}. Also the generated class, by default, has a public field for
each persistable field/property and is of a type XXXExpression. These expressions allow us to give
Java like syntax when defining your queries (see below). So you access your persistable members in a
query as candidate.name for example.

As mentioned above this is the default style of query class. However you can also create it in
property style, where you access your persistable members as candidate.name() for example.

9 7 J D O Q L T y p e s a f e 562

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The benefit of this approach is that if you have 1-1, N-1 relationship fields then it only initialises
the members when called, whereas in the field case above it has to initialise all in the constructor,
so at static initialisation. You enable use of property mode by adding the compiler argument -
AqueryMode=PROPERTY. All examples below use field mode but just add () after the field to see
the equivalent in property mode

Note that we currently only support generation of Q classes for persistable classes that are in
their own source file, so no support for inline static persistable classes is available currently

97.1.3 Query API - Filtering and Ordering

Let's provide a sample usage of this query API. We want to construct a query for all products with a
value below a certain level, and where the name starts with "Wal", and then order the results by the
product name. So a typical query in a JDO-enabled application

pm = pmf.getPersistenceManager();

JDOPersistenceManager jdopm = (JDOPersistenceManager)pm;

TypesafeQuery<Product> tq = jdopm.newTypesafeQuery(Product.class);

QProduct cand = QProduct.candidate();

List<Product> results =

 tq.filter(cand.value.lt(40.00).and(cand.name.startsWith("Wal")))

 .orderBy(cand.name.asc())

 .executeList();

This equates to the single-string query

SELECT FROM mydomain.Product

 WHERE this.value < 40.0 && this.name.startsWith("Wal")

 ORDER BY this.name ASCENDING

As you see, we create a parametrised query, and then make use of the query class to access the
candidate, and from that make use of its fields, and the various Java methods present for the types of
those fields. Also the API is fluent.

97.1.4 Query API - Results

Let's take the query in the above example and return the name and value of the Products only

TypesafeQuery<Product> tq = jdopm.newTypesafeQuery(Product.class);

QProduct cand = QProduct.candidate();

List<Object[]> results =

 tq.filter(cand.value.lt(40.00).and(cand.name.startsWith(tq.stringParameter("prefix"))))

 .orderBy(cand.name.asc())

 .setParameter("prefix", "Wal")

 .executeResultList(false, cand.name, cand.value);

This equates to the single-string query

9 7 J D O Q L T y p e s a f e 563

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

SELECT this.name,this.value FROM mydomain.Product

 WHERE this.value < 40.0 && this.name.startsWith(:prefix)

 ORDER BY this.name ASCENDING

A further example using aggregates

TypesafeQuery<Product> tq = jdopm.newTypesafeQuery(Product.class);

QProduct cand = QProduct.candidate();

Object[] results = tq.executeResultUnique(false, cand.max(), cand.min());

This equates to the single-string query

SELECT max(this.value), min(this.value) FROM mydomain.Product

97.1.5 Query API - Parameters

Let's take the query in the above example and specify the "Wal" in a parameter.

TypesafeQuery<Product> tq = jdopm.newTypesafeQuery(Product.class);

QProduct cand = QProduct.candidate();

List<Product> results =

 tq.filter(cand.value.lt(40.00).and(cand.name.startsWith(tq.stringParameter("prefix"))))

 .orderBy(cand.name.asc())

 .setParameter("prefix", "Wal")

 .executeList();

This equates to the single-string query

SELECT FROM mydomain.Product

 WHERE this.value < 40.0 && this.name.startsWith("Wal")

 ORDER BY this.name ASCENDING

97.1.6 Query API - Variables

Let's try to find all Inventory objects containing a Product with a particular name. This means we need
to use a variable.

TypesafeQuery<Inventory> tq = jdopm.newTypesafeQuery(Inventory.class);

QProduct var = QProduct.variable("var");

QInventory cand = QInventory.candidate();

List<Inventory> results =

 tq.filter(cand.products.contains(var).and(var.name.startsWith("Wal")))

 .executeList();

This equates to the single-string query

9 7 J D O Q L T y p e s a f e 564

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

SELECT FROM mydomain.Inventory

 WHERE this.products.contains(var) && var.name.startsWith("Wal")

97.1.7 Query API - Subqueries

Let's try to find all Products that have a value below the average of all Products. This means we need
to use a subquery

TypesafeQuery<Product> tq = jdopm.newTypesafeQuery(Product.class);

QProduct cand = QProduct.candidate();

TypesafeSubquery<Product> tqsub = tq.subquery(Product.class, "p");

QProduct candsub = QProduct.candidate("p");

List<Product> results =

 tq.filter(cand.value.lt(tqsub.selectUnique(candsub.value.avg())))

 .executeList();

This equates to the single-string query

SELECT FROM mydomain.Product

 WHERE this.value < (SELECT AVG(p.value) FROM mydomain.Product p)

97.1.8 Query API - Candidates

If you don't want to query instances in the datastore but instead query a collection of candidate
instances, you can do this by setting the candidates, like this

TypesafeQuery<Product> tq = jdopm.newTypesafeQuery(Product.class);

QProduct cand = QProduct.candidate();

List<Product> results =

 tq.filter(cand.value.lt(40.00)).setCandidates(myCandidates).executeList();

This will process the query in-memory.

9 8 S Q L 565

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

98 SQL
...

98.1 JDO : SQL Queries
The ability to query the datastore is an essential part of any system that persists data. Sometimes
an object-based query language (such as JDOQL) is not considered suitable, maybe due to the lack
of familiarity of the application developer with such a query language. In this case it is desirable
(when using an RDBMS) to query using SQL. JDO standardises this as a valid query mechanism, and
DataNucleus supports this. Please be aware that the SQL query that you invoke has to be valid
for your RDBMS, and that the SQL syntax differs across almost all RDBMS.

To utilise SQL syntax in queries, you create a Query as follows

Query q = pm.newQuery("javax.jdo.query.SQL",the_sql_query);

You have several forms of SQL queries, depending on what form of output you require.

• No candidate class and no result class - the result will be a List of Objects (when there is a
single column in the query), or a List of Object[]s (when there are multiple columns in the query)

• Candidate class specified, no result class - the result will be a List of candidate class objects, or
will be a single candidate class object (when you have specified "unique"). The columns of the
querys result set are matched up to the fields of the candidate class by name. You need to select a
minimum of the PK columns in the SQL statement.

• No candidate class, result class specified - the result will be a List of result class objects, or
will be a single result class object (when you have specified "unique"). Your result class has to
abide by the rules of JDO result classes (see Result Class specification) - this typically means
either providing public fields matching the columns of the result, or providing setters/getters for
the columns of the result.

• Candidate class and result class specified - the result will be a List of result class objects, or
will be a single result class object (when you have specified "unique"). The result class has to
abide by the rules of JDO result classes (see Result Class specification).

98.1.1 Setting candidate class

If you want to return instances of persistable types, then you can set the candidate class.

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM MYTABLE");

query.setClass(MyClass.class);

List<MyClass> results = (List<MyClass>) query.execute();

98.1.2 Unique results

If you know that there will only be a single row returned from the SQL query then you can set the
query as unique. Note that the query will return null if the SQL has no results.

Sometimes you know that the query can only every return 0 or 1 objects. In this case you can simplify
your job by adding

9 8 S Q L 566

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM MYTABLE");

query.setClass(MyClass.class);

query.setUnique(true);

MyClass obj = (MyClass) query.execute();

98.1.3 Defining a result type

If you want to dump each row of the SQL query results into an object of a particular type then you can
set the result class.

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM MYTABLE");

query.setResultClass(MyResultClass.class);

List<MyResultClass> results = (List<MyClass>) query.execute();

The Result Class has to meet certain requirements. These are

• Can be one of Integer, Long, Short, Float, Double, Character, Byte, Boolean, String,
java.math.BigInteger, java.math.BigDecimal, java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp, or Object[]

• Can be a user defined class, that has either a constructor taking arguments of the same type as
those returned by the query (in the same order), or has a public put(Object, Object) method, or
public setXXX() methods, or public fields.

For example, if we are returning two columns like above, an int and a String then we define our result
class like this

public class MyResultClass

{

 protected int id = 0;

 protected String name = null;

 public MyResultClass(int id, String name)

 {

 this.id = id;

 this.name = name;

 }

 ...

}

So here we have a result class using the constructor arguments. We could equally have provided a
class with public fields instead, or provided setXXX methods or a put method. They all work in the
same way.

98.1.4 Inserting/Updating/Deleting

In strict JDO all SQL queries must begin "SELECT ...", and consequently it is not possible to execute
queries that change data. In DataNucleus we have an extension that allows this to be overridden; to

9 8 S Q L 567

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

enable this you should pass the property datanucleus.query.sql.allowAll as true when creating the
PersistenceManagerFactory and thereafter you just invoke your statements like this

Query q = pm.newQuery("javax.jdo.query.SQL", "UPDATE MY_TABLE SET MY_COLUMN = ? WHERE MY_ID = ?");

you then pass any parameters in as normal for an SQL query. If your query starts with "SELECT"
then it is invoked using preparedStatement.executeQuery(...). If your query starts with "UPDATE",
"INSERT", "MERGE", "DELETE" it is treated as a bulk update/delete query and is invoked
using preparedStatement.executeUpdate(...). All other statements will be invoked using
preparedStatement.execute(...) and true returned. If your statement really needs to be executed
differently to these basic rules then you should look at contributing support for those statements
to DataNucleus.

98.1.5 Parameters

In JDO SQL queries can have parameters but must be positional. This means that you do as follows

Query q = pm.newQuery("javax.jdo.query.SQL",

 "SELECT col1, col2 FROM MYTABLE WHERE col3 = ? AND col4 = ? and col5 = ?");

List results = (List) q.execute(val1, val2, val3);

So we used traditional JDBC form of parametrisation, using "?".

DataNucleus also supports two further variations. The first is called numbered parameters where we
assign numbers to them, so the previous example could have been written like this

Query q = pm.newQuery("javax.jdo.query.SQL",

 "SELECT col1, col2 FROM MYTABLE WHERE col3 = ?1 AND col4 = ?2 and col5 = ?1");

List results = (List) q.execute(val1, val2);

so we can reuse parameters in this variation. The second variation is called named parameters where
we assign names to them, and so the example can be further rewritten like this

Query q = pm.newQuery("javax.jdo.query.SQL",

 "SELECT col1, col2 FROM MYTABLE WHERE col3 = :firstVal AND col4 = :secondVal and col5 = :firstVal");

Map params = new HashMap();

params.put("firstVal", val1);

params.put("secondVal", val1);

List results = (List) q.executeWithMap(params);

98.1.6 Example 1 - Using SQL aggregate functions, without candidate class

Here's an example for getting the size of a table without a candidate class.

9 8 S Q L 568

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT count(*) FROM MYTABLE");

List results = (List) query.execute();

Integer tableSize = (Integer) result.iterator().next();

Here's an example for getting the maximum and miminum of a parameter without a candidate class.

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT max(PARAM1), min(PARAM1) FROM MYTABLE");

List results = (List) query.execute();

Object[] measures = (Object[])result.iterator().next();

Double maximum = (Double)measures[0];

Double minimum = (Double)measures[1];

98.1.7 Example 2 - Using SQL aggregate functions, with result class

Here's an example for getting the size of a table with a result class. So we have a result class of

public class TableStatistics

{

 private int total;

 public setTotal(int total);

}

So we define our query to populate this class

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT count(*) AS total FROM MYTABLE");

query.setResultClass(TableStatistics.class);

List results = (List) query.execute();

TableStatistics tableStats = (TableStatistics) result.iterator().next();

Each row of the results is of the type of our result class. Since our query is for an aggregate, there is
actually only 1 row.

98.1.8 Example 3 - Retrieval using candidate class

When we want to retrieve objects of a particular persistable class we specify the candidate class. Here
we need to select, as a minimum, the identity columns for the class.

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM MYTABLE");

query.setClass(MyClass.class);

List results = (List) query.execute();

Iterator resultsIter = results.iterator();

while (resultsIter.hasNext())

{

 MyClass obj = (MyClass)resultsIter.next();

}

9 8 S Q L 569

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

class MyClass

{

 String name;

 ...

}

<jdo>

 <package name="org.datanucleus.samples.sql">

 <class name="MyClass" identity-type="datastore" table="MYTABLE">

 <datastore-identity strategy="identity">

 <column name="MY_ID"/>

 </datastore-identity>

 <field name="name" persistence-modifier="persistent">

 <column name="MY_NAME"/>

 </field>

 </class>

 </package>

</jdo>

98.1.9 Example 4 - Using parameters, without candidate class

Here's an example for getting the number of people with a particular email address. You simply add a
"?" for all parameters that are passed in, and these are substituted at execution time.

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT count(*) FROM PERSON WHERE EMAIL_ADDRESS = ?");

List results = (List) query.execute("nobody@datanucleus.org");

Integer tableSize = (Integer) result.iterator().next();

98.1.10 Example 5 - Named Query

While "named" queries were introduced primarily for JDOQL queries, we can define "named" queries
for SQL also. So let's take a Product class, and we want to define a query for all products that are
"sold out". We firstly add this to our MetaData

9 8 S Q L 570

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<jdo>

 <package name="org.datanucleus.samples.store">

 <class name="Product" identity-type="datastore" table="PRODUCT">

 <datastore-identity strategy="identity">

 <column name="PRODUCT_ID"/>

 </datastore-identity>

 <field name="name" persistence-modifier="persistent">

 <column name="NAME"/>

 </field>

 <field name="status" persistence-modifier="persistent">

 <column name="STATUS"/>

 </field>

 <query name="SoldOut" language="javax.jdo.query.SQL">

 SELECT PRODUCT_ID FROM PRODUCT WHERE STATUS == "Sold Out"

 </query>

 </class>

 </package>

</jdo>

And then in our application code we utilise the query

Query q = pm.newNamedQuery(Product.class, "SoldOut");

List results = (List)q.execute();

9 9 S t o r e d P r o c e d u r e s 571

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

99 Stored Procedures
...

99.1 JDO : Stored Procedures
JDO doesn't include explicit support for stored procedures. However DataNucleus provides two
options for allowing use of stored procedures with RDBMS datastores.

99.1.1 Using DataNucleus Stored Procedure API

Obviously JDO allows potentially any "query language" to be invoked using its API. With
DataNucleus and RDBMS datastores we can do the following

Query q = pm.newQuery("STOREDPROC", "MY_TEST_SP_1");

Now on its own this will simply invoke the define stored procedure (MY_TEST_SP_1) in the
datastore. Obviously we want more control than that, so this is where you use DataNucleus specifics.
Let's start by accessing the internal stored procedure query

import org.datanucleus.api.jdo.JDOQuery;

import org.datanucleus.store.rdbms.query.StoredProcedureQuery;

...

StoredProcedureQuery spq = (StoredProcedureQuery)((JDOQuery)q).getInternalQuery());

Now we can control things like parameters, and what is returned from the stored procedure query.
Let's start by registering any parameters (IN, OUT, or INOUT) for our stored proc. In our example we
use named parameters, but you can also use positional parameters.

spq.registerParameter("PARAM1", String.class, StoredProcQueryParameterMode.IN);

spq.registerParameter("PARAM2", Integer.class, StoredProcQueryParameterMode.OUT);

Simple execution is like this (where you omit the paramValueMap if you have no input parameters).

boolean hasResultSet = spq.executeWithMap(paramValueMap);

That method returns whether a result set is returned from the stored procedure (some return results,
but some return an update count, and/or output parameters). If we are expecting a result set we then
do

List results = (List)spq.getNextResults();

9 9 S t o r e d P r o c e d u r e s 572

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

and if we are expecting output parameter values then we get them using the API too. Note again that
you can also access via position rather than name.

Object val = spq.getOutputParameterValue("PARAM2");

That summarises our stored procedure API. It also allows things like multiple result sets for a stored
procedure, all using the StoredProcedureQuery API.

99.1.2 Using JDO SQL Query API to invoke stored procedures

In JDO all SQL queries must begin "SELECT ...", and consequently it is not possible to execute
stored procedures by default. In DataNucleus we have an extension that allows this to be overridden,
to call stored procedures. Note that this is strongly discouraged now that we provide the
mechanism above. To enable this you should pass the property datanucleus.query.sql.allowAll as
true when creating the PersistenceManagerFactory. Thereafter you can invoke your stored procedures
like this

Query q = pm.newQuery("javax.jdo.query.SQL", "EXECUTE sp_who");

((org.datanucleus.api.jdo.JDOQuery)q).getInternalQuery().setType(org.datanucleus.store.query.Query.SELECT);

Where "sp_who" is the stored procedure being invoked. The syntax of calling a stored procedure
differs across RDBMS, some require "CALL ..." and some "EXECUTE ..."; Go consult your manual.
Clearly the same rules will apply regarding the results of the stored procedure and mapping them to
any result class.

1 0 0 J P Q L 573

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

100 JPQL
...

100.1 JDO : JPQL Queries

JDO provides a flexible API for use of query languages. DataNucleus makes use of this to allow use
of the query language defined in the JPA1 specification (JPQL) with JDO persistence. JPQL is a
pseudo-OO language based around SQL, and so not using Java syntax, unlike JDOQL. To provide a
simple example, this is what you would do

Query q = pm.newQuery("JPQL", "SELECT p FROM Person p WHERE p.lastName = 'Jones'");

List results = (List)q.execute();

This finds all "Person" objects with surname of "Jones". You specify all details in the query.

100.1.1 SELECT Syntax

In JPQL queries you define the query in a single string, defining the result, the candidate class(es), the
filter, any grouping, and the ordering. This string has to follow the following pattern

SELECT [<result>]

 [FROM <candidate-class(es)>]

 [WHERE <filter>]

 [GROUP BY <grouping>]

 [HAVING <having>]

 [ORDER BY <ordering>]

The "keywords" in the query are shown in UPPER CASE are case-insensitive.

100.1.2 Entity Name

In the example shown you note that we did not specify the full class name. We used Person p and
thereafter could refer to p as the alias. The Person is called the entity name and in JPA MetaData
this can be defined against each class in its definition. With JDO we don't have this MetaData
attribute so we simply define the entity name as the name of the class omitting the package name. So
org.datanucleus.test.samples.Person will have an entity name of Person.

In strict JPA the entity name cannot be a MappedSuperclass entity name. That is, if you have an
abstract superclass that is persistable, you cannot query for instances of that superclass and its
subclasses. We consider this a significant shortcoming of the querying capability, and allow the
entity name to also be of a MappedSuperclass. You are unlikely to find this supported in other JPA
implementations, but then maybe that's why you chose DataNucleus?

1 0 0 J P Q L 574

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

100.1.3 From Clause

The FROM clause allows a user to add some explicit joins to related entities, and assign aliases to
the joined entities. These are then usable in the filter/ordering/result etc. If you don't add any joins
DataNucleus will add joins where they are implicit from the filter expression for example. The FROM
clause is of the following structure

FROM {candidate_entity} {candidate_alias}

 [[[LEFT [OUTER] | INNER] JOIN] join_spec [join_alias] *

So you are explicitly stating that the join across join_spec is performed as "LEFT OUTER" or
"INNER" (rather than just leaving it to DataNucleus to decide which to use). Note that the join_spec
can be a relation field, or alternately if you have a Map of non-Entity keys/values then also the Map
field. If you provide the join_alias then you can use it thereafter in other clauses of the query.

Some examples of FROM clauses.

Join across 2 relations, allowing referral to Address (a) and Owner (o)

SELECT p FROM Person p JOIN p.address a JOIN a.owner o WHERE o.name = 'Fred'

Join to a Map relation field and access to the key/value of the Map.

SELECT VALUE(om) FROM Company c INNER JOIN c.officeMap om ON KEY(om) = 'London'

100.1.4 Fetched Fields

By default a query will fetch fields according to their defined EAGER/LAZY setting, so fields like
primitives, wrappers, Dates, and 1-1/N-1 relations will be fetched, whereas 1-N/M-N fields will not
be fetched. JPQL allows you to include FETCH JOIN as a hint to include 1-N/M-N fields where
possible. For RDBMS datastores any multi-valued field will not be fetched even if you specify
FETCH JOIN, due to the complications in doing so. All non-RDBMS datastores do however
respect this FETCH JOIN setting, since a collection/map is stored in a single "column" in the object
and so is readily retrievable.

Note that you can also make use of Fetch Groups to have fuller control over what is retrieved from
each query.

100.1.5 Filter

The most important thing to remember when defining the filter for JPQL is that think how you would
write it in SQL, and its likely the same except for field names instead of column names. The
filter has to be a boolean expression, and can include the candidate entity, fields/properties, literals,
functions, parameters, operators and subqueries

1 0 0 J P Q L 575

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

100.1.6 Fields/Properties

In JPQL you refer to fields/properties in the query by referring to the field/bean name. For example,
if you are querying a candidate entity called Product and it has a field "price", then you access it like
this

price < 150.0

Note that, just like in Java, if you want to refer to a field/property of an entity you can prefix the field
by its alias

p.price < 150.0

You can also chain field references if you have an entity Product (alias = p) with a field of
(persistable) type Inventory, which has a field name, so you could do

p.inventory.name = 'Backup'

100.1.7 Operators

The operators are listed below in order of decreasing precedence.

• Navigation operator (.)
• Arithmetic operators:

• +, - unary
• *, / multiplication and division
• +, - addition and subtraction

• Comparison operators : =, >, >=, <, <=, <> (not equal), [NOT] BETWEEN, [NOT] LIKE,
[NOT] IN, IS [NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF], [NOT] EXISTS

• Logical operators:

• NOT
• AND
• OR

100.1.8 Literals

JPQL supports the following literals: IntegerLiteral, FloatingPointLiteral, BooleanLiteral,
CharacterLiteral, StringLiteral, and NullLiteral. When String literals are specified using single-string
format they should be surrounded by single-quotes '.

100.1.9 Input Parameters

In JPQL queries it is convenient to pass in parameters so we dont have to define the same query for
different values. Let's take two examples

1 0 0 J P Q L 576

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Named Parameters :

Query q = pm.newQuery("JPQL",

 "SELECT p FROM Person p WHERE p.lastName = :surname AND o.firstName = :forename");

Map params = new HashMap();

params.put("surname", theSurname);

params.put("forename", theForename");

List<Person> results = (List<Person>)q.executeWithMap(params);

Numbered Parameters :

Query q = pm.newQuery("JPQL",

 "SELECT p FROM Person p WHERE p.lastName = ?1 AND p.firstName = ?2");

List<Person> results = (List<Person>)q.execute(theSurname, theForename);

So in the first case we have parameters that are prefixed by : (colon) to identify them as a parameter
and we use that name in the parameter map passed to execute(). In the second case we have
parameters that are prefixed by ? (question mark) and are numbered starting at 1. We then pass the
parameters in to execute in that order.

100.1.10 CASE expressions

For particular use in the result clause, you can make use of a CASE expression where you want to
return different things based on some condition(s). Like this

Query q = em.createQuery(

 "SELECT p.personNum, CASE WHEN p.age < 18 THEN 'Youth' WHEN p.age >= 18 AND p.age < 65 THEN 'Adult' ELSE 'Old' END FROM Person p");

So in this case the second result value will be a String, either "Youth", "Adult" or "Old" depending on
the age of the person. The BNF structure of the JPQL CASE expression is

CASE WHEN conditional_expression THEN scalar_expression {WHEN conditional_expression THEN scalar_expression}* ELSE scalar_expression END

100.1.11 JPQL Functions

JPQL provides an SQL-like query language. Just as with SQL, JPQL also supports a range of
functions to enhance the querying possibilities. The tables below also mark whether a particular
method is supported for evaluation in-memory.

Please note that you can easily add support for other functions for evaluation "in-memory" using this
DataNucleus plugin point

Please note that you can easily add support for other functions with RDBMS datastore using this
DataNucleus plugin point

1 0 0 J P Q L 577

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

100.1.11.1 Aggregate Functions

There are a series of aggregate functions for aggregating the values of a field for all rows of the
results.

Function Name Description Standard In-Memory

COUNT(field) Returns the aggregate
count of the field (Long)

MIN(field) Returns the minimum
value of the field (type of
the field)

MAX(field) Returns the maximum
value of the field (type of
the field)

AVG(field) Returns the average
value of the field (Double)

SUM(field) Returns the sum of the
field value(s) (Long,
Double, BigInteger,
BigDecimal)

100.1.11.2 String Functions

There are a series of functions to be applied to String fields.

Function Name Description Standard In-Memory

CONCAT(str_field,
str_field2 [, str_fieldX])

Returns the concatenation
of the string fields

SUBSTRING(str_field,
num1 [, num2])

Returns the substring of
the string field starting
at position num1, and
optionally with the length
of num2

TRIM([trim_spec]
[trim_char] [FROM]
str_field)

Returns trimmed form of
the string field

LOWER(str_field) Returns the lower case
form of the string field

UPPER(str_field) Returns the upper case
form of the string field

LENGTH(str_field) Returns the size of the
string field (number of
characters)

LOCATE(str_field1,
str_field2 [, num])

Returns position of
str_field2 in str_field1
optionally starting at num

1 0 0 J P Q L 578

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

100.1.11.3 Temporal Functions

There are a series of functions for use with temporal values

Function Name Description Standard In-Memory

CURRENT_DATE Returns the current date
(day month year) of the
datastore server

CURRENT_TIME Returns the current time
(hour minute second) of
the datastore server

CURRENT_TIMESTAMP Returns the current
timestamp of the
datastore server

YEAR(dateField) Returns the year of the
specified date

MONTH(dateField) Returns the month of the
specified date

DAY(dateField) Returns the day of the
month of the specified
date

HOUR(dateField) Returns the hour of the
specified date

MINUTE(dateField) Returns the minute of the
specified date

SECOND(dateField) Returns the second of the
specified date

100.1.11.4 Collection Functions

There are a series of functions for use with collection values

Function Name Description Standard In-Memory

INDEX(collection_field) Returns index number of
the field element when
that is the element of an
indexed List field.

SIZE(collection_field) Returns the size of the
collection field. Empty
collection will return 0

100.1.11.5 Map Functions

There are a series of functions for use with maps

1 0 0 J P Q L 579

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Function Name Description Standard In-Memory

KEY(map_field) Returns the key of the
map

VALUE(map_field) Returns the value of the
map

SIZE(map_field) Returns the size of the
map field. Empty map will
return 0

100.1.11.6 Arithmetic Functions

There are a series of functions for arithmetic use

Function Name Description Standard In-Memory

ABS(numeric_field) Returns the absolute
value of the numeric field

SQRT(numeric_field) Returns the square root of
the numeric field

MOD(num_field1,
num_field2)

Returns the modulus of
the two numeric fields (
num_field1 % num_field2)

ACOS(num_field) Returns the arc-cosine of
a numeric field

ASIN(num_field) Returns the arc-sine of a
numeric field

ATAN(num_field) Returns the arc-tangent of
a numeric field

COS(num_field) Returns the cosine of a
numeric field

SIN(num_field) Returns the sine of a
numeric field

TAN(num_field) Returns the tangent of a
numeric field

DEGREES(num_field) Returns the degrees of a
numeric field

RADIANS(num_field) Returns the radians of a
numeric field

CEIL(num_field) Returns the ceiling of a
numeric field

FLOOR(num_field) Returns the floor of a
numeric field

LOG(num_field) Returns the natural
logarithm of a numeric
field

1 0 0 J P Q L 580

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

EXP(num_field) Returns the exponent of a
numeric field

100.1.11.7 Other Functions

You have a further function available

Function Name Description Standard In-Memory

FUNCTION(name, [arg1
[,arg2 ...]])

Executes the specified
SQL function "name" with
the defined arguments

100.1.12 Collection Fields

Where you have a collection field, often you want to navigate it to query based on some filter for the
element. To achieve this, you can clearly JOIN to the element in the FROM clause. Alternatively you
can use the MEMBER OF keyword. Let's take an example, you have a field which is a Collection of
Strings, and want to return the owner object that has an element that is "Freddie".

Query q = pm.newQuery("JPQL", "SELECT p.firstName, p.lastName FROM Person p WHERE 'Freddie' MEMBER OF p.nicknames");

Beyond this, you can also make use of the Collection functions and use the size of the collection for
example.

100.1.13 Map Fields

Where you have a map field, often you want to navigate it to query based on some filter for the key or
value. Let's take an example, you want to return the value for a particular key in the map of an owner.

Query q = pm.newQuery("JPQL", "SELECT VALUE(p.addresses) FROM Person p WHERE KEY(p.addresses) = 'London Flat'");

Beyond this, you can also make use of the Map functions and use the size of the map for example.

Note that in the JPA spec they allow a user to interchangeably use "p.addresses" to refer to
the value of the Map. DataNucleus doesn't support that since that primary expression is a Map
field, and the Map can equally be represented as a join table, key stored in value, or value
stored in key. Hence you should always use VALUE(...) if you mean to refer to the Map value -
besides it is a damn sight clearer the intent by doing that.

1 0 0 J P Q L 581

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

100.1.14 Ordering of Results

By default your results will be returned in the order determined by the datastore, so don't rely on
any particular order. You can, of course, specify the order yourself. You do this using field/property
names and ASC/ DESC keywords. For example

field1 ASC, field2 DESC

which will sort primarily by field1 in ascending order, then secondarily by field2 in descending order.

Although it is not (yet) standard JPQL, DataNucleus also supports specifying a directive for where
NULL values of the ordered field/property go in the order, so the full syntax supported is

fieldName [ASC|DESC] [NULLS FIRST|NULLS LAST]

Note that this is only supported for a few RDBMS (H2, HSQLDB, PostgreSQL, DB2, Oracle, Derby).

100.1.15 Subqueries

With JPQL the user has a very flexible query syntax which allows for querying of the vast majority of
data components in a single query. In some situations it is desirable for the query to utilise the results
of a separate query in its calculations. JPQL also allows the use of subqueries. Here's an example

SELECT Object(e) FROM org.datanucleus.Employee e

WHERE e.salary > (SELECT avg(f.salary) FROM org.datanucleus.Employee f)

So we want to find all Employees that have a salary greater than the average salary. The subquery
must be in parentheses (brackets). Note that we have defined the subquery with an alias of "f",
whereas in the outer query the alias is "e".

100.1.15.1 ALL/ANY Expressions

One use of subqueries with JPQL is where you want to compare with some or all of a particular
expression. To give an example

SELECT emp FROM Employee emp

WHERE emp.salary > ALL (SELECT m.salary FROM Manager m WHERE m.department = emp.department)

So this returns all employees that earn more than all managers in the same department! You can also
compare with some/any, like this

SELECT emp FROM Employee emp

WHERE emp.salary > ANY (SELECT m.salary FROM Manager m WHERE m.department = emp.department)

So this returns all employees that earn more than any one Manager in the same department.

100.1.15.2 EXISTS Expressions

Another use of subqueries in JPQL is where you want to check on the existence of a particular thing.
For example

1 0 0 J P Q L 582

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

SELECT DISTINCT emp FROM Employee emp

WHERE EXISTS (SELECT emp2 FROM Employee emp2 WHERE emp2 = emp.spouse)

So this returns the employees that have a partner also employed.

100.1.16 Specify candidates to query over

With JPA you always query objects of the candidate type in the datastore. DataNucleus extends this
and allows you to provide a Collection of candidate objects that will be queried (rather than going to
the datastore), and it will perform the querying "in-memory". You set the candidates like this

Query query = em.createQuery("SELECT p FROM Products p WHERE ...");

((org.datanucleus.api.jpa.JPAQuery)query).getInternalQuery().setCandidates(myCandidates);

List<Product> results = query.getResultList();

100.1.17 Range of Results

With JPQL you can select the range of results to be returned. For example if you have a web page and
you are paginating the results of some search, you may want to get the results from a query in blocks
of 20 say, with results 0 to 19 on the first page, then 20 to 39, etc. You can facilitate this as follows

Query q = pm.newQuery("JPQL", "SELECT p FROM Person p WHERE p.age > 20");

q.setRange(0, 20);

So with this query we get results 0 to 19 inclusive.

100.1.18 Unique Results

When you know that there will be only a single result, you can set the query as unique. This simplifies
the process of getting the result

Query query = pm.newQuery("JPQL",

 "SELECT p FROM Person p WHERE p.lastName = 'Obama' AND o.firstName = 'Barak'");

query.setUnique(true);

Person pers = (Person) query.execute();

100.1.19 Result Class

If you are defining the result of the JPQL query and want to obtain each row of the results as an object
of a particular type, then you can set the result class.

1 0 0 J P Q L 583

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query query = pm.newQuery("JPQL", "SELECT p.firstName, p.lastName FROM Person p");

query.setResultClass(Name.class);

List<Name> names = (List<Name>) query.execute();

The Result Class has to meet certain requirements. These are

• Can be one of Integer, Long, Short, Float, Double, Character, Byte, Boolean, String,
java.math.BigInteger, java.math.BigDecimal, java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp, or Object[]

• Can be a user defined class, that has either a constructor taking arguments of the same type as
those returned by the query (in the same order), or has a public put(Object, Object) method, or
public setXXX() methods, or public fields.

So in our example, we are returning 2 String fields, and we define our Result Class Name as follows

public class Name

{

 protected String firstName = null;

 protected String lastName = null;

 public Name(String first, String last)

 {

 this.firstName = first;

 this.lastName = last;

 }

 ...

}

So here we have a result class using the constructor arguments. We could equally have provided a
class with public fields instead, or provided setXXX methods or a put method. They all work in the
same way.

100.1.20 Query Result

Whilst the majority of the time you will want to return instances of a candidate class, JPQL also
allows you to return customised results. Consider the following example

Query q = pm.newQuery("JPQL", "SELECT p.firstName, p.lastName FROM Person p WHERE p.age > 20");

List<Object[]> results = (List<Object[]>)q.execute();

this returns the first and last name for each Person meeting that filter. Obviously we may have some
container class that we would like the results returned in, so if we change the query to this

Query<PersonName> q = pm.newQuery("JPQL",

 "SELECT p.firstName, p.lastName FROM Person p WHERE p.age > 20");

q.setResultClass(PersonName.class);

List<PersonName> results = (List<PersonName>)q.execute();

so each result is a PersonName, holding the first and last name. This result class needs to match one of
the following structures

1 0 0 J P Q L 584

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Constructor taking arguments of the same types and the same order as the result clause. An
instance of the result class is created using this constructor. For example

public class PersonName

{

 protected String firstName = null;

 protected String lastName = null;

 public PersonName(String first, String last)

 {

 this.firstName = first;

 this.lastName = last;

 }

 ...

}

• Default constructor, and setters for the different result columns, using the alias name for each
column as the property name of the setter. For example

public class PersonName

{

 protected String firstName = null;

 protected String lastName = null;

 public PersonName()

 {

 }

 public void setFirstName(String first) {this.firstName = first;}

 public void setLastName(String last) {this.lastName = last;}

 ...

}

Note that if the setter property name doesn't match the query result component name, you should use
AS {alias} in the query so they are the same.

100.2 JPQL In-Memory queries

The typical use of a JPQL query is to translate it into the native query language of the datastore and
return objects matched by the query. For many datastores it is simply impossible to support the full
JPQL syntax in the datastore native query language and so it is necessary to evaluate the query in-
memory. This means that we evaluate as much as we can in the datastore and then instantiate those
objects and evaluate further in-memory. Here we document the current capabilities of in-memory
evaluation in DataNucleus.

• Subqueries using ALL, ANY, SOME, EXISTS are not currently supported
• MEMBER OF syntax is not currently supported.

1 0 0 J P Q L 585

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

To enable evaluation in memory you specify the query hint datanucleus.query.evaluateInMemory
to true as follows

query.setHint("datanucleus.query.evaluateInMemory","true");

100.3 JPQL DELETE Queries
The JPA specification defines a mode of JPQL for deleting objects from the datastore.

100.3.1 DELETE Syntax

The syntax for deleting records is very similar to selecting them

DELETE FROM [<candidate-class>]

 [WHERE <filter>]

The "keywords" in the query are shown in UPPER CASE are case-insensitive.

Query query = pm.newQuery("JPQL", "DELETE FROM Person p WHERE firstName = 'Fred'");

Long numRowsDeleted = (Long)query.execute();

100.4 JPQL UPDATE Queries
The JPA specification defines a mode of JPQL for updating objects in the datastore.

100.4.1 UPDATE Syntax

The syntax for updating records is very similar to selecting them

UPDATE [<candidate-class>] SET item1=value1, item2=value2

 [WHERE <filter>]

The "keywords" in the query are shown in UPPER CASE are case-insensitive.

Query query = pm.newQuery("JPQL", "UPDATE Person p SET p.salary = 10000 WHERE age = 18");

Long numRowsUpdated = (LOng)query.execute();

100.5 JPQL BNF Notation

The BNF defining the JPQL query language is shown below.

1 0 0 J P Q L 586

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

QL_statement ::= select_statement | update_statement | delete_statement

select_statement ::= select_clause from_clause [where_clause] [groupby_clause] [having_clause] [orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

from_clause ::= FROM identification_variable_declaration

 {, {identification_variable_declaration | collection_member_declaration}}*

identification_variable_declaration ::= range_variable_declaration { join | fetch_join }*

range_variable_declaration ::= entity_name [AS] identification_variable

join ::= join_spec join_association_path_expression [AS] identification_variable

fetch_join ::= join_spec FETCH join_association_path_expression

join_spec::= [LEFT [OUTER] | INNER] JOIN

join_association_path_expression ::= join_collection_valued_path_expression | join_single_valued_path_expression

join_collection_valued_path_expression::=

 identification_variable.{single_valued_embeddable_object_field.}*collection_valued_field

join_single_valued_path_expression::=

 identification_variable.{single_valued_embeddable_object_field.}*single_valued_object_field

collection_member_declaration ::=

 IN (collection_valued_path_expression) [AS] identification_variable

qualified_identification_variable ::= KEY(identification_variable) | VALUE(identification_variable) |

 ENTRY(identification_variable)

single_valued_path_expression ::= qualified_identification_variable |

 state_field_path_expression | single_valued_object_path_expression

general_identification_variable ::= identification_variable | KEY(identification_variable) |

 VALUE(identification_variable)

state_field_path_expression ::= general_identification_variable.{single_valued_object_field.}*state_field

single_valued_object_path_expression ::=

 general_identification_variable.{single_valued_object_field.}* single_valued_object_field

collection_valued_path_expression ::=

 general_identification_variable.{single_valued_object_field.}*collection_valued_field

update_clause ::= UPDATE entity_name [[AS] identification_variable] SET update_item {, update_item}*

update_item ::= [identification_variable.]{state_field | single_valued_object_field} = new_value

new_value ::= scalar_expression | simple_entity_expression | NULL

delete_clause ::= DELETE FROM entity_name [[AS] identification_variable]

select_clause ::= SELECT [DISTINCT] select_item {, select_item}*

select_item ::= select_expression [[AS] result_variable]

select_expression ::= single_valued_path_expression | scalar_expression | aggregate_expression |

 identification_variable | OBJECT(identification_variable) | constructor_expression

constructor_expression ::= NEW constructor_name (constructor_item {, constructor_item}*)

constructor_item ::= single_valued_path_expression | scalar_expression | aggregate_expression |

 identification_variable

aggregate_expression ::= { AVG | MAX | MIN | SUM } ([DISTINCT] state_field_path_expression) |

 COUNT ([DISTINCT] identification_variable | state_field_path_expression |

 single_valued_object_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression | identification_variable

having_clause ::= HAVING conditional_expression

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*

orderby_item ::= state_field_path_expression | result_variable [ASC | DESC]

subquery ::= simple_select_clause subquery_from_clause [where_clause] [groupby_clause] [having_clause]

subquery_from_clause ::= FROM subselect_identification_variable_declaration

 {, subselect_identification_variable_declaration | collection_member_declaration}*

subselect_identification_variable_declaration ::= identification_variable_declaration |

 derived_path_expression [AS] identification_variable {join}*|

 derived_collection_member_declaration

derived_path_expression ::=

 superquery_identification_variable.{single_valued_object_field.}*collection_valued_field |

 superquery_identification_variable.{single_valued_object_field.}*single_valued_object_field

derived_collection_member_declaration ::=

 IN superquery_identification_variable.{single_valued_object_field.}*collection_valued_field

simple_select_clause ::= SELECT [DISTINCT] simple_select_expression

simple_select_expression::= single_valued_path_expression | scalar_expression | aggregate_expression |

 identification_variable

scalar_expression ::= simple_arithmetic_expression | string_primary | enum_primary |

 datetime_primary | boolean_primary | case_expression | entity_type_expression

conditional_expression ::= conditional_term | conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression |

 in_expression | like_expression | null_comparison_expression |

 empty_collection_comparison_expression | collection_member_expression | exists_expression

between_expression ::=

 arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression |

 string_expression [NOT] BETWEEN string_expression AND string_expression |

 datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression

in_expression ::= {state_field_path_expression | type_discriminator} [NOT] IN

 { (in_item {, in_item}*) | (subquery) | collection_valued_input_parameter }

in_item ::= literal | single_valued_input_parameter

like_expression ::= string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

null_comparison_expression ::= {single_valued_path_expression | input_parameter} IS [NOT] NULL

empty_collection_comparison_expression ::= collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::= entity_or_value_expression [NOT] MEMBER [OF] collection_valued_path_expression

entity_or_value_expression ::= single_valued_object_path_expression | state_field_path_expression |

 simple_entity_or_value_expression

simple_entity_or_value_expression ::= identification_variable | input_parameter | literal

exists_expression::= [NOT] EXISTS (subquery)

all_or_any_expression ::= { ALL | ANY | SOME} (subquery)

comparison_expression ::=

 string_expression comparison_operator {string_expression | all_or_any_expression} |

 boolean_expression { =|<>} {boolean_expression | all_or_any_expression} |

 enum_expression { =|<>} {enum_expression | all_or_any_expression} |

 datetime_expression comparison_operator

 {datetime_expression | all_or_any_expression} |

 entity_expression { = | <>} {entity_expression | all_or_any_expression} |

 arithmetic_expression comparison_operator

 {arithmetic_expression | all_or_any_expression} |

 entity_type_expression { =|<>} entity_type_expression}

comparison_operator ::= = | > | >= | < | <= | <>

arithmetic_expression ::= simple_arithmetic_expression | (subquery)

simple_arithmetic_expression ::= arithmetic_term | simple_arithmetic_expression { + | - } arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor

arithmetic_factor ::= [{ + | - }] arithmetic_primary

arithmetic_primary ::= state_field_path_expression | numeric_literal |

 (simple_arithmetic_expression) | input_parameter | functions_returning_numerics |

 aggregate_expression | case_expression

string_expression ::= string_primary | (subquery)

string_primary ::= state_field_path_expression | string_literal |

 input_parameter | functions_returning_strings | aggregate_expression | case_expression

datetime_expression ::= datetime_primary | (subquery)

datetime_primary ::= state_field_path_expression | input_parameter | functions_returning_datetime |

 aggregate_expression | case_expression | date_time_timestamp_literal

boolean_expression ::= boolean_primary | (subquery)

boolean_primary ::= state_field_path_expression | boolean_literal | input_parameter |

 case_expression

enum_expression ::= enum_primary | (subquery)

enum_primary ::= state_field_path_expression | enum_literal | input_parameter | case_expression

entity_expression ::= single_valued_object_path_expression | simple_entity_expression

simple_entity_expression ::= identification_variable | input_parameter

entity_type_expression ::= type_discriminator | entity_type_literal | input_parameter

type_discriminator ::= TYPE(identification_variable | single_valued_object_path_expression |

 input_parameter)

functions_returning_numerics::= LENGTH(string_primary) |

 LOCATE(string_primary, string_primary[, simple_arithmetic_expression]) |

 ABS(simple_arithmetic_expression) |

 SQRT(simple_arithmetic_expression) |

 MOD(simple_arithmetic_expression, simple_arithmetic_expression) |

 SIZE(collection_valued_path_expression) |

 INDEX(identification_variable)

functions_returning_datetime ::= CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP

functions_returning_strings ::=

 CONCAT(string_primary, string_primary {, string_primary}*) |

 SUBSTRING(string_primary, simple_arithmetic_expression [, simple_arithmetic_expression]) |

 TRIM([[trim_specification] [trim_character] FROM] string_primary) |

 LOWER(string_primary) |

 UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH

case_expression ::= general_case_expression | simple_case_expression | coalesce_expression |

 nullif_expression

general_case_expression::= CASE when_clause {when_clause}* ELSE scalar_expression END

when_clause::= WHEN conditional_expression THEN scalar_expression

simple_case_expression::=

 CASE case_operand simple_when_clause {simple_when_clause}*

 ELSE scalar_expression

 END

case_operand::= state_field_path_expression | type_discriminator

simple_when_clause::= WHEN scalar_expression THEN scalar_expression

coalesce_expression::= COALESCE(scalar_expression {, scalar_expression}+)

nullif_expression::= NULLIF(scalar_expression, scalar_expression)

1 0 1 D e v e l o p m e n t G u i d e s 587

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

101 Development Guides
...

101.1 Development Guides for JDO
The following guides demonstrate the application development of JDO using DataNucleus. If you
have a guide that you think would be useful in educating users in some concepts of JDO, please
contribute it via our website.

• Datastore Replication
• JavaEE Environments
• OSGi Environments
• Security
• Troubleshooting
• Performance Tuning
• Monitoring
• Logging
• Maven with DataNucleus
• Eclipse with DataNucleus
• IDEA with DataNucleus
• Netbeans with DataNucleus
• DAO Layer Design

1 0 2 D a t a s t o r e R e p l i c a t i o n 588

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

102 Datastore Replication
...

102.1 JDO : Datastore Replication

Many applications make use of multiple datastores. It is a common requirement to be able to replicate
parts of one datastore in another datastore. Obviously, depending on the datastore, you could make
use of the datastores own capabilities for replication. DataNucleus provides its own extension to
JDO to allow replication from one datastore to another. This extension doesn't restrict you to using 2
datastores of the same type. You could replicate from RDBMS to XML for example, or from MySQL
to HSQLDB.

You need to make sure you have the persistence property datanucleus.attachSameDatastore set
to false if using replication

Note that the case of replication between two RDBMS of the same type is usually way more
efficiently replicated using the capabilities of the datastore itself

The following sample code will replicate all objects of type Product and Employee from PMF1 to
PMF2. These PMFs are created in the normal way so, as mentioned above, PMF1 could be for a
MySQL datastore, and PMF2 for XML. By default this will replicate the complete object graphs
reachable from these specified types.

import org.datanucleus.api.jdo.JDOReplicationManager;

...

JDOReplicationManager replicator = new JDOReplicationManager(pmf1, pmf2);

replicator.replicate(new Class[]{Product.class, Employee.class});

102.2 Example without using the JDOReplicationManager helper
If we just wanted to use pure JDO, we would handle replication like this. Let's take an example

1 0 2 D a t a s t o r e R e p l i c a t i o n 589

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class ElementHolder

{

 long id;

 private Set elements = new HashSet();

 ...

}

public class Element

{

 String name;

 ...

}

public class SubElement extends Element

{

 double value;

 ...

}

so we have a 1-N unidirectional (Set) relation, and we define the metadata like this

<jdo>

 <package name="org.datanucleus.samples">

 <class name="ElementHolder" identity-type="application" detachable="true">

 <inheritance strategy="new-table"/>

 <field name="id" primary-key="true"/>

 <field name="elements" persistence-modifier="persistent">

 <collection element-type="org.datanucleus.samples.Element"/>

 <join/>

 </field>

 </class>

 <class name="Element" identity-type="application" detachable="true">

 <inheritance strategy="new-table"/>

 <field name="name" primary-key="true"/>

 </class>

 <class name="SubElement">

 <inheritance strategy="new-table"/>

 <field name="value"/>

 </class>

 </package>

</jdo>

and so in our application we create some objects in datastore1, like this

1 0 2 D a t a s t o r e R e p l i c a t i o n 590

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PersistenceManagerFactory pmf1 = JDOHelper.getPersistenceManagerFactory("dn.1.properties");

PersistenceManager pm1 = pmf1.getPersistenceManager();

Transaction tx1 = pm1.currentTransaction();

Object holderId = null;

try

{

 tx1.begin();

 ElementHolder holder = new ElementHolder(101);

 holder.addElement(new Element("First Element"));

 holder.addElement(new Element("Second Element"));

 holder.addElement(new SubElement("First Inherited Element"));

 holder.addElement(new SubElement("Second Inherited Element"));

 pm1.makePersistent(holder);

 tx1.commit();

 holderId = JDOHelper.getObjectId(holder);

}

finally

{

 if (tx1.isActive())

 {

 tx1.rollback();

 }

 pm1.close();

}

and now we want to replicate these objects into datastore2, so we detach them from datastore1 and
attach them to datastore2, like this

1 0 2 D a t a s t o r e R e p l i c a t i o n 591

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

// Detach the objects from "datastore1"

ElementHolder detachedHolder = null;

pm1 = pmf1.getPersistenceManager();

tx1 = pm1.currentTransaction();

try

{

 pm1.getFetchPlan().setGroups(new String[] {FetchPlan.DEFAULT, FetchPlan.ALL});

 pm1.getFetchPlan().setMaxFetchDepth(-1);

 tx1.begin();

 ElementHolder holder = (ElementHolder) pm1.getObjectById(holderID);

 detachedHolder = (ElementHolder) pm1.detachCopy(holder);

 tx1.commit();

}

finally

{

 if (tx1.isActive())

 {

 tx1.rollback();

 }

 pm1.close();

}

// Attach the objects to datastore2

PersistenceManagerFactory pmf2 = JDOHelper.getPersistenceManagerFactory("dn.2.properties");

PersistenceManager pm2 = pmf2.getPersistenceManager();

Transaction tx2 = pm2.currentTransaction();

try

{

 tx2.begin();

 pm2.makePersistent(detachedHolder);

 tx2.commit();

}

finally

{

 if (tx2.isActive())

 {

 tx2.rollback();

 }

 pm2.close();

}

That's all there is. These objects are now replicated into datastore2. Clearly you can extend this basic
idea and replicate large amounts of data.

1 0 3 J E E E n v i r o n m e n t s 592

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

103 JEE Environments
...

103.1 JDO : Usage of DataNucleus within a JavaEE environment
The JavaEE framework has become popular in some places in the last few years. It provides a
container within which java processes operate and it provides mechanisms for, amongst other
things, transactions (JTA), and for connecting to other (3rd party) utilities (using Java Connector
Architecture, JCA). DataNucleus Access Platform can be utilised within a JavaEE environment
via this JCA system, and we provide a Resource Adaptor (RAR file) containing this JCA adaptor
allowing Access Platform to be used with the likes of WebLogic and JBoss. Instructions are provided
for the following JavaEE servers

• WebLogic
• JBoss 3.0/3.2
• JBoss 4.0
• JBoss 7.0
• Jonas 4.8

The main thing to mention here is that you can use DataNucleus in a JavaEE environment just
like you use any other library, and do not need the JCA Adaptor for this usage. You only use
the JCA Adaptor if you want to fully integrate with JavaEE.

The provided DataNucleus JCA rar provides default resource adapter descriptors, one general, and the
other for the WebLogic JavaEE server. These resource adapter descriptors can be configured to meet
your needs, for example allowing XA transactions instead of the default Local transactions.

103.1.1 Requirements

To use DataNucleus with JCA the first thing that you will require is the datanucleus-jca-
{version}.rar file (available from the download section).

103.1.2 DataNucleus Resource Adaptor and transactions

A great advantage of DataNucleus implementing the ManagedConnection interface is that the
JavaEE container manages transactions for you (no need to call the begin/commit/rollback-methods).
Currently, local transactions and distributed (XA) transactions are supported. Within a JavaEE
environment, JDO transactions are nested in JavaEE transactions. All you have to do is to declare that
a method needs transaction management. This is done in the EJB meta data. Here you will see, how a
SessionBean implementation could look like.

The EJB meta data is defined in a file called ejb-jar.xml and can be found in the META-INF directory
of the jar you deploy. Suppose you deploy a bean called DataNucleusBean, your ejb-jar.xml should
contain the following configuration elements:

<session>

<ejb-name>DataNucleusBean</ejb-name>

...

<transaction-type>Container</transaction-type>

...

<session>

Imagine your bean defines a method called testDataNucleusTrans():

http://www.datanucleus.org/download.html

1 0 3 J E E E n v i r o n m e n t s 593

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<container-transaction>

 <method >

 <ejb-name>DataNucleusBean</ejb-name>

 ...

 <method-name>testDataNucleusTrans</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

</container-transaction>

You hereby define that transaction management is required for this method. The container will
automatically begin a transaction for this method. It will be commited if no error occurs or
rolled back otherwise. A potential SessionBean implementation containing methods to retrieve a
PersistenceManager then could look like this:

1 0 3 J E E E n v i r o n m e n t s 594

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public abstract class DataNucleusBean implements SessionBean

{

 // EJB methods

 public void ejbCreate()

 throws CreateException

 {

 }

 public void ejbRemove()

 throws EJBException, RemoteException

 {

 }

 // convenience methods to get

 // a PersistenceManager

 /**

 * static final for the JNDI name of the PersistenceManagerFactory

 */

 private static final String PMF_JNDI_NAME = "java:/datanucleus1";

 /**

 * Method to get the current InitialContext

 */

 private InitialContext getInitialContext() throws NamingException

 {

 InitialContext initialContext = new InitialContext();

 // or other code to create the InitialContext eg. new InitialContext(myProperies);

 return initialContext;

 }

 /**

 * Method to lookup the PersistenceManagerFactory

 */

 private PersistenceManagerFactory getPersitenceManagerFactory(InitialContext context)

 throws NamingException

 {

 return (PersistenceManagerFactory) context.lookup(PMF_JNDI_NAME);

 }

 /**

 * Method to get a PersistenceManager

 */

 public PersistenceManager getPersistenceManager()

 throws NamingException

 {

 return getPersitenceManagerFactory(getInitialContext()).getPersistenceManager();

 }

 // Now finally the bean method within a transaction

 public void testDataNucleusTrans()

 throws Exception

 {

 PersistenceManager pm = getPersistenceManager()

 try

 {

 // Do something with your PersistenceManager

 }

 finally

 {

 // close the PersistenceManager

 pm.close();

 }

 }

}

1 0 3 J E E E n v i r o n m e n t s 595

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Make sure, you close the PersistenceManager in your bean methods. If you don't, the JavaEE server
will usually close it for you (one of the advantages), but of course not without a warning or error
message.

To avoid the need of editing multiple files, you could use XDoclet to generate your classes and
control the metadata by xdoclet tags. The method declaration then would look like this:

 /**

 * @ejb.interface-method

 * @ejb.transaction type="Required"

 */

 public viod testDataNucleusTrans()

 throws Exception

 {

 //...

 }

These instructions were adapted from a contribution by a DataNucleus user Alexander Bieber.

103.1.3 Persistence Properties

When creating a PMF using the JCA adaptor, you should specify your persistence properties using
a persistence.xml or jdoconfig.xml. This is because DataNucleus JCA adapter from version 1.2.2
does not support Java bean setters/getters for all properties - since it is an inefficient and inflexible
mechanism for property specification. The more recent persistence.xml and jdoconfig.xml methods
lead to more extensible code.

103.1.4 General configuration

A resource adapter has one central configuration file /META-INF/ra.xml which is located within the
rar file and which defines the default values for all instances of the resource adapter (i.e. all instances
of PersistenceManagerFactory). Additionally, it uses one or more deployment descriptor files (in
JBoss, for example, they are named *-ds.xml) to set up the instances. In these files you can override
the default values from the ra.xml.

Since it is bad practice (and inconvenient) to edit a library's archive (in this case the datanucleus-jca-
${version}.rar) for changing the configuration (it makes updates more complicated, for example),
it is recommended, not to edit the ra.xml within DataNucleus' rar file, but instead put all your
configuration into your deployment descriptors. This way, you have a clean separation of which files
you maintain (your deployment descriptors) and which files are maintained by others (the libraries
you use and which you simply replace in case of an update).

Nevertheless, you might prefer to declare default values in the ra.xml in certain circumstances, so
here's an example:

http://xdoclet.sourceforge.net

1 0 3 J E E E n v i r o n m e n t s 596

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE connector PUBLIC "-//Sun Microsystems, Inc.//DTD Connector 1.0//EN"

 "http://java.sun.com/dtd/connector_1_0.dtd">

<connector>

 <display-name>DataNucleus Connector</display-name>

 <description></description>

 <vendor-name>DataNucleus Team</vendor-name>

 <spec-version>1.0</spec-version>

 <eis-type>JDO Adaptor</eis-type>

 <version>1.0</version>

 <resourceadapter>

 <managedconnectionfactory-class>org.datanucleus.jdo.connector.ManagedConnectionFactoryImpl</managedconnectionfactory-class>

 <connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>

 <connectionfactory-impl-class>org.datanucleus.jdo.connector.PersistenceManagerFactoryImpl</connectionfactory-impl-class>

 <connection-interface>javax.resource.cci.Connection</connection-interface>

 <connection-impl-class>org.datanucleus.jdo.connector.PersistenceManagerImpl</connection-impl-class>

 <transaction-support>LocalTransaction</transaction-support>

 <config-property>

 <config-property-name>ConnectionFactoryName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>jdbc/ds</config-property-value>

 </config-property>

 <authentication-mechanism>

 <authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

 <credential-interface>javax.resource.security.PasswordCredential</credential-interface>

 </authentication-mechanism>

 <reauthentication-support>false</reauthentication-support>

 </resourceadapter>

</connector>

To define persistence properties you should make use of persistence.xml or jdoconfig.xml and refer
to the documentation for persistence properties for full details of the properties.

103.1.5 WebLogic

To use DataNucleus on Weblogic the first thing that you will require is the datanucleus-jca-
{version}.rar file. You then may need to edit the /META-INF/weblogic-ra.xml file to suit the exact
version of your WebLogic server (the included file is for WebLogic 8.1).

You then deploy the RAR file on your WebLogic server.

103.1.6 JBoss 3.0/3.2

To use DataNucleus on JBoss (Ver 3.2) the first thing that you will require is the datanucleus-jca-
{version}.rar file. You should put this in the deploy ("${JBOSS}/server/default/deploy/") directory of
your JBoss installation.

You then create a file, also in the deploy directory with name datanucleus-ds.xml. To give a guide on
what this file will typically include, see the following

1 0 3 J E E E n v i r o n m e n t s 597

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<connection-factories>

 <tx-connection-factory>

 <jndi-name>datanucleus</jndi-name>

 <adapter-display-name>DataNucleus Connector</adapter-display-name>

 <config-property name="ConnectionDriverName"

 type="java.lang.String">com.mysql.jdbc.Driver</config-property>

 <config-property name="ConnectionURL"

 type="java.lang.String">jdbc:mysql://localhost/yourdbname</config-property>

 <config-property name="UserName"

 type="java.lang.String">yourusername</config-property>

 <config-property name="Password"

 type="java.lang.String">yourpassword</config-property>

 </tx-connection-factory>

 <tx-connection-factory>

 <jndi-name>datanucleus1</jndi-name>

 <adapter-display-name>DataNucleus Connector</adapter-display-name>

 <config-property name="ConnectionDriverName"

 type="java.lang.String">com.mysql.jdbc.Driver</config-property>

 <config-property name="ConnectionURL"

 type="java.lang.String">jdbc:mysql://localhost/yourdbname1</config-property>

 <config-property name="UserName"

 type="java.lang.String">yourusername</config-property>

 <config-property name="Password"

 type="java.lang.String">yourpassword</config-property>

 </tx-connection-factory>

 <tx-connection-factory>

 <jndi-name>datanucleus2</jndi-name>

 <adapter-display-name>DataNucleus Connector</adapter-display-name>

 <config-property name="ConnectionDriverName"

 type="java.lang.String">com.mysql.jdbc.Driver</config-property>

 <config-property name="ConnectionURL"

 type="java.lang.String">jdbc:mysql://localhost/yourdbname2</config-property>

 <config-property name="UserName"

 type="java.lang.String">yourusername</config-property>

 <config-property name="Password"

 type="java.lang.String">yourpassword</config-property>

 </tx-connection-factory>

</connection-factories>

This example creates 3 connection factories to MySQL databases, but you can create as many or as
few as you require for your system to whichever databases you prefer (as long as they are supported
by DataNucleus). With the above definition we can then use the JNDI names java:/datanucleus,
java:/datanucleus1, and java:/datanucleus2 to refer to our datastores.

Note, that you can use separate deployment descriptor files. That means, you could for example
create the three files datanucleus1-ds.xml, datanucleus2-ds.xml and datanucleus3-ds.xml with each
declaring one PersistenceManagerFactory instance. This is useful (or even required) if you need a
distributed configuration. In this case, you can use JBoss' hot deployment feature and deploy a new
PersistenceManagerFactory, while the server is running (and working with the existing PMFs): If
you create a new *-ds.xml file (instead of modifying an existing one), the server does not undeploy

1 0 3 J E E E n v i r o n m e n t s 598

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

anything (and thus not interrupt ongoing work), but will only add the new connection factory to the
JNDI.

You are now set to work on DataNucleus-enabling your actual application. As we have said, you can
use the above JNDI names to refer to the datastores, so you could do something like the following to
access the PersistenceManagerFactory to one of your databases.

import javax.jdo.PersistenceManagerFactory;

InitialContext context = new InitialContext();

PersistenceManagerFactory pmf = (PersistenceManagerFactory)context.lookup("java:/datanucleus1");

These instructions were adapted from a contribution by a DataNucleus user Marco Schulze.

103.1.7 JBoss 4.0

With JBoss 4.0 there are some changes in configuration relative to JBoss 3.2 in order to allow use
some new features of JCA 1.5. Here you will see how to configure JBoss 4.0 to use with DataNucleus
JCA adapter for DB2.

To use DataNucleus on JBoss 4.0 the first thing that you will require is the datanucleus-jca-
{version}.rar file. You should put this in the deploy directory ("${JBOSS}/server/default/deploy/")
of your JBoss installation. Additionally, you have to remember to put any JDBC driver files to lib
directory ("${JBOSS}/server/default/lib/") if JBoss does not have them installed by default. In case of
DB2 you need to copy db2jcc.jar and db2jcc_license_c.jar.

You then create a file, also in the deploy directory with name datanucleus-ds.xml. To give a guide on
what this file will typically include, see the following

<?xml version="1.0" encoding="UTF-8"?>

<connection-factories>

 <tx-connection-factory>

 <jndi-name>datanucleus</jndi-name>

 <rar-name>datanucleus-jca-version}.rar</rar-name> <!-- the name here must be the same as JCA adapter filename -->

 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>

 <config-property name="ConnectionDriverName"

 type="java.lang.String">com.ibm.db2.jcc.DB2Driver</config-property>

 <config-property name="ConnectionURL"

 type="java.lang.String">jdbc:derby:net://localhost:1527/"directory_of_your_db_files"</config-property>

 <config-property name="UserName"

 type="java.lang.String">app</config-property>

 <config-property name="Password"

 type="java.lang.String">app</config-property>

 </tx-connection-factory>

</connection-factories>

You are now set to work on DataNucleus-enabling your actual application. You can use the above
JNDI name to refer to the datastores, and so you could do something like the following to access the
PersistenceManagerFactory to one of your databases.

1 0 3 J E E E n v i r o n m e n t s 599

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

import javax.jdo.PersistenceManagerFactory;

InitialContext context=new InitialContext();

PersistenceManagerFactory pmFactory=(PersistenceManagerFactory)context.lookup("java:/datanucleus");

These instructions were adapted from a contribution by a DataNucleus user Maciej Wegorkiewicz.

103.1.8 JBoss 7.0

A tutorial for running DataNucleus under JBoss 7 is available on the internet, provided by a
DataNucleus user Kiran Kumar.

103.1.9 Jonas

To use DataNucleus on Jonas the first thing that you will require is the datanucleus-jca-{version}.rar
file. You then may need to edit the /META-INF/jonas-ra.xml file to suit the exact version of your
Jonas server (the included file is tested for Jonas 4.8).

You then deploy the RAR file on your Jonas server.

103.1.10 Transaction Support

DataNucleus JCA adapter supports both Local and XA transaction types. Local means that a
transaction will not have more than one resource managed by a Transaction Manager and XA means
that multiple resources are managed by the Transaction Manager. Use XA transaction, if DataNucleus
is configured to use data sources deployed in application servers, or if other resources such as JMS
connections are used in the same transaction, otherwise use Local transaction.

You need to configure the ra.xml file with the appropriate transaction support, which is either
XATransaction or LocalTransaction. See the example:

<connector>

 <display-name>DataNucleus Connector</display-name>

 <description></description>

 <vendor-name>DataNucleus Team</vendor-name>

 <spec-version>1.0</spec-version>

 <eis-type>JDO Adaptor</eis-type>

 <version>1.0</version>

 <resourceadapter>

 <managedconnectionfactory-class>org.datanucleus.jdo.connector.ManagedConnectionFactoryImpl</managedconnectionfactory-class>

 <connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>

 <connectionfactory-impl-class>org.datanucleus.jdo.connector.PersistenceManagerFactoryImpl</connectionfactory-impl-class>

 <connection-interface>javax.resource.cci.Connection</connection-interface>

 <connection-impl-class>org.datanucleus.jdo.connector.PersistenceManagerImpl</connection-impl-class>

 <transaction-support>XATransaction</transaction-support> <!-- change this line -->

 ...

http://jkook.blogspot.com/2011/07/getting-started-with-jdo-on-jboss-as7.html

1 0 3 J E E E n v i r o n m e n t s 600

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

103.1.11 Data Source

To use a data source, you have to configure the connection factory name in ra.xml file. See the
example:

<connector>

 <display-name>DataNucleus Connector</display-name>

 <description></description>

 <vendor-name>DataNucleus Team</vendor-name>

 <spec-version>1.0</spec-version>

 <eis-type>JDO Adaptor</eis-type>

 <version>1.0</version>

 <resourceadapter>

 <managedconnectionfactory-class>org.datanucleus.jdo.connector.ManagedConnectionFactoryImpl</managedconnectionfactory-class>

 <connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>

 <connectionfactory-impl-class>org.datanucleus.jdo.connector.PersistenceManagerFactoryImpl</connectionfactory-impl-class>

 <connection-interface>javax.resource.cci.Connection</connection-interface>

 <connection-impl-class>org.datanucleus.jdo.connector.PersistenceManagerImpl</connection-impl-class>

 <transaction-support>XATransaction</transaction-support>

 <config-property>

 <config-property-name>ConnectionFactoryName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>jndiName_for_datasource_1</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>ConnectionResourceType</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>JTA</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>ConnectionFactory2Name</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>jndiName_for_datasource_2</config-property-value>

 </config-property>

 ...

See also :

• (RDBMS) Data Sources usage with DataNucleus

1 0 4 O S G i E n v i r o n m e n t s 601

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

104 OSGi Environments
...

104.1 JDO : Usage of DataNucleus within an OSGi environment
DataNucleus jars are OSGi bundles, and as such, can be deployed in an OSGi environment. Being
an OSGi environment care must be taken with respect to class-loading. In particular the persistence
property datanucleus.primaryClassLoader will need setting. Please refer to the following guide(s)
for assistance until a definitive guide can be provided

• Guide to use of DataNucleus with OSGi and Spring dmServer
• Guide to DataNucleus inside Eclipse RCP
• Guide to DataNucleus with Spring and Eclipse RCP
• Guide to using Log4J with DataNucleus under OSGi

Some key points around integration with OSGi are as follows :-
• Any dependent jar that is required by DataNucleus needs to be OSGi enabled. By this we

mean the jar needs to have the MANIFEST.MF file including ExportPackage for the packages
required by DataNucleus. Failure to have this will result in ClassNotFoundException when
trying to load its classes.

• Use jdo-api.jar v3.0.1 or later since those are OSGi-enabled
• The javax.persistence jar that is included in the DataNucleus distribution is OSGi-enabled.
• When using DataNucleus in an OSGi environments set the persistence property

datanucleus.plugin.pluginRegistryClassName to org.datanucleus.plugin.OSGiPluginRegistry
• If you redeploy a JDO-enabled OSGi application, likely you will need to refresh the javax.jdo

and maybe other bundles.
Please make use of the OSGi sample for JDO in case it is of use. Use of OSGi is notorious for class
loading oddities, so it may be necessary to refine this sample for your situation. We welcome any
feedback to improve it.

104.2 HOWTO Use Datanucleus with OSGi and Spring DM

This guide was written by Jasper Siepkes.

This guide is based on my personal experience and is not the authoritative guide to using
DataNucleus with OSGi and Spring DM. I've updated this guide to use DataNucleus 3.x and Eclipse
Gemini (formerly Spring DM). I haven't extensively tested it yet. This guide explains how to use
DataNucleus, Spring, OSGi and the OSGi blueprint specification together. This guide assumes the
reader is familiar with concepts like OSGi, Spring, JDO, DataNucleus etc. This guide only explains
how to wire these technologies together and not how they work. Now there have been a lot of (name)
changes in over a short course of time. Some webpages might not have been updated yet so to undo
some of the confusion created here is the deal with Eclipse Gemini. Eclipse Gemini started out as
Spring OSGi, which was later renamed to Spring Dynamic Modules or Spring DM for short. Spring
DM is _NOT_ to be confused with Spring DM Server. Spring DM Server is a complete server product
with management UI and tons of other features. Spring DM is the core of Spring DM Server and
provides only the service / dependency injection part. At some point in time the Spring team decided
to donate their OSGi efforts to the Eclipse foundation. Spring DM became Eclipse Gemini and Spring
DM Server became Eclipse Virgo. The whole Spring OSGi / Spring DM / Eclipse Gemini later
became standardised as the OSGi Blueprint specification. To summarise: Spring OSGi = Spring DM
= Eclipse Gemini, Spring DM Server = Eclipse Virgo.

Technologies used in this guide are:
• IDE (Eclipse 3.7)

https://github.com/datanucleus/samples-jdo/tree/master/osgi_basic

1 0 4 O S G i E n v i r o n m e n t s 602

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• OSGi (Equinox 3.7.1)
• JDO (DataNucleus 3.x)
• Dependency Injection (Spring 3.0.6)
• OSGi Blueprint (Eclipse Gemini BluePrint 1.0.0)
• Datastore (PostgreSQL 8.3, altough any datastore supported by DataNucleus can be used)

We are going to start by creating a clean OSGi target platform. Start by creating an empty directory
which is going to house all the bundles for our target platform.

104.2.1 Step 1 : Adding OSGi

The first ingredient we are adding to our platform is the OSGi implementation. In this guide we
will use Eclipse Equinox as our OSGi implementation. However one could also use Apache Felix,
Knoplerfish, Concierge or any other compatible OSGi implementation for this purpose. Download the
"org.eclipse.osgi_3.7.1.R37x_v20110808-1106.jar" ("Framework Only" download) from the Eclipse
Equinox website and put in the target platform.

104.2.2 Step 2 - Adding DI

We are now going to add the Spring, Spring ORM, Spring JDBC, Spring Transaction and Spring
DM bundles to our target platform. Download the Spring Community distribution from their website
"spring-framework-3.0.6.RELEASE.zip". Extract the following files to our target platform directory:

• org.springframework.aop-3.0.6.RELEASE.jar
• org.springframework.asm-3.0.6.RELEASE.jar
• org.springframework.aspects-3.0.6.RELEASE.jar
• org.springframework.beans-3.0.6.RELEASE.jar
• org.springframework.context.support-3.0.6.RELEASE.jar
• org.springframework.context-3.0.6.RELEASE.jar
• org.springframework.core-3.0.6.RELEASE.jar
• org.springframework.expression-3.0.6.RELEASE.jar
• org.springframework.jdbc-3.0.6.RELEASE.jar
• org.springframework.orm-3.0.6.RELEASE.jar
• org.springframework.spring-library-3.0.6.RELEASE.libd
• org.springframework.transaction-3.0.6.RELEASE.jar

104.2.3 Step 3 - Adding OSGi Blueprint

Download the Eclipse Gemini release from their website ("gemini-blueprint-1.0.0.RELEASE.zip")
and extract the following files to our target platform:

• gemini-blueprint-core-1.0.0.RELEASE.jar
• gemini-blueprint-extender-1.0.0.RELEASE.jar
• gemini-blueprint-io-1.0.0.RELEASE.jar

104.2.4 Step 4 - Adding ORM

We are now going to add JDO and DataNucleus to our target platform.

• datanucleus-core-3.0.2.jar
• datanucleus-api-jdo-3.0.2.jar
• datanucleus-rdbms-3.0.2.jar

1 0 4 O S G i E n v i r o n m e n t s 603

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• jdo-api-3.1-rc1.jar

104.2.5 Step 5 - Adding miscellaneous bundles

The following bundles are dependencies of our core bundles and can be downloaded from the Spring
Enterprise Bundle Repository

• com.springsource.org.aopalliance-1.0.0.jar (Dependency of Spring AOP, the core AOP bundle.)
• com.springsource.org.apache.commons.logging-1.1.1.jar (Dependency of various Spring

bundles, logging abstraction library.)
• com.springsource.org.postgresql.jdbc4-8.3.604.jar (PostgreSQL JDBC driver, somewhat dated.)

We now have a basic target platform. This is how the directory housing the target platform looks on
my PC:

$ ls -las

 4 drwxrwxr-x 2 siepkes siepkes 4096 Oct 22 15:28 .

 4 drwxrwxr-x 3 siepkes siepkes 4096 Oct 22 15:29 ..

 8 -rw-r----- 1 siepkes siepkes 4615 Oct 22 15:27 com.springsource.org.aopalliance-1.0.0.jar

 68 -rw-r----- 1 siepkes siepkes 61464 Oct 22 15:28 com.springsource.org.apache.commons.logging-1.1.1.jar

 472 -rw-r----- 1 siepkes siepkes 476053 Oct 22 15:28 com.springsource.org.postgresql.jdbc4-8.3.604.jar

 312 -rw-r----- 1 siepkes siepkes 314358 Oct 2 11:36 datanucleus-api-jdo-3.0.2.jar

1624 -rw-r----- 1 siepkes siepkes 1658797 Oct 2 11:36 datanucleus-core-3.0.2.jar

1400 -rw-r----- 1 siepkes siepkes 1427439 Oct 2 11:36 datanucleus-rdbms-3.0.2.jar

 572 -rw-r----- 1 siepkes siepkes 578205 Aug 22 22:37 gemini-blueprint-core-1.0.0.RELEASE.jar

 180 -rw-r----- 1 siepkes siepkes 178525 Aug 22 22:37 gemini-blueprint-extender-1.0.0.RELEASE.jar

 32 -rw-r----- 1 siepkes siepkes 31903 Aug 22 22:37 gemini-blueprint-io-1.0.0.RELEASE.jar

 208 -rw-r--r-- 1 siepkes siepkes 208742 Oct 2 11:36 jdo-api-3.1-rc1.jar

1336 -rw-r----- 1 siepkes siepkes 1363464 Oct 22 14:26 org.eclipse.osgi_3.7.1.R37x_v20110808-1106.jar

 320 -rw-r----- 1 siepkes siepkes 321428 Aug 18 16:50 org.springframework.aop-3.0.6.RELEASE.jar

 56 -rw-r----- 1 siepkes siepkes 53082 Aug 18 16:50 org.springframework.asm-3.0.6.RELEASE.jar

 36 -rw-r----- 1 siepkes siepkes 35557 Aug 18 16:50 org.springframework.aspects-3.0.6.RELEASE.jar

 548 -rw-r----- 1 siepkes siepkes 556590 Aug 18 16:50 org.springframework.beans-3.0.6.RELEASE.jar

 660 -rw-r----- 1 siepkes siepkes 670258 Aug 18 16:50 org.springframework.context-3.0.6.RELEASE.jar

 104 -rw-r----- 1 siepkes siepkes 101450 Aug 18 16:50 org.springframework.context.support-3.0.6.RELEASE.jar

 380 -rw-r----- 1 siepkes siepkes 382184 Aug 18 16:50 org.springframework.core-3.0.6.RELEASE.jar

 172 -rw-r----- 1 siepkes siepkes 169752 Aug 18 16:50 org.springframework.expression-3.0.6.RELEASE.jar

 384 -rw-r----- 1 siepkes siepkes 386033 Aug 18 16:50 org.springframework.jdbc-3.0.6.RELEASE.jar

 332 -rw-r----- 1 siepkes siepkes 334743 Aug 18 16:50 org.springframework.orm-3.0.6.RELEASE.jar

 4 -rw-r----- 1 siepkes siepkes 1313 Aug 18 16:50 org.springframework.spring-library-3.0.6.RELEASE.libd

 232 -rw-r----- 1 siepkes siepkes 231913 Aug 18 16:50 org.springframework.transaction-3.0.6.RELEASE.jar

104.2.6 Step 6 - Set up Eclipse

Here I will show how one can create a base for an application with our newly created target platform.

Create a Target Platform in Eclipse by going to 'Window' -> 'Preferences' -> 'Plugin Development' ->
'Target Platform' and press the 'Add' button. Select 'Nothing: Start with an empty target platform', give
the platform a name and point it to the directory we put all the jars/bundles in. When you are done
press the 'Finish' button. Indicate to Eclipse we want to use this new platform by ticking the checkbox
in front of our newly created platform in the 'Target Platform' window of the 'Preferences' screen.

Create a new project in Eclipse by going to 'File' -> 'New...' -> 'Project' and Select 'Plug-
in Project' under the 'Plugin development' leaf. Give the project a name (I'm going to call it
'nl.siepkes.test.project.a' in this example). In the radiobox options 'This plugin is targetted to run with:'

http://www.springsource.com/repository/app/
http://www.springsource.com/repository/app/

1 0 4 O S G i E n v i r o n m e n t s 604

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

select 'An OSGi framework' -> 'standard'. Click 'Next'. Untick the 'Generate an activator, a Java class
that....' and press 'Finish'.

Obviously Eclipse is not the mandatory IDE for the steps described above. Other technologies can be
used instead. For this guide I used Eclipse because it is easy to explain, but for most of my projects I
use Maven. If you have the Spring IDE plugin installed (which is advisable if you use Spring) you can
add a Spring Nature to your project by right clicking your project and then clicking 'Spring Tools' ->
'Add Spring Nature'. This will enable error detection in your Spring bean configuration file.

Create a directory called 'spring' in your 'META-INF' directory. In this directory create a Spring bean
configuration file by right clicking the directory and click 'New...' -> 'Other...'. A menu called 'New'
will popup, select 'Spring Bean Configuration File'. Call the file beans.xml.

It is important to realize that the Datanucleus plugin system uses the Eclipse extensions system and
NOT the plain OSGi facilities. There are two ways to make the DataNucleus plugin system work in a
plain OSGi environment:

• Tell DataNucleus to use a simplified plugin manager which does not use the Eclipse plugin
system (called "OSGiPluginRegistry").

• Add the Eclipse plugin system to the OSGi platform.
We are going to use the simplified plugin manager. The upside is that its easy to setup. The downside
is that is less flexible then the Eclipse plugin system. The Eclipse plugin system allowes you to
manage different version of DataNucleus plugins. With the simplified plugin manager you can have
only _one_ version of a DataNucleus plugin in your OSGi platform at any given time.

Declare a Persistence Manager Factory Bean inside the beans.xml:

<bean id="pmf" class="nl.siepkes.util.DatanucleusOSGiLocalPersistenceManagerFactoryBean">

 <property name="jdoProperties">

 <props>

 <prop key="javax.jdo.PersistenceManagerFactoryClass">org.datanucleus.api.jdo.JDOPersistenceManagerFactory</prop>

<!-- PostgreSQL DB connection settings. Add '?loglevel=2' to Connection URL for JDBC Connection debugging. -->

 <prop key="javax.jdo.option.ConnectionURL">jdbc:postgresql://localhost/testdb</prop>

 <prop key="javax.jdo.option.ConnectionDriverName">org.postgresql.Driver</prop>

 <prop key="javax.jdo.option.ConnectionUserName">foo</prop>

 <prop key="javax.jdo.option.ConnectionPassword">bar</prop>

 <prop key="datanucleus.storeManagerType">rdbms</prop>

 <prop key="datanucleus.autoCreateSchema">true</prop>

 <prop key="datanucleus.validateTables">true</prop>

 <prop key="datanucleus.validateColumns">true</prop>

 <prop key="datanucleus.validateConstraints">true</prop>

 <prop key="datanucleus.rdbms.CheckExistTablesOrViews">true</prop>

 <prop key="datanucleus.plugin.pluginRegistryClassName">org.datanucleus.plugin.OSGiPluginRegistry</prop>

 </props>

 </property>

</bean>

<osgi:service ref="pmf" interface="javax.jdo.PersistenceManagerFactory" />

You can specify all the JDO/DataNucleus options you need following the above prop,
key pattern. Notice the osgi:service line. This exports our persistence manager as an
OSGi sevice and makes it possible for other bundles to access it. Also notice that the

1 0 4 O S G i E n v i r o n m e n t s 605

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Persistence Manager Factory is not the normal LocalPersistenceManagerFactoryBean
class, but instead the _OSGiLocalPersistenceManagerFactoryBean_ class. The
OSGiLocalPersistenceManagerFactoryBean is *NOT* part of the default DataNucleus
distribution. So why do we need to use the OSGiLocalPersistenceManagerFactoryBean
instead of the default LocalPersistenceManagerFactoryBean ? The default
LocalPersistenceManagerFactoryBean is not aware of the OSGi environment and
expects all classes to be loaded by one single classloader (this is the case in a normal Java
environment without OSGi). This makes the LocalPersistenceManagerFactoryBean unable
to locate its plugins. The OSGiLocalPersistenceManagerFactoryBean is a subclass of the
LocalPersistenceManagerFactoryBean and is aware of the OSGi environment:

1 0 4 O S G i E n v i r o n m e n t s 606

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class OSGiLocalPersistenceManagerFactoryBean extends LocalPersistenceManagerFactoryBean implements BundleContextAware {

 private BundleContext bundleContext;

 private DataSource dataSource;

 public DatanucleusOSGiLocalPersistenceManagerFactoryBean()

 {

 }

 @Override

 protected PersistenceManagerFactory newPersistenceManagerFactory(String name)

 {

 return JDOHelper.getPersistenceManagerFactory(name, getClassLoader());

 }

 @Override

 protected PersistenceManagerFactory newPersistenceManagerFactory(Map props)

 {

 ClassLoader classLoader = getClassLoader();

 props.put("datanucleus.primaryClassLoader", classLoader);

 return JDOHelper.getPersistenceManagerFactory(props, classLoader);

 }

 private ClassLoader getClassLoader()

 {

 ClassLoader classloader = null;

 Bundle[] bundles = bundleContext.getBundles();

 for (int x = 0; x < bundles.length; x++)

 {

 if ("org.datanucleus.store.rdbms".equals(bundles[x].getSymbolicName()))

 {

 try

 {

 classloader = bundles[x].loadClass("org.datanucleus.ClassLoaderResolverImpl").getClassLoader();

 }

 catch (ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 break;

 }

 }

 return classloader;

 }

 @Override

 public void setBundleContext(BundleContext bundleContext)

 {

 this.bundleContext = bundleContext;

 }

}

1 0 4 O S G i E n v i r o n m e n t s 607

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

If we create an new, similear (Plug-in) project, for example 'nl.siepkes.test.project.b' we can import/
use our Persistance Manager Factory service by specifying the following in its beans.xml:

<osgi:reference id="pmf" interface="javax.jdo.PersistenceManagerFactory" />

The Persistance Manager Factory (pmf) bean can then be injected into other beans as you normally
would do when using Spring and JDO/DataNucleus together.

104.2.7 Step 7 - Accessing your services from another bundle

The reason why you are probably using OSGi is because you want to separate/modularize all kinds
of code. A common use case is that you have your service layer in bundle A and another bundle,
bundle B, who invokes methods in your service layer. Bundle B knows absolutely nothing about
DataNucleus (ie. no imports and dependencies on DataNucleus or Datastore JDBC drivers) and will
just call methods with signatures like 'public FooRecord getFooRecord(long fooId)'. When you create
such a setup and access a method in bundle A from bundle B you might be surprised to find out a
ClassNotFound Exception is being thrown. The ClassNotFound exception will probably be about
some DataNucleus or Datastore JDBC driver class not being found. How can bundle B complain
about not finding implementation classes which only belong in bundle A (which has the correct
imports) ? The reason for this is that when you invoke the method in bundle A from bundle B the
classloader from bundle B is used to execute the method in bundle A. And since the classloader of
bundle B does not have DataNucleus imports things go awry.

To solve this we need to change the ClassLoader in the ThreadContext which invokes the method
in Bundle A. We could of course do this manually in every method in Bundle A but since we are
already using Spring and AOP its much easier to do it that way. Create the following class (which is
our aspect that is going to do the heavy lifting) in bundle A:

1 0 4 O S G i E n v i r o n m e n t s 608

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package nl.siepkes.util;

/**

 * <p>

 * Aspect for setting the correct class loader when invoking a method in the

 * service layer.

 * </p>

 * <p>

 * When invoking a method from a bundle in the service layer of another bundle

 * the classloader of the invoking bundle is used. This poses the problem that

 * the invoking class loader needs to know about classes in the service layer of

 * the other bundle. This aspect sets the <tt>ContextClassLoader</tt> of the

 * invoking thread to that of the other bundle, the bundle that owns the method

 * in the service layer which is being invoked. After the invoke is completed

 * the aspect sets the <tt>ContextClassLoader</tt> back to the original

 * classloader of the invoker.

 * </p>

 *

 * @author Jasper Siepkes <jasper@siepkes.nl>

 *

 */

public class BundleClassLoaderAspect implements Ordered {

 private static final int ASPECT_PRECEDENCE = 0;

 public Object setClassLoader(ProceedingJoinPoint pjp) throws Throwable {

// Save a reference to the classloader of the caller

ClassLoader oldLoader = Thread.currentThread().getContextClassLoader();

// Get a reference to the classloader of the owning bundle

ClassLoader serviceLoader = pjp.getTarget().getClass().getClassLoader();

// Set the class loader of the current thread to the class loader of the

// owner of the bundle

Thread.currentThread().setContextClassLoader(serviceLoader);

Object returnValue = null;

try {

 // Make the actual call to the method.

 returnValue = pjp.proceed();

} finally {

 // Reset the classloader of this Thread to the original

 // classloader of the method invoker.

 Thread.currentThread().setContextClassLoader(oldLoader);

}

return returnValue;

 }

 @Override

 public int getOrder() {

 return ASPECT_PRECEDENCE;

 }

}

1 0 4 O S G i E n v i r o n m e n t s 609

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Add the following to you Spring configuration in bundle A:

<tx:advice id="txAdvice" transaction-manager="txManager">

 <tx:attributes>

<tx:method name="get*" read-only="true" />

<tx:method name="*" />

 </tx:attributes>

</tx:advice>

<aop:pointcut id="fooServices" expression="execution(* nl.siepkes.service.*.*(..))" />

 <aop:advisor advice-ref="txAdvice" pointcut-ref="fooServices" />

 <!-- Ensures the class loader of this bundle is used to invoke public methods in the service layer of this bundle. -->

 <aop:aspect id="bundleLoaderAspect" ref="bundleLoaderAspectBean">

<aop:around pointcut-ref="fooServices" method="setClassLoader"/>

 </aop:aspect>

</aop:config>

Now all methods in classes in the package 'nl.siepkes.service' will always use the class loader of
bundle A.

104.3 Using DataNucleus with Eclipse RCP

This guide was written by Stuart Robertson.

Using DataNucleus inside an Eclipse plugin (that is, Eclipse's Equinox OSGi runtime) should be
simple, because DataNucleus is implemented as a collection of OSGi bundles. My early efforts to
use DataNucleus from within my Eclipse plugins all ran into problems. First classloader problems
of various kinds began to show themselves. See this post on the DataNucleus Forum for details. My
initial faulty configuration was as follows:

model

 src/main/java/...*.java (persistent POJO classes, enhanced using Maven DataNucleus plugin)

 src/main/resources/datanucleus.properties* (PMF properties)

rcp.jars

 plugin.xml

 META-INF/

 MANIFEST.MF (OSGi bundle manifest)

 lib/

 datanucleus-core-XXX.jar

 ...

 spring-2.5.jar

rcp.ui

 plugin.xml

 META-INF/

 MANIFEST.MF (OSGi bundle manifest)

http://www.datanucleus.org/servlet/forum/viewthread?thread=4846

1 0 4 O S G i E n v i r o n m e n t s 610

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using the standard pattern, I had created a "jars" plugin whose only purpose in life was to provide
a way to bring all of the 3rd party jars that my "model" depends on into the Eclipse plugin world.
Each of the jars in the "jars" project's lib directory were also added to the MANIFEST.MF "Bundle-
ClassPath" section as follows:

Bundle-ClassPath:* lib\asm-3.0.jar,

lib\aspectjtools-1.5.3.jar,

lib\commons-dbcp-1.2.2.jar,

lib\commons-logging-1.1.1.jar,

lib\commons-pool-1.3.jar,

lib\geronimo-spec-jta-1.0.1B-rc2.jar,

lib\h2-1.0.63.jar,

lib\jdo2-api-2.1-SNAPSHOT.jar,

lib\datanucleus-core-XXX.jar,

lib\datanucleus-rdbms-XXX.jar,

lib\...*

lib\log4j-1.2.14.jar,

lib\model-1.0.0-SNAPSHOT.jar,

lib\persistence-api-1.0.jar,

lib\spring-2.5.jar

Notice that the rcp.jars plugin's lib directory contains model-1.0.0-SNAPSHOT.jar - this
is the jar containing my enhanced persistent classes and PMF properties file (which I called
datanucleus.properties). Also, all of the packages from all of the jars listed in the Bundle-Classpath
were exported using the Export-Package bundle-header.

Note, that the plugin.xml file in the "jars" project is an empty plugin.xml file containing
only <plugin></plugin>, used only to trick Eclipse into using the Plugin Editor to open the
MANIFEST.MF file so the bundle info can be edited in style.

The rcp.ui plugin depends on the rcp.jars so that it can "see" all of the necessary classes. Inside
the Bundle Activator class in my UI plugin I initialized DataNucleus as normal, creating a
PersistenceManagerFactory from the embedded datanucleus.properties file.

It all looks really promising, but doesn't work due to all kinds of classloading issues.

104.3.1 DataNucleus jars as plugins

The first part of the solution was to use the DataNucleus as a set of Eclipse plugins. Initially I wasn't
sure where to get MANIFEST.MF and plugin.xml files to do this, but I later discovered that each
of the datanucleus jar files are already packaged as Eclipse plugins. Open any of the datanucleus jar
files up and you'll see an OSGi manifest and Eclipse plugin.xml. All that was needed was to copy
datanucleus-XXX.jar into $ECLIPSE_HOME/plugins directory and restart Eclipse.

Once this was done, I removed the datanucleus jar files from my lib/ directory and instead modified
my jars plugin, removing the datanucleus jars and all datanucleus packages from Bundle-Classpath
and Export-Package. Next, I modified my rcp.ui plugin to depend not only on rcp.jars, but also on all
of the datanucleus plugins. The relevant section of my rcp.ui plugin's manifest were changed to:

1 0 4 O S G i E n v i r o n m e n t s 611

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Require-Bundle: org.eclipse.core.runtime,

org.datanucleus,

org.datanucleus.enhancer,

org.datanucleus.store.rdbms,

This moved things along, resulting in the following message:

javax.jdo.JDOException: Class org.datanucleus.store.rdbms.RDBMSManager was not found in the CLASSPATH. Please check your specification and your CLASSPATH.

Turns out that the class that could not be found was not
org.datanucleus.store.rdbms.RDBMSManager, but rather my H2 database driver class. I
figured the solution might lie in using Eclipse's buddy-loading mechanism to allow the
org.datanucleus.store.rdbms plugin to see my JDBC driver, which is was packaged into my 'jars'
plugin. Thus, I added the following to rcp.ui's MANIFEST.MF:

Eclipse-RegisterBuddy: org.datanucleus.store.rdbms

That too, didn't work. Checking the org.datanucleus.store.rdbms MANIFEST.MF showed no 'Eclipse-
BuddyPolicy: registered' entry, so Eclipse-RegisterBuddy: org.datanucleus.store.rdbms wouldn't have
helped anyway. If you are new to Eclipse's classloading ways, I can highly recommend you read ""A
Tale of Two VMs", as you'll likely run into the need for buddy-loading sooner or later.

104.3.2 PrimaryClassLoader saves the day

Returning to Erik Bengtson's example (about half-way down the post) gave me inspiration:

//set classloader for driver (using classloader from the "rcp.jars" bundle)

ClassLoader clrDriver = Platform.getBundle("rcp.jars").loadClass("org.h2.Driver").getClassLoader();

map.put("org.datanucleus.primaryClassLoader", clrDriver);

//set classloader for DataNucleus (using classloader from the "org.datanucleus" bundle)

ClassLoader clrDN = Platform.getBundle("org.datanucleus").loadClass("org.datanucleus.api.jdo.JDOPersistenceManagerFactory").getClassLoader()

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(map, clrDN);

With the above change made, things worked. So, in summary

• Don't embed DataNucleus jars inside your plugin
• Do install DataNucleus jars into Eclipse/plugins and add dependencies to them from your

plugin's MANIFEST
• Do tell DataNucleus which classloader to use for both its primaryClassLoader and for its own

implementation

104.4 DataNucleus + Eclipse RCP + Spring

This guide was written by Stuart Robertson.

http://www.eclipsezone.com/articles/eclipse-vms/
http://www.eclipsezone.com/articles/eclipse-vms/
http://www.datanucleus.org/servlet/forum/viewthread?thread=3910

1 0 4 O S G i E n v i r o n m e n t s 612

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In my application, I have used Spring's elegant JdoDaoSupport class to implement my DAOs, have
used Spring's BeanFactory to instantiate PersistenceManagerFactory and DAO instances and have
set up declarative transaction management. See the Spring documentation section 12.3 if you are
unfamiliar with Spring's JDO support. I assumed, naively, that since my code all worked when built
and unit-tested in a plain Java world (with Maven 2 building my jars and running my unit-tests),
that it would work inside Eclipse. I found out above that using DataNucleus inside Eclipse RCP
application needs a little special attention to classloading. Once this has been taken care of, you'll
know that you need to provide your PersistenceManagerFactory with the correct classloader to use
as "primaryClassLoader". However, since everything is going to be instantiated by the Spring bean
container, it somehow has to know what "the correct classloader" is. The recipe is fairly simple.

104.4.1 Add a Factory-bean and factory-method

At first I wasn't sure what needed doing, but a little browsing of the Spring documentation revealed
what I needed (see section 3.2.3.2.3. Instantiation using an instance factory method). Spring provides
a mechanism whereby a Spring beans definition file (beans.xml, in my case) can defer the creation of
an object to either a static method on some factory class, or a non-static (instance) method one some
factory bean. The following quote from the Spring documentation describes how things are meant to
work:

In a fashion similar to instantiation via a static factory method, instantiation using an instance factory
method is where a non-static method of an existing bean from the container is invoked to create
a new bean. To use this mechanism, the 'class' attribute must be left empty, and the 'factory-bean'
attribute must specify the name of a bean in the current (or parent/ancestor) container that contains
the instance method that is to be invoked to create the object. The name of the factory method itself
must be set using the 'factory-method' attribute.

The example bean definitions below show how a bean can be created using this pattern:

<!-- the factory bean, which contains a method called createService() -->

<bean id="serviceLocator" class="com.foo.DefaultServiceLocator">

 <!-- inject any dependencies required by this locator bean -->

</bean>

<!-- the bean to be created via the factory bean -->

<bean id="exampleBean" factory-bean="serviceLocator" factory-method="createService"/>

104.4.2 Add a little ClassLoaderFactory

In my case, I replaced the "serviceLocator" factory bean with a "classloaderFactory" bean with
factory-methods that return Classloader instances, as shown below:

http://www.springframework.org/
http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jdo
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-collaborators

1 0 4 O S G i E n v i r o n m e n t s 613

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

/**

 * Used as a bean inside the Spring config so that the correct classloader can be "wired" into the PersistenceManagerFactory bean.

 */

public class ClassLoaderFactory

{

 /** Used in beans.xml to set the PMF's primaryClassLoaderResolver property. */

 public ClassLoader jdbcClassloader()

 {

 return getClassloaderFromClass("org.h2.Driver");

 }

 public ClassLoader dnClassloader()

 {

 return getClassloaderFromClass("org.datanucleus.api.jdo.JDOPersistenceManagerFactory");

 }

 private ClassLoader getClassloaderFromClass(String className)

 {

 try

 {

 ClassLoader classLoader = Activator.class.getClassLoader().loadClass(className).getClassLoader();

 return classLoader;

 }

 catch (Exception e)

 {

 System.out.println(e.getMessage());

 throw new RuntimeException(e.getMessage(), e);

 }

 }

}

The two public methods, jdbcClassloader() and dnClassloader(), ask the bundle Activator to
load a particular class, and then return the Classloader that was used to load the class. Note that
Activator is the standard bundle activator created by Eclipse. OSGi classloading is based on a setup
where each bundle has its own classloader. For example, if bundle A depends on bundles B and C,
attempting to load a class (ClassC, say) provided by bundle C will result in bundle A's classloader
delegating the class-load to bundle C. Calling getClassLoader() on the loaded ClassC will return
bundle C's classloader, not bundle A's classloader. And this is exactly the behaviour we need.
Thus, asking Activator's classloader to load "org.h2.Driver" will ultimately delegate the loading
to the classloader associated with the bundle that contains the JDBC driver classes. Likewise with
"org.datanucleus.api.jdo.JDOPersistenceManagerFactory".

104.4.3 Mix well

Now we have all of the pieces needed to configure our Spring beans. The bean definitions below are a
part of a larger beans.xml file, but show the relevant setup. The list below describes each of the beans
working from top to bottom, where the text in bold is the bean id:

• placeholderConfigurer : This is a standard Spring property configuration mechanism
that loads a properties file from the classpath location "classpath:/config/jdbc.
${datanucleus.profile}.properties", where ${datanucleus.profile} represents the value of the

1 0 4 O S G i E n v i r o n m e n t s 614

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

"datanucleus.profile" environment variable which I set externally so that I can switch between in-
memory, on-disk embedded or on-disk server DB configurations.

• dataSource : A JDBC DataSource (using Apache DBCP's connection pooling DataSource).
Values for the properties ${jdbc.driverClassName}, ${jdbc.url}, etc are obtained from the
properties file that was loaded by placeholderConfigurer.

• pmf : The DataNucleus PersistenceManagerFactory (implementation) that underpins the entire
persistence layer. It's a fairly standard setup, with a reference to *dataSource* being stored in
connectionFactory. The important part for this discussion is the primaryClassLoaderResolver
part, which stores a reference to a Classloader instance (a Classloader "bean", that is).

• classloaderFactory and jdbcClassloader : Here we pull in the factory-bean pattern discussed
above. When asked for the jdbcClassloader bean (which is a Classloader instance), Spring
will defer to classloaderFactory, creating an instance of ClassLoaderFactory and then calling
its jdbcClassloader() method to obtain the Classloader that is to become the jdbcClassloader
bean. This works, because the the Spring jar is able to "see" my ClassLoaderFactory class. If the
Spring jar is contained in one bundle, A, say, and your factory class is in some other bundle, B,
say, then you may encounter ClassNotFoundException if bundle A doesn't depend on bundle B.
This is normally the case if you follow the "jars plugin" pattern, creating a single plugin to house
all third-party jars. In this case, you will need to add "Eclipse-BuddyPolicy: registered" to the
"jars" plugin's manifest, and then add "Eclipse-RegisterBuddy: <jars.bundle.symbolicname>"
to the manifest of the bundle that houses your factory class (where <jars.bundle.symbolicname>
must be replaced with the actual symbolic name of the bundle). See A Tale of Two VMs if this
is Greek to you.

http://www.eclipsezone.com/articles/eclipse-vms/

1 0 4 O S G i E n v i r o n m e n t s 615

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<!-- ====== JDO PERSISTENCE INFRASTRUCTURE ====== -->

<bean id="placeholderConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"

 p:location="classpath:/config/jdbc.${datanucleus.profile}.properties" />

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"

 destroy-method="close"

 p:driverClassName="${jdbc.driverClassName}"

 p:url="${jdbc.url}"

 p:username="${jdbc.username}"

 p:password="${jdbc.password}" />

<bean id="pmf" class="org.datanucleus.api.jdo.JDOPersistenceManagerFactory"

 destroy-method="close"

 p:connectionFactory-ref="dataSource"

 p:attachSameDatastore="true"

 p:autoCreateColumns="true"

 p:autoCreateSchema="true"

 p:autoStartMechanism="None"

 p:detachAllOnCommit="true"

 p:detachOnClose="false"

 p:nontransactionalRead="true"

 p:stringDefaultLength="255"

 p:primaryClassLoaderResolver-ref="jdbcClassloader" />

<bean id="classloaderFactory" class="rcp.model.ClassLoaderFactory" />

<!-- the bean to be created via the factory bean -->

<bean id="jdbcClassloader"

 factory-bean="classloaderFactory"

 factory-method="jdbcClassloader" />

104.4.4 Enjoy

Now that the hard-work is done, we can ask Spring to do its magic:

1 0 4 O S G i E n v i r o n m e n t s 616

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

private void loadSpringBeans()

{

 if (beanFactory == null)

 {

 beanFactory = new ClassPathXmlApplicationContext("/config/beans.xml", Activator.class);

 }

 this.daoFactory = (IDAOFactory) beanFactory.getBean("daoFactory");

}

private void testDAO()

{

 IAccountDAO accountsDAO = this.daoFactory.accounts();

 accountsDAO.persist(entities.newAccount("Account A", AccountType.Asset));

 accountsDAO.persist(entities.newAccount("Account B", AccountType.Bank));

 List<IAccount> accounts = accountsDAO.findAll();

}

Finally, I should clarify things by mentioning that in my code, my bundle Activator provides the
loadSpringBeans() method and calls it when the bundle is started. Other classes, such as the main
application, then use Activator.getDefault().getDAOFactory() to obtain a reference to IDAOFactory,
which is another Spring bean that provides a central point of reference to all of the DAOs in the
system. All of the DAOs themselves are Spring beans too.

104.4.5 Postscript

Someone asked to see the complete applicationContext.xml (referred to as /config/beans.xml in the
loadSpringBeans() method above), so here it is:

1 0 4 O S G i E n v i r o n m e n t s 617

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<beans

xmlns="http://www.springframework.org/schema/beans"

xmlns:aop="http://www.springframework.org/schema/aop"

xmlns:context="http://www.springframework.org/schema/context"

xmlns:p="http://www.springframework.org/schema/p"

xmlns:tx="http://www.springframework.org/schema/tx"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="

http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.1.xsd

 http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd">

<!-- Enable the use of @Autowired annotations. -->

<context:annotation-config />

<!-- ====== MAIN ENTRY-POINTS ====== -->

<bean

id="daoFactory"

class="ca.eulogica.bb.model.dao.impl.DAOFactory"

p:accountDAO-ref="accountDAO"

p:budgetDAO-ref="budgetDAO"

p:budgetItemDAO-ref="budgetItemDAO"

p:commodityDAO-ref="commodityDAO"

p:institutionDAO-ref="institutionDAO"

p:splitDAO-ref="splitDAO"

p:transactionDAO-ref="transactionDAO" />

<bean

id="entityFactory"

class="ca.eulogica.bb.model.entities.impl.EntityFactory" />

<bean

id="servicesFactory"

class="ca.eulogica.bb.model.services.impl.ServicesFactory"

p:accountService-ref="accountService"

p:transactionService-ref="transactionService" />

<!-- ====== BUSINESS SERVICES ====== -->

<bean

id="accountService"

class="ca.eulogica.bb.model.services.impl.AccountService"

p:DAOFactory-ref="daoFactory"

p:entityFactory-ref="entityFactory" />

<bean

id="transactionService"

class="ca.eulogica.bb.model.services.impl.TransactionService"

p:DAOFactory-ref="daoFactory"

p:entityFactory-ref="entityFactory" />

<!-- ====== DAO ====== -->

<bean

id="accountDAO"

class="ca.eulogica.bb.model.dao.impl.AccountDAO"

p:persistenceManagerFactory-ref="pmf" />

<bean

id="budgetDAO"

class="ca.eulogica.bb.model.dao.impl.BudgetDAO"

p:persistenceManagerFactory-ref="pmf" />

<bean

id="budgetItemDAO"

class="ca.eulogica.bb.model.dao.impl.BudgetItemDAO"

p:persistenceManagerFactory-ref="pmf" />

<bean

id="commodityDAO"

class="ca.eulogica.bb.model.dao.impl.CommodityDAO"

p:persistenceManagerFactory-ref="pmf" />

<bean

id="institutionDAO"

class="ca.eulogica.bb.model.dao.impl.InstitutionDAO"

p:persistenceManagerFactory-ref="pmf" />

<bean

id="splitDAO"

class="ca.eulogica.bb.model.dao.impl.SplitDAO"

p:persistenceManagerFactory-ref="pmf" />

<bean

id="transactionDAO"

class="ca.eulogica.bb.model.dao.impl.TransactionDAO"

p:persistenceManagerFactory-ref="pmf" />

<!-- ====== TRANSACTION MANAGEMENT ====== -->

<bean

id="txManager"

class="org.springframework.orm.jdo.JdoTransactionManager"

p:persistenceManagerFactory-ref="pmf" />

<tx:advice

id="txAdvice"

transaction-manager="txManager">

<tx:attributes>

<tx:method

name="get*"

propagation="REQUIRED"

read-only="true" />

<tx:method

name="*"

propagation="REQUIRED" />

</tx:attributes>

</tx:advice>

<aop:config>

<aop:pointcut

id="daoMethodsPointcut"

expression="execution(* ca.eulogica.bb.model.dao.impl.*.*(..))" />

<aop:advisor

id="daoMethodsAdvisor"

advice-ref="txAdvice"

pointcut-ref="daoMethodsPointcut" />

</aop:config>

<aop:config>

<aop:pointcut

id="serviceMethodsPointcut"

expression="execution(* ca.eulogica.bb.model.services.*.*(..))" />

<aop:advisor

id="serviceMethodsAdvisor"

advice-ref="txAdvice"

pointcut-ref="serviceMethodsPointcut" />

</aop:config>

<!-- ====== JDO PERSISTENCE INFRASTRUCTURE ====== -->

<bean id="placeholderConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"

p:location="classpath:/config/jdbc.${datanucleus.profile}.properties" />

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"

destroy-method="close"

p:driverClassName="${jdbc.driverClassName}"

p:url="${jdbc.url}"

p:username="${jdbc.username}"

p:password="${jdbc.password}" />

<bean id="pmf" class="org.datanucleus.api.jdo.JDOPersistenceManagerFactory"

destroy-method="close"

p:connectionFactory-ref="dataSource"

p:attachSameDatastore="true"

p:autoCreateColumns="true"

p:autoCreateSchema="true"

p:autoStartMechanism="None"

p:detachAllOnCommit="true"

p:detachOnClose="false"

p:nontransactionalRead="true"

p:stringDefaultLength="255"

p:primaryClassLoaderResolver-ref="jdbcClassloader" />

<bean id="classloaderFactory" class="budgetbuddy.rcp.model.ClassLoaderFactory" />

<!-- the bean to be created via the factory bean -->

<bean id="jdbcClassloader"

factory-bean="classloaderFactory"

factory-method="jdbcClassloader" />

</beans>

1 0 5 T r o u b l e s h o o t i n g 618

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

105 Troubleshooting
...

105.1 JDO : Troubleshooting
This section describes the most common problems found when using DataNucleus in different
architectures. It describes symptoms and methods for collecting data for troubleshooting thus reducing
time to narrow the problem down and come to a solution.

105.2 Out Of Memory error

105.2.1 Introdution

Java allocate objects in the runtime memory data area called heap. The heap is created on virtual
machine start-up. The memory allocated to objects are reclaimed by Garbage Collectors when the
object is no longer referenced (See Object References). The heap may be of a fixed size, but can also
be expanded when more memory is needed or contracted when no longer needed. If a larger heap is
needed and it cannot be allocated an OutOfMemory is thrown. See JVM Specification.

Native memory is used by the JVM to perform its operations like creation of threads, sockets, jdbc
drivers using native code, libraries using native code, etc.

The maximum size of heap memory is determined by the -Xmx on the java command line. If Xmx is
not set, then the JVM decides for the maximum heap. The heap and native memory are limited to the
maximum memory allocated by the JVM. For example, if the JVM Xmx is set to 1GB and currently
use of native memory is 256MB then the heap can only use 768MB.

105.2.2 Causes

Common causes of out of memory:

• Not enough heap - The JVM needs more memory to deal with the application requirements.
Queries returning more objects than usual can be the cause.

• Not enough PermGen - The JVM needs more memory to load class definitions.
• Memory Leaks - The application does not close the resources, like the PersistenceManager or

Queries, and the JVM cannot reclaim the memory.
• Caching - Caching in the application or inside DataNucleus holding strong references to objects.
• Garbage Collection - If no full garbage collection is performed before the OutOfMemory it can

indicate a bug in the JVM Garbage Collector.
• Memory Fragmentation - A large object needs to be placed in the memory, but the JVM cannot

allocate a continous space to it because the memory is fragmented.
• JDBC driver - a bug in the JDBC driver not flushing resources or keeping large result sets in

memory.

105.2.3 Throubleshooting

105.2.3.1 JVM

Collect garbage collection information by adding -verbosegc to the java command line. The
verbosegc flag will print garbage collections to System output.

http://java.sun.com/developer/technicalArticles/ALT/RefObj/
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

1 0 5 T r o u b l e s h o o t i n g 619

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

105.2.3.2 Sun JVM

The Sun JVM 1.4 or upper accepts the flag -XX:+PrintGCDetails, which prints detailed information
on Garbage Collections. The Sun JVM accepts the flag -verbose:class, which prints information about
each class loaded. This is useful to troubleshoot issues when OutOfMemory occurs due to lack of
space in the PermGen, or when NoClassDefFoundError or Linkage errors occurs. The Sun JVM 1.5
or upper accepts the flag -XX:+HeapDumpOnOutOfMemoryError, which creates a hprof binary file
head dump in case of an OutOfMemoryError. You can analyse the heap dump using tools such as jhat
or YourKit profiler.

105.2.3.3 DataNucleus

DataNucleus keeps in cache persistent objects using weak references by default. Enable debug mode
DataNucleus.Cache category to investigate the size of the cache in DataNucleus.

105.2.4 Resolution

DataNucleus can be configured to reduce the number of objects in cache. DataNucleus has cache for
persistent objects, metadata, datastore metadata, fields of type Collection or Map, or query results.

105.2.4.1 Query Results Cache

The query results hold strong references to the retrieved objects. If a query returns too many objects it
can lead to OutOfMemory error. To be able to query over large result sets, change the result set type
to scroll-insensitive in the pmf setting datanucleus.rdbms.query.resultSetType.

105.2.4.2 Query leak

The query results are kept in memory until the PersistenceManager or Query are closed. To avoid
memory leaks caused by queries in memory, it's capital to explicitly close the query as soon as
possible. The following snippet shows how to do it.

Query query = pm.newQuery("SELECT FROM org.datanucleus.samples.store.Product WHERE price < :limit");

List results = (List)query.execute(new Double(200.0));

//...

//...

//closes the query

query.closeAll();

105.2.4.3 PersistenceManager leak

It's also a best practice to ensure the PersistenceManager is closed in a try finally block. The
PersistenceManager has level 1 cache of persistence objects. See the following example:

1 0 5 T r o u b l e s h o o t i n g 620

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 //...

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

105.2.4.4 Cache for fields of Collection or Map

If collection or map fields have large number of elements, the caching of elements can be disabled
with the property datanucleus.cache.collections setting it to false.

105.2.4.5 Persistent Objects cache

The cache control of persistent objects is described in the Cache Guide

105.2.4.6 Metadata and Datastore Metadata cache

The metadata and datastore metadata caching cannot be controled by the application, because the
memory required for it is insignificant.

105.2.4.7 OutOfMemory when persisting new objects

When persistent many objects, the flush operation should be periodically invoked. This will give a
hint to DataNucleus to flush the changes to the database and release the memory. In the below sample
the pm.flush() operation is invoked on every 10,000 objects persisted.

1 0 5 T r o u b l e s h o o t i n g 621

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 for (int i=0; i<100000; i++)

 {

 Wardrobe wardrobe = new Wardrobe();

 wardrobe.setModel("3 doors");

 pm.makePersistent(wardrobe);

 if (i % 10000 == 0)

 {

 pm.flush();

 }

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

105.3 Frozen application

105.3.1 Introdution

The application pauses for short or long periods or hangs during very long time.

105.3.2 Causes

Common causes:

• Database Locking - Database waiting other transactions to release locks due to deadlock or
locking contentions.

• Garbage Collection Pauses - The garbage collection pauses the application to free memory
resources.

• Application Locking - Thread 2 waiting for resources locked by Thread 1.

105.3.3 Throubleshooting

105.3.3.1 Database locking

Use a database specific tool or database scripts to find the current database locks. In Microsoft SQL,
the stored procedured sp_lock can be used to examinate the database locks.

1 0 5 T r o u b l e s h o o t i n g 622

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

105.3.3.2 Query Timeout

To avoid database locking to hang the application when a query is performed, set the query timeout.
See Query Timeout.

105.3.3.3 Garbage Collection pauses

Check if the application freezes when the garbage collection starts. Add -verbosegc to the java
command line and restart the application.

105.3.3.4 Application Locking

Thread dumps are snapshots of the threads and monitors in the JVM. Thread dumps help to diagnose
applications by showing what the application is doing at a certain moment of time. To generate
Thread Dumps in MS Windows, press <ctrl><break> in the window running the java application. To
generate Thread Dumps in Linux/Unix, execute kill -3 process_id

To effectively diagnose a problem, take 5 Thread Dumps with 3 to 5 seconds internal between each
one. See An Introduction to Java Stack Traces.

105.4 Postgres

105.4.1 ERROR: schema does not exist

105.4.1.1 Problem

Exception org.postgresql.util.PSQLException: ERROR: schema "PUBLIC" does not exist raised
during transaction.

105.4.1.2 Troubleshooting

• Verify that the schema "PUBLIC" exists. If the name is lowercased ("public"), set
datanucleus.identifier.case=PreserveCase, since Postgres is case sensitive.

• Via pgAdmin Postgres tool, open a connection to the schema and verify it is acessible with
issuing a SELECT 1 statement.

105.5 Command Line Tools

105.5.1 CreateProcess error=87

105.5.1.1 Problem

CreateProcess error=87 when running DataNucleus tools under Microsoft Windows OS.

Windows has a command line length limitation, between 8K and 64K characters depending on the
Windows version, that may be triggered when running tools such as the Enhancer or the SchemaTool
with too many arguments.

105.5.1.2 Solution

When running such tools from Maven or Ant, disable the fork mechanism by setting the option
fork="false".

http://java.sun.com/developer/technicalArticles/Programming/Stacktrace/

1 0 6 P e r f o r m a n c e T u n i n g 623

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

106 Performance Tuning
...

106.1 Performance Tuning
DataNucleus, by default, provides certain functionality. In particular circumstances some of this
functionality may not be appropriate and it may be desirable to turn on or off particular features to
gain more performance for the application in question. This section contains a few common tips

106.1.1 Enhancement

You should perform enhancement before runtime. That is, do not use java agent since it will enhance
classes at runtime, when you want responsiveness from your application.

106.1.2 Schema : Creation

DataNucleus provides 4 persistence properties datanucleus.schema.autoCreateAll,
datanucleus.schema.autoCreateTables, datanucleus.schema.autoCreateColumns, and
datanucleus.schema.autoCreateConstraints that allow creation of the datastore tables. This can
cause performance issues at startup. We recommend setting these to false at runtime, and instead
using SchemaTool to generate any required database schema before running DataNucleus (for
RDBMS, HBase, etc).

106.1.3 Schema : O/R Mapping

Where you have an inheritance tree it is best to add a discriminator to the base class so that it's
simple for DataNucleus to determine the class name for a particular row. For RDBMS : this results in
cleaner/simpler SQL which is faster to execute, otherwise it would be necessary to do a UNION of all
possible tables. For other datastores the instantiation of objects on retrieval ought to be faster with a
discriminator since there is no work needed to determine the type of the object.

106.1.4 Schema : Validation

DataNucleus provides 3 persistence properties datanucleus.schema.validateTables,
datanucleus.schema.validateConstraints, datanucleus.schema.validateColumns that enforce
strict validation of the datastore tables against the Meta-Data defined tables. This can cause
performance issues at startup. In general this should be run only at schema generation, and should
be turned off for production usage. Set all of these properties to false. In addition there is a property
datanucleus.rdbms.CheckExistTablesOrViews which checks whether the tables/views that the
classes map onto are present in the datastore. This should be set to false if you require fast start-
up. Finally, the property datanucleus.rdbms.initializeColumnInfo determines whether the default
values for columns are loaded from the database. This property should be set to NONE to avoid
loading database metadata.

To sum up, the optimal settings with schema creation and validation disabled are:

1 0 6 P e r f o r m a n c e T u n i n g 624

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

#schema creation

datanucleus.schema.autoCreateAll=false

datanucleus.schema.autoCreateTables=false

datanucleus.schema.autoCreateColumns=false

datanucleus.schema.autoCreateConstraints=false

#schema validation

datanucleus.schema.validateTables=false

datanucleus.schema.validateConstraints=false

datanucleus.schema.validateColumns=false

datanucleus.rdbms.CheckExistTablesOrViews=false

datanucleus.rdbms.initializeColumnInfo=None

106.1.5 PersistenceManagerFactory usage

Creation of PersistenceManagerFactory objects can be expensive and should be kept to a minimum.
Depending on the structure of your application, use a single factory per datastore wherever possible.
Clearly if your application spans multiple servers then this may be impractical, but should be borne in
mind.

You can improve startup speed by setting the property datanucleus.autoStartMechanism to None.
This means that it won't try to load up the classes (or better said the metadata of the classes) handled
the previous time that this schema was used. If this isn't an issue for your application then you can
make this change. Please refer to the Auto-Start Mechanism for full details.

Some RDBMS (such as Oracle) have trouble returning information across multiple catalogs/schemas
and so, when DataNucleus starts up and tries to obtain information about the existing tables, it
can take some time. This is easily remedied by specifying the catalog/schema name to be used
- either for the PMF as a whole (using the persistence properties javax.jdo.mapping.Catalog,
javax.jdo.mapping.Schema) or for the package/class using attributes in the MetaData. This
subsequently reduces the amount of information that the RDBMS needs to search through and so can
give significant speed ups when you have many catalogs/schemas being managed by the RDBMS.

106.1.6 Database Connection Pooling

DataNucleus, by default, will allocate connections when they are required. It then will close the
connection. In addition, when it needs to perform something via JDBC (RDBMS datastores) it will
allocate a PreparedStatement, and then discard the statement after use. This can be inefficient relative
to a database connection and statement pooling facility such as Apache DBCP. With Apache DBCP a
Connection is allocated when required and then when it is closed the Connection isn't actually closed
but just saved in a pool for the next request that comes in for a Connection. This saves the time taken
to establish a Connection and hence can give performance speed ups the order of maybe 30% or more.
You can read about how to enable connection pooling with DataNucleus in the Connection Pooling
Guide.

As an addendum to the above, you could also turn on caching of PreparedStatements. This can also
give a performance boost, depending on your persistence code, the JDBC driver and the SQL being
issued. Look at the persistence property datanucleus.connectionPool.maxStatements.

1 0 6 P e r f o r m a n c e T u n i n g 625

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

106.1.7 PersistenceManager usage

Clearly the structure of your application will have a major influence on how you utilise a
PersistenceManager. A pattern that gives a clean definition of process is to use a different persistence
manager for each request to the data access layer. This reduces the risk of conflicts where one thread
performs an operation and this impacts on the successful completion of an operation being performed
by another thread. Creation of PM's is not an expensive process and use of multiple threads writing to
the same persistence manager should be avoided.

Make sure that you always close the PersistenceManager after use. It releases all resources
connected to it, and failure to do so will result in memory leaks. Also note that when closing the
PersistenceManager if you have the persistence property datanucleus.detachOnClose set to true this
will detach all objects in the Level1 cache. Disable this if you don't need these objects to be detached,
since it can be expensive when there are many objects.

106.1.8 Persistence Process

To optimise the persistence process for performance you need to analyse what operations are
performed and when, to see if there are some features that you could disable to get the persistence you
require and omit what is not required. If you think of a typical transaction, the following describes the
process

• Start the transaction (if running non-transactional then this is seamless)
• Perform persistence operations.

• If you are using "optimistic" transactions then all datastore operations will be delayed until
commit. Otherwise all datastore operations will default to being performed immediately.
If you are handling a very large number of objects in the transaction you would benefit by
either disabling "optimistic" transactions, or alternatively setting the persistence property
datanucleus.flush.mode to AUTO, or alternatively again do a manual flush every "n"
objects, like this

for (int i=0;i<1000000;i++)

{

 if ((i%10000)/10000 == 0 && i != 0)

 {

 pm.flush();

 }

 ...

}

• If you are retrieving any object by its identity (pm.getObjectById))and know that it
will be present in the Level2 cache, for example, you can set the persistence property
datanucleus.findObject.validateWhenCached to false and this will skip a separate call to
the datastore to validate that the object exists in the datastore.

• Commit the transaction (if running non-transactional then this happens immediately after your
persistence operation, seamlessly).

• All dirty objects are flushed.
• DataNucleus verifies if newly persisted objects are memory reachable on commit, if

they are not, they are removed from the database. This process mirrors the garbage
collection, where objects not referenced are garbage collected or removed from
memory. Reachability is expensive because it traverses the whole object tree and
may require reloading data from database. If reachability is not needed by your

1 0 6 P e r f o r m a n c e T u n i n g 626

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

application, you should disable it. To disable reachability set the persistence property
datanucleus.persistenceByReachabilityAtCommit to false.

• DataNucleus will, by default, perform a check on any bidirectional relations to make
sure that they are set at both sides at commit. If they aren't set at both sides then they will
be made consistent. This check process can involve the (re-)loading of some instances.
You can skip this step if you always set both sides of a relation by setting the persistence
property datanucleus.manageRelationships to false.

• Objects enlisted in the transaction are put in the Level 2 cache. You can disable the level 2
cache with the persistence property datanucleus.cache.level2.type set to none

• Objects enlisted in the transaction are detached if you have the persistence property
datanucleus.detachAllOnCommit set to true. Disable this if you don't need these objects
to be detached

106.1.9 Identity Generators

DataNucleus provides a series of value generators for generation of identity values. These can have an
impact on the performance depending on the choice of generator, and also on the configuration of the
generator.

• The sequence strategy allows configuration of the datastore sequence. The default can be non-
optimum. As a guide, you can try setting key-cache-size to 10

• The max strategy should not really be used for production since it makes a separate DB call for
each insertion of an object. Something like the increment strategy should be used instead. Better
still would be to choose native and let DataNucleus decide for you.

The native identity generator value is the recommended choice since this will allow DataNucleus to
decide which identity generator is best for the datastore in use.

106.1.10 Collection/Map caching

DataNucleus has 2 ways of handling calls to SCO Collections/Maps. The original method was to
pass all calls through to the datastore. The second method (which is now the default) is to cache
the collection/map elements/keys/values. This second method will read the elements/keys/values
once only and thereafter use the internally cached values. This second method gives significant
performance gains relative to the original method. You can configure the handling of collections/maps
as follows :-

• Globally for the PMF - this is controlled by setting the persistence property
datanucleus.cache.collections. Set it to true for caching the collections (default), and false to
pass through to the datastore.

• For the specific Collection/Map - this overrides the global setting and is controlled by adding
a MetaData <collection> or <map> extension cache. Set it to true to cache the collection data,
and false to pass through to the datastore.

The second method also allows a finer degree of control. This allows the use of lazy loading of data,
hence elements will only be loaded if they are needed. You can configure this as follows :-

• Globally for the PMF - this is controlled by setting the property
datanucleus.cache.collections.lazy. Set it to true to use lazy loading, and set it to false to load
the elements when the collection/map is initialised.

• For the specific Collection/Map - this overrides the global PMF setting and is controlled by
adding a MetaData <collection> or <map> extension cache-lazy-loading. Set it to true to use
lazy loading, and false to load once at initialisation.

1 0 6 P e r f o r m a n c e T u n i n g 627

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

106.1.11 NonTransactional Reads (Reading persistent objects outside a transaction)

Performing non-transactional reads has advantages and disadvantages in performance and data
freshness in cache. The objects read are held cached by the PersistenceManager. The second time an
application requests the same objects from the PersistenceManager they are retrieved from cache.
The time spent reading the object from cache is minimum, but the objects may become stale and
not represent the database status. If fresh values need to be loaded from the database, then the user
application should first call refresh on the object.

Another disadvantage of performing non-transactional reads is that each operation realized opens a
new database connection, but it can be minimized with the use of connection pools, and also on some
of the datastore the (nontransactional) connection is retained.

106.1.12 Accessing fields of persistent objects when not managed by a PersistenceManager

Reading fields of unmanaged objects (outside the scope of a PersistenceManager) is a trivial task, but
performed in a certain manner can determine the application performance. The objective here is not
give you an absolute response on the subject, but point out the benefits and drawbacks for the many
possible solutions.

• Use makeTransient to get transient versions of the objects. Note that to recurse you need to call
the makeTransient method which has a boolean argument "useFetchPlan".

Object pc = null;

try

{

 PersistenceManager pm = pmf.getPersistenceManager();

 pm.currentTransaction().begin();

 //retrieve in some way the object, query, getObjectById, etc

 pc = pm.getObjectById(id);

 pm.makeTransient(pc);

 pm.currentTransaction().commit();

}

finally

{

 pm.close();

}

//read the persistent object here

System.out.prinln(pc.getName());

• Use RetainValues=true.

1 0 6 P e r f o r m a n c e T u n i n g 628

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Object pc = null;

try

{

 PersistenceManager pm = pmf.getPersistenceManager();

 pm.currentTransaction().setRetainValues(true);

 pm.currentTransaction().begin();

 //retrieve in some way the object, query, getObjectById, etc

 pc = pm.getObjectById(id);

 pm.currentTransaction().commit();

}

finally

{

 pm.close();

}

//read the persistent object here

System.out.prinln(pc.getName());

• Use detachCopy method to return detached instances.

Object copy = null;

try

{

 PersistenceManager pm = pmf.getPersistenceManager();

 pm.currentTransaction().begin();

 //retrieve in some way the object, query, getObjectById, etc

 Object pc = pm.getObjectById(id);

 copy = pm.detachCopy(pc);

 pm.currentTransaction().commit();

}

finally

{

 pm.close();

}

//read or change the detached object here

System.out.prinln(copy.getName());

• Use detachAllOnCommit.

1 0 6 P e r f o r m a n c e T u n i n g 629

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Object pc = null;

try

{

 PersistenceManager pm = pmf.getPersistenceManager();

 pm.setDetachAllOnCommit(true);

 pm.currentTransaction().begin();

 //retrieve in some way the object, query, getObjectById, etc

 pc = pm.getObjectById(id);

 pm.currentTransaction().commit(); // Object "pc" is now detached

}

finally

{

 pm.close();

}

//read or change the detached object here

System.out.prinln(pc.getName());

The most expensive in terms of performance is the detachCopy because it makes copies of persistent
objects. The advantage of detachment (via detachCopy or detachAllOnCommit) is that changes made
outside the transaction can be further used to update the database in a new transaction. The other
methods also allow changes outside of the transaction, but the changed instances can't be used to
update the database.

With RetainValues=true and makeTransient no object copies are made and the object values are set
down in instances when the PersistenceManager disassociates them. Both methods are equivalent in
performance, however the makeTransient method will set the values of the object during the instant
the makeTransient method is invoked, and the RetainValues=true will set values of the object during
commit.

The bottom line is to not use detachment if instances will only be used to read values.

106.1.13 Queries usage

Make sure you close all query results after you have finished with them. Failure to do so will result in
significant memory leaks in your application.

106.1.14 Fetch Control

When fetching objects you have control over what gets fetched. This can have an impact if you are
then detaching those objects. With JDO the default "maximum fetch depth" is 1.

106.1.15 Logging

I/O consumes a huge slice of the total processing time. Therefore it is recommended to reduce or
disable logging in production. To disable the logging set the DataNucleus category to OFF in the
Log4j configuration. See Logging for more information.

log4j.category.DataNucleus=OFF

1 0 6 P e r f o r m a n c e T u n i n g 630

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

106.2 General Comments on Overall Performance
In most applications, the performance of the persistence layer is very unlikely to be a bottleneck.
More likely the design of the datastore itself, and in particular its indices are more likely to have the
most impact, or alternatively network latency. That said, it is the DataNucleus projects' committed
aim to provide the best performance possible, though we also want to provide functionality, so there is
a compromise with respect to resource.

What is a benchmark? This is simply a series of persistence operations performing particular things e.g
persist n objects, or retrieve n objects. If those operations are representative of your application then the
benchmark is valid to you.

To find (or create) a benchmark appropriate to your project you need to determine the typical
persistence operations that your application will perform. Are you interested in persisting 100 objects
at once, or 1 million, for example? Then when you have a benchmark appropriate for that operation,
compare the persistence solutions.

The performance tuning guide above gives a good oversight of tuning capabilities, and also refer to
the following blog entry for our take on performance of DataNucleus AccessPlatform. And then the
later blog entry about how to tune for bulk operations

106.2.1.1 GeeCon JPA provider comparison (Jun 2012)

There is an interesting presentation on JPA provider performance that was presented at GeeCon 2012
by Patrycja Wegrzynowicz. This presentation takes the time to look at what operations the persistence
provider is performing, and does more than just "persist large number of flat objects into a single
table", and so gives you something more interesting to analyse. DataNucleus comes out pretty well in
many situations. You can also see the PDF here.

106.2.1.2 PolePosition (Dec 2008)

The PolePosition benchmark is a project on SourceForge to provide a benchmark of the write, read
and delete of different data structures using the various persistence tools on the market. JPOX was
run against this benchmark just before being renamed as DataNucleus and the following conclusions
about the benchmark were made.

• It is essential that tests for such as Hibernate and DataNucleus performance comparable things.
Some of the original tests had the "delete" simply doing a "DELETE FROM TBL" for Hibernate
yet doing an Extent followed by delete each object individually for a JDO implementation.
This is an unfair comparison and in the source tree in JPOX SVN this is corrected. This fix was
pointed out to the PolePos SourceForge project but is not, as yet, fixed

• It is essential that schema is generated before the test, otherwise the test is no longer a
benchmark of just a persistence operation. The source tree in JPOX SVN assumes the schema
exists. This fix was pointed out to the PolePos SourceForge project but is not, as yet, fixed

• Each persistence implementation should have its own tuning options, and be able to add things
like discriminators since that is what would happen in a real application. The source tree in JPOX
SVN does this for JPOX running. Similarly a JDO implementation would tune the fetch groups
being used - this is not present in the SourceForge project but is in JPOX SVN.

• DataNucleus performance is considered to be significantly improved over JPOX particularly due
to batched inserts, and due to a rewritten query implementation that does enhanced fetching.

http://datanucleus.wordpress.com/2011/03/performance-benchmarking.html
http://datanucleus.wordpress.comk/2013/02/performance-effect-of-various-features.html
http://vimeo.com/44789644
http://s3-eu-west-1.amazonaws.com/presentations2012/50_presentation.pdf
http://www.polepos.org

1 0 7 M o n i t o r i n g 631

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

107 Monitoring
...

107.1 JDO : Monitoring
DataNucleus allows a user to enable various MBeans internally. These can then be used for
monitoring the number of datastore calls etc.

107.1.1 Via API

The simplest way to monitor DataNucleus is to use its API for monitoring. Internally there are several
MBeans (as used by JMX) and you can navigate to these to get the required information. To enable
this set the persistence property datanucleus.enableStatistics to true. There are then two sets of
statistics; one for the PMF and one for each PM. You access these as follows

JDOPersistenceManagerFactory dnpmf = (JDOPersistenceManagerFactory)pmf;

FactoryStatistics stats = dnpmf.getNucleusContext().getStatistics();

... (access the statistics information)

JDOPersistenceManager dnpm = (JDOPersistenceManager)pm;

ManagerStatistics stats = dnpm.getExecutionContext().getStatistics();

... (access the statistics information)

107.1.2 Using JMX

The MBeans used by DataNucleus can be accessed via JMX at runtime. More about JMX here.

An MBean server is bundled with Sun JRE since version 1.5, and you can easily activate DataNucleus
MBeans registration by creating your PMF with the persistence property datanucleus.jmxType as
default

Additionaly, setting a few system properties are necessary for configuring the Sun JMX
implementation. The minimum properties required are the following:

• com.sun.management.jmxremote
• com.sun.management.jmxremote.authenticate
• com.sun.management.jmxremote.ssl
• com.sun.management.jmxremote.port=<port number>

Usage example:

java -cp TheClassPathInHere

 -Dcom.sun.management.jmxremote

 -Dcom.sun.management.jmxremote.authenticate=false

 -Dcom.sun.management.jmxremote.ssl=false

 -Dcom.sun.management.jmxremote.port=8001

 TheMainClassInHere

Once you start your application and DataNucleus is initialized you can browse DataNucleus MBeans
using a tool called jconsole (jconsole is distributed with the Sun JDK) via the URL:

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

1 0 7 M o n i t o r i n g 632

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

service:jmx:rmi:///jndi/rmi://hostName:portNum/jmxrmi

Note that the mode of usage is presented in this document as matter of example, and by no means we
recommend to disable authentication and secured communication channels. Further details on the Sun
JMX implementation and how to configure it properly can be found in here.

DataNucleus MBeans are registered in a MBean Server when DataNucleus is started up (e.g. upon
JDO PMF instantiation). To see the full list of DataNucleus MBeans, refer to the javadocs.

To enable management using MX4J you must specify the persistence property datanucleus.jmxType
as mx4j when creating the PMF, and have the mx4j and mx4j-tools jars in the CLASSPATH.

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/management/runtime/package-summary.html

1 0 8 M a v e n w i t h D a t a N u c l e u s 633

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

108 Maven with DataNucleus
...

108.1 DataNucleus JDO and Maven(2+)
Apache Maven is a project management and build tool that is quite common in organisations.
Using DataNucleus and JDO with Maven is simple since the DataNucleus jars, JDO API jar and
DataNucleus Maven plugin are present in the Maven central repository, so you don't need to define
any repository to find the artifacts.

The only remaining thing to do is identify which artifacts are required for your project, updating your
pom.xml accordingly.

<project>

 ...

 <dependencies>

 <dependency>

 <groupId>javax.jdo</groupId>

 <artifactId>jdo-api</artifactId>

 <version>3.0.1</version>

 </dependency>

 </dependencies>

 ...

</project>

The only distinction to make here is that the above is for compile time since your persistence code (if
implementation independent) will only depend on the basic persistence API. At runtime you will need
the DataNucleus artifacts present also, so this becomes

http://maven.apache.org

1 0 8 M a v e n w i t h D a t a N u c l e u s 634

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<project>

 ...

 <dependencies>

 ...

 <dependency>

 <groupId>javax.jdo</groupId>

 <artifactId>jdo-api</artifactId>

 <version>3.0.1</version>

 </dependency>

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-core</artifactId>

 <version>(3.9,)</version>

 <scope>runtime</scope>

 </dependency>

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-api-jdo</artifactId>

 <version>(3.9,)</version>

 </dependency>

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-rdbms</artifactId>

 <version>(3.9,)</version>

 <scope>runtime</scope>

 </dependency>

 </dependencies>

 ...

</project>

Obviously replace the datanucleus-rdbms jar with the jar for whichever datastore you are using. If
running your app using Maven "exec" plugin then the runtime specification may not be needed.

Please note that you can alternatively use the convenience artifact for JDO+RDBMS (or JDO+
whichever datastore you're using).

<project>

 ...

 <dependencies>

 ...

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-accessplatform-jdo-rdbms</artifactId>

 <version>4.0.0-release</version>

 <type>pom</type>

 </dependency>

 </dependencies>

 ...

</project>

1 0 8 M a v e n w i t h D a t a N u c l e u s 635

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

108.1.1 Maven2 Plugin : Enhancement and SchemaTool

Now that you have the DataNucleus jars available to you, via the repositories, you want to perform
DataNucleus operations. The primary operations are enhancement and SchemaTool. If you want
to use the DataNucleus Maven plugin for enhancement or SchemaTool add the following to your
pom.xml

<project>

 ...

 <build>

 <plugins>

 <plugin>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-maven-plugin</artifactId>

 <version>4.0.0-release</version>

 <configuration>

 <api>JDO</api>

 <props>${basedir}/datanucleus.properties</props>

 <log4jConfiguration>${basedir}/log4j.properties</log4jConfiguration>

 <verbose>true</verbose>

 </configuration>

 <executions>

 <execution>

 <phase>process-classes</phase>

 <goals>

 <goal>enhance</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

</project>

Note that this plugin step will automatically try to bring in the latest applicable version of
datanucleus-core for use by the enhancer. It does this since you don't need to have datanucleus-core
in your POM for compilation/enhancement. If you want to use an earlier version then you need to add
exclusions to the maven-datanucleus-plugin

The executions part of that will make enhancement be performed immediately after compile, so
automatic. See also the Enhancer docs

To run the enhancer manually you do

mvn datanucleus:enhance

DataNucleus SchemaTool is achieved similarly, via

mvn datanucleus:schema-create

1 0 9 E c l i p s e w i t h D a t a N u c l e u s 636

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

109 Eclipse with DataNucleus
...

109.1 DataNucleus JDO and Eclipse
Eclipse provides a powerful development environment for Java systems. DataNucleus provides
its own plugin for use within Eclipse, giving access to many features of DataNucleus from the
convenience of your development environment.

• Installation
• General Preferences
• Preferences : Enhancer
• Preferences : SchemaTool
• Enable DataNucleus Support
• Generate JDO MetaData
• Generate persistence.xml
• Run the Enhancer
• Run SchemaTool

109.1.1 Plugin Installation

The DataNucleus plugin requires Eclipse 3.1 or above. To obtain and install the DataNucleus Eclipse
plugin select Help -> Software Updates -> Find and Install On the panel that pops up select Search
for new features to install Select New Remote Site, and in that new window set the URL as http://
www.datanucleus.org/downloads/eclipse-update/ and the name as DataNucleus. Now select the site
it has added "DataNucleus", and click "Finish". This will then find the releases of the DataNucleus
plugin. Select the latest version of the DataNucleus Eclipse plugin. Eclipse then downloads and
installs the plugin. Easy!

109.1.2 Plugin configuration

The DataNucleus Eclipse plugin allows saving of preferences so that you get nice defaults for all
subsequent usage. You can set the preferences at two levels :-

• Globally for the Plugin : Go to Window -> Preferences -> DataNucleus Eclipse Plugin and see
the options below that

• For a Project : Go to {your project} -> Properties -> DataNucleus Eclipse Plugin and select
"Enable project-specific properties"

109.1.3 Plugin configuration - General

Firstly open the main plugin preferences page, set the API to be used, and configure the libraries
needed by DataNucleus. These are in addition to whatever you already have in your projects
CLASSPATH, but to run the DataNucleus Enhancer/SchemaTool you will require the following

• jdo-api.jar
• datanucleus-core
• datanucleus-api-jdo
• datanucleus-rdbms : for running SchemaTool
• Datastore driver jar (e.g JDBC) : for running SchemaTool

1 0 9 E c l i p s e w i t h D a t a N u c l e u s 637

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Below this you can set the location of a configuration file for Log4j to use. This is useful when you
want to debug the Enhancer/SchemaTool operations.

109.1.4 Plugin configuration - Enhancer

Open the "Enhancer" page. You have the following settings

• Input file extensions : the enhancer accepts input defining the classes to be enhanced. This is
typically performed by passing in the JDO XML MetaData files. When you use annotations you
need to pass in class files. So you select the suffices you need

• Verbose : selecting this means you get much more output from the enhancer
• PersistenceUnit : Name of the persistence unit if enhancing a persistence-unit

1 0 9 E c l i p s e w i t h D a t a N u c l e u s 638

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

109.1.5 Plugin configuration - SchemaTool

Open the "SchemaTool" page. You have the following settings
• Input file extensions : SchemaTool accepts input defining the classes to have their schema

generated. This is typically performed by passing in the JDO XML MetaData files. When you
use annotations you need to pass in class files. So you select the suffices you need

• Verbose : selecting this means you get much more output from SchemaTool
• PersistenceUnit : Name of the persistence unit if running SchemaTool on a persistence-unit
• Datastore details : You can either specify the location of a properties file defining the location

of your datastore, or you supply the driver name, URL, username and password.

1 0 9 E c l i p s e w i t h D a t a N u c l e u s 639

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

109.1.6 Enabling DataNucleus support

First thing to note is that the DataNucleus plugin is for Eclipse "Java project"s only. After having
configured the plugin you can now add DataNucleus support on your projects. Simply right-click on
your project in Package Explorer and select DataNucleus->"Add DataNucleus Support" from the
context menu.

1 0 9 E c l i p s e w i t h D a t a N u c l e u s 640

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

1 0 9 E c l i p s e w i t h D a t a N u c l e u s 641

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

109.1.7 Defining JDO XML Metadata

It is standard practice to define the MetaData for your persistable classes in the same package as these
classes. You now define your MetaData, by right-click on a package in your project and select "Create
JDO 2.0 Metadata File" from DataNucleus context menu. The dialog prompts for the file name to be
used and creates a basic Metadata file for all classes in this package, which can now be adapted to
your needs. You can also perform same steps as above on a *.java file, which will create the metadata
for the selected file only. Please note that the wizard will overwrite existing files without further
notice.

109.1.8 Defining 'persistence.xml'

You can also use the DataNucleus plugin to generate a "persistence.xml" file adding all classes into a
single persistence-unit. You do this by right-clicking on a package in your project, and selecting the
option. The "persistence.xml" is generated under META-INF for the source folder. Please note that
the wizard will overwrite existing files without further notice.

109.1.9 Enhancing the classes

The DataNucleus Eclipse plugin allows you to easily byte-code enhance your classes using the
DataNucleus enhancer. Right-click on your project and select "Enable Auto-Enhancement" from
the DataNucleus context menu. Now that you have the enhancer set up you can enable enhancement
of your classes. The DataNucleus Eclipse plugin currently works by enabling/disabling automatic
enhancement as a follow on process for the Eclipse build step. This means that when you enable
it, every time Eclipse builds your classes it will then enhance the classes defined by the available
"jdo" MetaData files. Thereafter every time that you build your classes the JDO enabled ones will
be enhanced. Easy! Messages from the enhancement process will be written to the Eclipse Console.
Make sure that you have your Java files in a source folder, and that the binary class files are
written elsewhere If everything is set-up right, you should see the output below.

1 0 9 E c l i p s e w i t h D a t a N u c l e u s 642

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

109.1.10 Generating your database schema

Once your classes have been enhanced you are in a position to create the database schema (assuming
you will be using a new schema - omit this step if you already have your schema). Click on the project
under "Package Explorer" and under "DataNucleus" there is an option "Run SchemaTool". This
brings up a panel to define your database location (URL, login, password etc). You enter these details
and the schema will be generated.

1 0 9 E c l i p s e w i t h D a t a N u c l e u s 643

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Messages from the SchemaTool process will be written to the Eclipse Console.

1 1 0 D A O L a y e r D e s i g n 644

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

110 DAO Layer Design
...

110.1 DataNucleus - Design of a DAO Layer with JDO

110.1.1 Introduction

The design of an application will involve many choices, and often compromises. What is generally
accepted as good practice is to layer the application tiers and provide interfaces between these. For
example a typical web application can have 3 tiers - web tier, business-logic tier, and data-access tier.
DataNucleus provides data persistence and so, following this model, should only be present in the
data access layer. One pattern to achieve this is the data access object (DAO) pattern.

A typical DAO provides an interface that defines its contract with the outside world. This takes the
form of a series of data access and data update methods. In this tutorial we follow this and describe
how to implement a DAO using DataNucleus and JDO.

While this guide demonstrates how to write a DAO layer, it does not propose use of the DAO
pattern, just explaining how you could achieve it

110.1.2 The DAO contract

To highlight our strategy for DAO's we introduce 3 simple classes.

1 1 0 D A O L a y e r D e s i g n 645

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Owner

{

 private Long id;

 private String firstName;

 private String lastName;

 private Set<Owner> pets;

 public void addPet(Pet pet)

 {

 pets.add(pet);

 }

 ...

}

public class Pet

{

 private Long id;

 private PetType type;

 private String name;

 private Owner owner;

 public void setType(PetType type)

 {

 this.type = type;

 }

 ...

}

public class PetType

{

 private String name;

 ...

}

So we have 3 dependent classes, and we have a 1-N relationship between Owner and Pet, and a N-1
relationship between Pet and PetType.

We now generate an outline DAO object containing the main methods that we expect to need

public interface ClinicDAO

{

 public Collection<Owner> getOwners();

 public Collection<PetType> getPetTypes();

 public Collection<owner> findOwners(String lastName);

 public Owner loadOwner(long id);

 public void storeOwner(Owner owner);

 public void storePet(Pet pet);

}

Clearly we could have defined more methods, but these will demonstrate the basic operations
performed in a typical application. Note that we defined our DAO as an interface. This has various
benefits, and the one we highlight here is that we can now provide an implementation using

1 1 0 D A O L a y e r D e s i g n 646

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

DataNucleus and JDO. We could, in principle, provide a DAO implementation of this interface using
JDBC for example, or one for whatever persistence technology. It demonstrates a flexible design
strategy allowing components to be swapped at a future date.

We now define an outline DAO implementation using DataNucleus. We will implement just a few of
the methods defined in the interface, just to highlight the style used. So we choose one method that
retrieves data and one that stores data.

1 1 0 D A O L a y e r D e s i g n 647

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class MyDAO implements ClinicDAO

{

 PersistenceManagerFactory pmf;

 /** Constructor, defining the PersistenceManagerFactory to use. */

 public MyDAO(PersistenceManagerFactory pmf)

 {

 this.pmf = pmf;

 }

 /** Accessor for a PersistenceManager */

 protected PersistenceManager getPersistenceManager()

 {

 return pmf.getPersistenceManager();

 }

 public Collection<Owner> getOwners()

 {

 Collection owners = null;

 PersistenceManager pm = getPersistenceManager();

 Transaction tx = pm.currentTransaction();

 try

 {

 tx.begin();

 Query q = pm.newQuery(mydomain.model.Owner.class);

 Collection query_owners = q.execute();

 // *** TODO Copy "query_owners" into "owners" ***

 tx.commit();

 }

 finally

 {

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

 }

 return owners;

 }

 public void storeOwner(Owner owner)

 {

 PersistenceManager pm = getPersistenceManager();

 Transaction tx = pm.currentTransaction();

 try

 {

 tx.begin();

 // Owner is new, so persist it

 if (owner.id() == null)

 {

 pm.makePersistent(owner);

 }

 // Owner exists, so update it

 else

 {

 // *** TODO Store the updated owner ***

 }

 tx.commit();

 }

 finally

 {

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

 }

 }

 ...

}

1 1 0 D A O L a y e r D e s i g n 648

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So here we've seen the typical DAO and how, for each method, we retrieve a PersistenceManager,
obtain a transaction, and perform our operation(s). Notice above there are a couple of places where
we have left "TODO" comments. These will be populated in the next section, using the JDO feature
attach/detach.

110.1.3 Use of attach/detach

We saw in the previous section our process for the DAO methods. The problem we have with JDO
1.0 is that as soon as we leave the transaction our object would move back to "Hollow" state (hence
losing its field values, and hence the object would have been unusable in the rest of our application.
With JDO we have a feature called attach/detach that allows us to detach objects for use elsewhere,
and then attach them when we want to persist any changed data within the object. So we now go back
to our DataNucleus DAO and add the necessary code to use this

1 1 0 D A O L a y e r D e s i g n 649

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 public Collection<Owner> getOwners()

 {

 Collection<Owner> owners;

 PersistenceManager pm = getPersistenceManager();

 Transaction tx = pm.currentTransaction();

 try

 {

 tx.begin();

 Query q = pm.newQuery(mydomain.model.Owner.class);

 Collection query_owners = q.execute();

 // Detach our owner objects for use elsewhere

 owners = pm.detachCopyAll(query_owners);

 tx.commit();

 }

 finally

 {

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

 }

 return owners;

 }

 public void storeOwner(Owner owner)

 {

 PersistenceManager pm = getPersistenceManager();

 Transaction tx = pm.currentTransaction();

 try

 {

 tx.begin();

 // Persist our changes back to the datastore

 pm.makePersistent(owner);

 tx.commit();

 }

 finally

 {

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

 }

 }

}

1 1 0 D A O L a y e r D e s i g n 650

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have added 2 very simple method calls. These facilitate making our objects usable outside
the DAO layer and so give us much flexibility. Please note that instead of detachCopy you could
set the PMF option "javax.jdo.option.DetachAllOnCommit" and this would silently migrate
all enlisted instances to detached state at commit of the transaction, and is probably a more
convenient way of detaching.

110.1.4 Definition of fetch-groups

In the previous section we have described how to design our basic DAO layer. We have an interface
to this layer and provide a DataNucleus implementation. The DataNucleus/JDO calls are restricted
to the DAO layer. What we haven't yet considered is what actually is made usable in the rest of the
application when we do our detach. By default with this feature persistable fields will not be detached
with the owning object. This means that our "pets" field of our detached "owner" object will not be
available for use. In many situations we would want to give access to other parts of our object. To do
this we make use of another JDO feature, called fetch-groups. This is defined both in the Meta-Data
for our classes, and in the DAO layer where we perform the detaching. Let's start with the MetaData
for our 3 classes.

 <class name="Owner" detachable="true">

 <field name="id" primary-key="true"/>

 <field name="pets" mapped-by="owner">

 <collection element-type="mydomain.model.Pet"/>

 </field>

 <fetch-group name="detach_owner_pets">

 <field name="pets"/>

 </fetch-group>

 </class>

 <class name="PetType" detachable="true">

 <field name="id" primary-key="true"/>

 <field name="name">

 <column length="80" jdbc-type="VARCHAR"/>

 </field>

 </class>

 <class name="Pet" detachable="true">

 <field name="id" primary-key="true"/>

 <field name="name">

 <column length="30" jdbc-type="VARCHAR"/>

 </field>

 <field name="type" persistence-modifier="persistent"/>

 <fetch-group name="detach_pet_type">

 <field name="type"/>

 </fetch-group>

 </class>

Here we've marked the classes as detachable, and added a fetch-group to Owner for the "pets" field,
and to Pet for the "type" field. Doing these for each field adds extra flexibility to our ability to specify
them. Lets now update our DAO layer method using detach to use these fetch-groups so that when we
use the detached objects in our application, they have the necessary components available.

1 1 0 D A O L a y e r D e s i g n 651

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 public Collection getOwners()

 {

 Collection owners;

 PersistenceManager pm=getPersistenceManager();

 Transaction tx=pm.currentTransaction();

 try

 {

 tx.begin();

 Query q = pm.newQuery(mydomain.model.Owner.class);

 Collection query_owners = q.execute();

 // Define the objects to be detached with our owner objects.

 pm.getFetchPlan().addGroup("detach_owner_pets");

 pm.getFetchPlan().addGroup("detach_pet_type");

 pm.getFetchPlan().setMaxFetchDepth(3);

 // Detach our owner objects for use elsewhere

 owners = pm.detachCopyAll(query_owners);

 tx.commit();

 }

 finally

 {

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

 }

 return owners;

 }

So you see that when we detach our Owner objects, we also detach the Pet objects for each owner and
for each Pet object we will also detach the PetType object. This means that we can access all of these
objects with no problem outside of the DAO layer.

110.1.5 Summary

In this tutorial we've demonstrated a way of separating the persistence code from the rest of the
application by providing a DAO layer interface. We've demonstrated how to write the associated
methods within this layer and, with the use of attach/detach and fetch-groups we can make our
persisted objects available outside of the DAO layer in a seamless way. Developers of the remainder
of the system don't need to know any details of the persistence, they simply code to the interface
contract provided by the DAO.

1 1 1 S a m p l e s 652

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

111 Samples
...

111.1 Samples for JDO
The following samples demonstrate the use of JDO using DataNucleus. If you have a sample and
associated document that you think would be useful in educating users in some concepts of JDO,
please contribute it via our website.

• Tutorial with RDBMS
• Tutorial with ODF
• Tutorial with Excel
• Tutorial with MongoDB
• Tutorial with HBase
• Tutorial with Neo4J
• Tutorial with Cassandra
• 1-N Bidir FK Relation
• 1-N Bidir Join Relation
• M-N Relation
• M-N Attributed Relation
• Spatial Types Tutorial

1 1 2 T u t o r i a l w i t h R D B M S 653

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

112 Tutorial with RDBMS
...

112.1 DataNucleus - Tutorial for JDO using RDBMS

112.1.1 Background

An application can be JDO-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the DataNucleus Eclipse plugin. Alternatively the project
could use Ant, Maven or some other build tool. In this case this tutorial should be used as a guiding
way for using DataNucleus in the application. The JDO process is quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jdo-tutorial-*").

112.1.2 Prerequisite : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore. You can do this from SourceForge DataNucleus download page. When
you open the zip you will find DataNucleus jars in the lib directory, and dependency jars in the deps
directory.

112.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 1 2 T u t o r i a l w i t h R D B M S 654

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jdo.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jdo.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jdo.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 1 2 T u t o r i a l w i t h R D B M S 655

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as PersistenceCapable so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object (or use datastore-identity if no field

meets this requirement).
So this is what we do now. Note that we could define persistence using XML metadata, annotations or
via the JDO API. In this tutorial we will use annotations.

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Inventory

{

 @PrimaryKey

 String name = null;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Product

{

 @PrimaryKey

 @Persistent(valueStrategy=IdGeneratorStrategy.INCREMENT)

 long id;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @PersistenceCapable and their primary key
field(s) with @PrimaryKey. In addition we defined a valueStrategy for Product field id so that it
will have its values generated automatically. In this tutorial we are using application identity which
means that all objects of these classes will have their identity defined by the primary key field(s).
You can read more in datastore identity and application identity when designing your systems
persistence.

1 1 2 T u t o r i a l w i t h R D B M S 656

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

112.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JDO tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="jdbc:hsqldb:mem:datanucleus"/>

 <property name="javax.jdo.option.ConnectionDriverName" value="org.hsqldb.jdbcDriver"/>

 <property name="javax.jdo.option.ConnectionUserName" value="sa"/>

 <property name="javax.jdo.option.ConnectionPassword" value=""/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Note that you could equally use a properties file to define the persistence with JDO, but in this tutorial
we use persistence.xml for convenience.

112.1.5 Step 3 : Enhance your classes

JDO relies on the classes that you want to persist implementing PersistenceCapable. You could
write your classes manually to do this but this would be laborious. Alternatively you can use a post-
processing step to compilation that "enhances" your compiled classes, adding on the necessary extra
methods to make them PersistenceCapable. There are several ways to do this, most notably at post-
compile, or at runtime. We use the post-compile step in this tutorial. DataNucleus JDO provides its
own byte-code enhancer for instrumenting/enhancing your classes (in datanucleus-core) and this is
included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various source and jdo
files are stored

1 1 2 T u t o r i a l w i t h R D B M S 657

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

src/main/java/org/datanucleus/samples/jdo/tutorial/Book.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jdo/tutorial/Book.class

target/classes/org/datanucleus/samples/jdo/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jdo/tutorial/Product.class

[when using Ant]

lib/jdo-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jdo.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven2 :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jdo.jar:lib/jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jdo.jar;lib\jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances the .class files that have @PersistenceCapable annotations. If you
accidentally omitted this step, at the point of running your application and trying to persist an
object, you would get a ClassNotPersistenceCapableException thrown. The use of the enhancer is
documented in more detail in the Enhancer Guide. The output of this step are a set of class files that
represent PersistenceCapable classes.

1 1 2 T u t o r i a l w i t h R D B M S 658

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

112.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JDO
is performed via a PersistenceManager. This provides methods for persisting of objects, removal
of objects, querying for persisted objects, etc. This section gives examples of typical scenarios
encountered in an application.

The initial step is to obtain access to a PersistenceManager, which you do as follows

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("Tutorial");

PersistenceManager pm = pmf.getPersistenceManager();

Now that the application has a PersistenceManager it can persist objects. This is performed as follows

Transaction tx=pm.currentTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 pm.makePersistent(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

Note the following

• We have persisted the Inventory but since this referenced the Product then that is also persisted.
• The finally step is important to tidy up any connection to the datastore, and close the

PersistenceManager
If you want to retrieve an object from persistent storage, something like this will give what you need.
This uses a "Query", and retrieves all Product objects that have a price below 150.00, ordering them in
ascending price order.

1 1 2 T u t o r i a l w i t h R D B M S 659

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 Query q = pm.newQuery("SELECT FROM " + Product.class.getName() +

 " WHERE price < 150.00 ORDER BY price ASC");

 List<Product> products = (List<Product>)q.execute();

 Iterator<Product> iter = products.iterator();

 while (iter.hasNext())

 {

 Product p = iter.next();

 ... (use the retrieved objects)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 ... (retrieval of objects etc)

 pm.deletePersistent(product);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

1 1 2 T u t o r i a l w i t h R D B M S 660

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JDO book will provide many examples.

112.1.7 Step 5 : Run your application

To run your JDO-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• Any persistence.xml file for the PersistenceManagerFactory creation
• Any JDO XML MetaData files for your persistable classes (not used in this example)
• Any JDBC driver classes needed for accessing your datastore
• The JDO API JAR (defining the JDO interface)
• The DataNucleus Core, DataNucleus JDO API and DataNucleus RDBMS JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

1 1 2 T u t o r i a l w i t h R D B M S 661

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant (you need the included "persistence.xml" to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/jdo-api.jar:lib/datanucleus-core.jar:lib/datanucleus-rdbms.jar:

 lib/datanucleus-api-jdo.jar:lib/{jdbc-driver}.jar:target/classes/:.

 org.datanucleus.samples.jdo.tutorial.Main

Manually on Windows :

java -cp lib\jdo-api.jar;lib\datanucleus-core.jar;lib\datanucleus-rdbms.jar;

 lib\datanucleus-api-jdo.jar;lib\{jdbc-driver}.jar;target\classes\;.

 org.datanucleus.samples.jdo.tutorial.Main

Output :

DataNucleus Tutorial

=============

Persisting products

Product and Book have been persisted

Retrieving Extent for Products

> Product : Sony Discman [A standard discman from Sony]

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

Deleted 2 products

End of Tutorial

112.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JDO and persist objects to an RDBMS.
Obviously this just scratches the surface of what you can do, and to use JDO requires minimal work
from the user. In this second part we show some further things that you are likely to want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

1 1 2 T u t o r i a l w i t h R D B M S 662

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

112.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema.

<?xml version="1.0"?>

<!DOCTYPE orm PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/orm_2_0.dtd">

<orm>

 <package name="org.datanucleus.samples.jdo.tutorial">

 <class name="Inventory" identity-type="datastore" table="INVENTORIES">

 <inheritance strategy="new-table"/>

 <field name="name">

 <column name="INVENTORY_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="products">

 <join/>

 </field>

 </class>

 <class name="Product" identity-type="datastore" table="PRODUCTS">

 <inheritance strategy="new-table"/>

 <field name="name">

 <column name="PRODUCT_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description">

 <column length="255" jdbc-type="VARCHAR"/>

 </field>

 </class>

 <class name="Book" identity-type="datastore" table="BOOKS">

 <inheritance strategy="new-table"/>

 <field name="isbn">

 <column length="20" jdbc-type="VARCHAR"/>

 </field>

 <field name="author">

 <column length="40" jdbc-type="VARCHAR"/>

 </field>

 <field name="publisher">

 <column length="40" jdbc-type="VARCHAR"/>

 </field>

 </class>

 </package>

</orm>

With JDO you have various options as far as where this XML MetaData files is placed in the file
structure, and whether they refer to a single class, or multiple classes in a package. With the above
example, we have both classes specified in the same file package-hsql.orm, in the package these
classes are in, since we want to persist to HSQL.

1 1 2 T u t o r i a l w i t h R D B M S 663

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

112.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the SchemaTool to generate the tables where these domain objects will
be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked from Maven2/
Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to update the
persistence.xml file with your database details. Here we have a sample file (for HSQLDB)

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="jdbc:hsqldb:mem:datanucleus"/>

 <property name="javax.jdo.option.ConnectionDriverName" value="org.hsqldb.jdbcDriver"/>

 <property name="javax.jdo.option.ConnectionUserName" value="sa"/>

 <property name="javax.jdo.option.ConnectionPassword" value=""/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 1 2 T u t o r i a l w i t h R D B M S 664

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven2 :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-rdbms.jar:

 lib/datanucleus-jdo-api.jar:lib/jdo-api.jar:lib/{jdbc_driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-rdbms.jar;

 lib\datanucleus-api-jdo.jar;lib\jdo-api.jar;lib\{jdbc_driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, indexes, and foreign keys for the classes defined in the JDO
Meta-Data file. The generated schema in this case will be as follows

112.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 1 3 T u t o r i a l w i t h O D F 665

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

113 Tutorial with ODF
...

113.1 DataNucleus - Tutorial for JDO using ODF

113.1.1 Background

An application can be JDO-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the DataNucleus Eclipse plugin. Alternatively the project
could use Ant, Maven or some other build tool. In this case this tutorial should be used as a guiding
way for using DataNucleus in the application. The JDO process is quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jdo-tutorial-*").

113.1.2 Prerequisite : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore (ODF in this case). You can do this from SourceForge DataNucleus
download page. When you open the zip you will find DataNucleus jars in the lib directory, and
dependency jars in the deps directory.

113.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 1 3 T u t o r i a l w i t h O D F 666

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jdo.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jdo.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jdo.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 1 3 T u t o r i a l w i t h O D F 667

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as PersistenceCapable so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object (or use datastore-identity if no field

meets this requirement).
So this is what we do now. Note that we could define persistence using XML metadata, annotations or
via the JDO API. In this tutorial we will use annotations.

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Inventory

{

 @PrimaryKey

 String name = null;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Product

{

 @PrimaryKey

 @Persistent(valueStrategy=IdGeneratorStrategy.INCREMENT)

 long id;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @PersistenceCapable and their primary key
field(s) with @PrimaryKey. In addition we defined a valueStrategy for Product field id so that it
will have its values generated automatically. In this tutorial we are using application identity which
means that all objects of these classes will have their identity defined by the primary key field(s).
You can read more in datastore identity and application identity when designing your systems
persistence.

1 1 3 T u t o r i a l w i t h O D F 668

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

113.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JDO tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="odf:file:test.ods"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Note that you could equally use a properties file to define the persistence with JDO, but in this tutorial
we use persistence.xml for convenience.

113.1.5 Step 3 : Enhance your classes

JDO relies on the classes that you want to persist implementing PersistenceCapable. You could
write your classes manually to do this but this would be laborious. Alternatively you can use a post-
processing step to compilation that "enhances" your compiled classes, adding on the necessary extra
methods to make them PersistenceCapable. There are several ways to do this, most notably at post-
compile, or at runtime. We use the post-compile step in this tutorial. DataNucleus JDO provides its
own byte-code enhancer for instrumenting/enhancing your classes (in datanucleus-core) and this is
included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various source and jdo
files are stored

1 1 3 T u t o r i a l w i t h O D F 669

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

src/main/java/org/datanucleus/samples/jdo/tutorial/Book.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jdo/tutorial/Book.class

target/classes/org/datanucleus/samples/jdo/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jdo/tutorial/Product.class

[when using Ant]

lib/jdo-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jdo.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven2 :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jdo.jar:lib/jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jdo.jar;lib\jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances the .class files that have @PersistenceCapable annotations. If you
accidentally omitted this step, at the point of running your application and trying to persist an
object, you would get a ClassNotPersistenceCapableException thrown. The use of the enhancer is
documented in more detail in the Enhancer Guide. The output of this step are a set of class files that
represent PersistenceCapable classes.

1 1 3 T u t o r i a l w i t h O D F 670

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

113.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JDO
is performed via a PersistenceManager. This provides methods for persisting of objects, removal
of objects, querying for persisted objects, etc. This section gives examples of typical scenarios
encountered in an application.

The initial step is to obtain access to a PersistenceManager, which you do as follows

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("Tutorial");

PersistenceManager pm = pmf.getPersistenceManager();

Now that the application has a PersistenceManager it can persist objects. This is performed as follows

Transaction tx=pm.currentTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 pm.makePersistent(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

Note the following

• We have persisted the Inventory but since this referenced the Product then that is also persisted.
• The finally step is important to tidy up any connection to the datastore, and close the

PersistenceManager
If you want to retrieve an object from persistent storage, something like this will give what you need.
This uses a "Query", and retrieves all Product objects that have a price below 150.00, ordering them in
ascending price order.

1 1 3 T u t o r i a l w i t h O D F 671

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 Query q = pm.newQuery("SELECT FROM " + Product.class.getName() +

 " WHERE price < 150.00 ORDER BY price ASC");

 List<Product> products = (List<Product>)q.execute();

 Iterator<Product> iter = products.iterator();

 while (iter.hasNext())

 {

 Product p = iter.next();

 ... (use the retrieved objects)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 ... (retrieval of objects etc)

 pm.deletePersistent(product);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JDO book will provide many examples.

1 1 3 T u t o r i a l w i t h O D F 672

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

113.1.7 Step 5 : Run your application

To run your JDO-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• Any persistence.xml file for the PersistenceManagerFactory creation
• Any JDO XML MetaData files for your persistable classes (not used in this example)
• ODFDOM driver class(es) needed for accessing your datastore
• The JDO API JAR (defining the JDO interface)
• The DataNucleus Core, DataNucleus JDO API and DataNucleus ODF JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

1 1 3 T u t o r i a l w i t h O D F 673

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant (you need the included "persistence.xml" to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/jdo-api.jar:lib/datanucleus-core.jar:lib/datanucleus-odf.jar:

 lib/datanucleus-api-jdo.jar:lib/odfdom.jar:target/classes/:.

 org.datanucleus.samples.jdo.tutorial.Main

Manually on Windows :

java -cp lib\jdo-api.jar;lib\datanucleus-core.jar;lib\datanucleus-odf.jar;

 lib\datanucleus-api-jdo.jar;lib\odfdom.jar;target\classes\;.

 org.datanucleus.samples.jdo.tutorial.Main

Output :

DataNucleus Tutorial

=============

Persisting products

Product and Book have been persisted

Retrieving Extent for Products

> Product : Sony Discman [A standard discman from Sony]

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

Deleted 2 products

End of Tutorial

113.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JDO and persist objects to ODF. Obviously
this just scratches the surface of what you can do, and to use JDO requires minimal work from the
user. In this second part we show some further things that you are likely to want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

1 1 3 T u t o r i a l w i t h O D F 674

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

113.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema.

<?xml version="1.0"?>

<!DOCTYPE orm PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/orm_2_0.dtd">

<orm>

 <package name="org.datanucleus.samples.jdo.tutorial">

 <class name="Inventory" table="Inventories">

 <field name="name">

 <column name="Name" length="100"/>

 </field>

 <field name="products"/>

 </class>

 <class name="Product" table="Products">

 <extension vendor-name="datanucleus" key="include-column-headers" value="true"/>

 <inheritance strategy="complete-table"/>

 <field name="id">

 <column name="Id" position="0"/>

 </field>

 <field name="name">

 <column name="Name" position="1"/>

 </field>

 <field name="description">

 <column name="Description" position="2"/>

 </field>

 <field name="price">

 <column name="Price" position="3"/>

 </field>

 </class>

 <class name="Book" table="Books">

 <extension vendor-name="datanucleus" key="include-column-headers" value="true"/>

 <inheritance strategy="complete-table"/>

 <field name="Product.id">

 <column name="Id" position="0"/>

 </field>

 <field name="author">

 <column name="Author" position="4"/>

 </field>

 <field name="isbn">

 <column name="ISBN" position="5"/>

 </field>

 <field name="publisher">

 <column name="Publisher" position="6"/>

 </field>

 </class>

 </package>

</orm>

1 1 3 T u t o r i a l w i t h O D F 675

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

With JDO you have various options as far as where this XML MetaData files is placed in the file
structure, and whether they refer to a single class, or multiple classes in a package. With the above
example, we have both classes specified in the same file package-odf.orm, in the package these
classes are in, since we want to persist to ODF.

113.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the SchemaTool to generate the tables where these domain objects will
be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked from Maven2/
Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to update the
persistence.xml file with your database details.

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="odf:file:test.ods"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 1 3 T u t o r i a l w i t h O D F 676

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven2 :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-odf.jar:

 lib/datanucleus-jdo-api.jar:lib/jdo-api.jar:lib/odfdom.jar

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-odf.jar;

 lib\datanucleus-api-jdo.jar;lib\jdo-api.jar;lib\odfdom.jar

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, etc for the classes defined in the JDO Meta-Data file.

113.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 1 4 T u t o r i a l w i t h E x c e l 677

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

114 Tutorial with Excel
...

114.1 DataNucleus - Tutorial for JDO using Excel

114.1.1 Background

An application can be JDO-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the DataNucleus Eclipse plugin. Alternatively the project
could use Ant, Maven or some other build tool. In this case this tutorial should be used as a guiding
way for using DataNucleus in the application. The JDO process is quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jdo-tutorial-*").

114.1.2 Prerequisite : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore (Excel in this case). You can do this from SourceForge DataNucleus
download page. When you open the zip you will find DataNucleus jars in the lib directory, and
dependency jars in the deps directory.

114.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 1 4 T u t o r i a l w i t h E x c e l 678

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jdo.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jdo.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jdo.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 1 4 T u t o r i a l w i t h E x c e l 679

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as PersistenceCapable so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object (or use datastore-identity if no field

meets this requirement).
So this is what we do now. Note that we could define persistence using XML metadata, annotations or
via the JDO API. In this tutorial we will use annotations.

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Inventory

{

 @PrimaryKey

 String name = null;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Product

{

 @PrimaryKey

 @Persistent(valueStrategy=IdGeneratorStrategy.INCREMENT)

 long id;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @PersistenceCapable and their primary key
field(s) with @PrimaryKey. In addition we defined a valueStrategy for Product field id so that it
will have its values generated automatically. In this tutorial we are using application identity which
means that all objects of these classes will have their identity defined by the primary key field(s).
You can read more in datastore identity and application identity when designing your systems
persistence.

1 1 4 T u t o r i a l w i t h E x c e l 680

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

114.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JDO tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="excel:file:test.xml"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Note that you could equally use a properties file to define the persistence with JDO, but in this tutorial
we use persistence.xml for convenience.

114.1.5 Step 3 : Enhance your classes

JDO relies on the classes that you want to persist implementing PersistenceCapable. You could
write your classes manually to do this but this would be laborious. Alternatively you can use a post-
processing step to compilation that "enhances" your compiled classes, adding on the necessary extra
methods to make them PersistenceCapable. There are several ways to do this, most notably at post-
compile, or at runtime. We use the post-compile step in this tutorial. DataNucleus JDO provides its
own byte-code enhancer for instrumenting/enhancing your classes (in datanucleus-core) and this is
included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various source and jdo
files are stored

1 1 4 T u t o r i a l w i t h E x c e l 681

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

src/main/java/org/datanucleus/samples/jdo/tutorial/Book.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jdo/tutorial/Book.class

target/classes/org/datanucleus/samples/jdo/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jdo/tutorial/Product.class

[when using Ant]

lib/jdo-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jdo.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven2 :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jdo.jar:lib/jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jdo.jar;lib\jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances the .class files that have @PersistenceCapable annotations. If you
accidentally omitted this step, at the point of running your application and trying to persist an
object, you would get a ClassNotPersistenceCapableException thrown. The use of the enhancer is
documented in more detail in the Enhancer Guide. The output of this step are a set of class files that
represent PersistenceCapable classes.

1 1 4 T u t o r i a l w i t h E x c e l 682

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

114.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JDO
is performed via a PersistenceManager. This provides methods for persisting of objects, removal
of objects, querying for persisted objects, etc. This section gives examples of typical scenarios
encountered in an application.

The initial step is to obtain access to a PersistenceManager, which you do as follows

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("Tutorial");

PersistenceManager pm = pmf.getPersistenceManager();

Now that the application has a PersistenceManager it can persist objects. This is performed as follows

Transaction tx=pm.currentTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 pm.makePersistent(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

Note the following

• We have persisted the Inventory but since this referenced the Product then that is also persisted.
• The finally step is important to tidy up any connection to the datastore, and close the

PersistenceManager
If you want to retrieve an object from persistent storage, something like this will give what you need.
This uses a "Query", and retrieves all Product objects that have a price below 150.00, ordering them in
ascending price order.

1 1 4 T u t o r i a l w i t h E x c e l 683

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 Query q = pm.newQuery("SELECT FROM " + Product.class.getName() +

 " WHERE price < 150.00 ORDER BY price ASC");

 List<Product> products = (List<Product>)q.execute();

 Iterator<Product> iter = products.iterator();

 while (iter.hasNext())

 {

 Product p = iter.next();

 ... (use the retrieved objects)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 ... (retrieval of objects etc)

 pm.deletePersistent(product);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JDO book will provide many examples.

1 1 4 T u t o r i a l w i t h E x c e l 684

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

114.1.7 Step 5 : Run your application

To run your JDO-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• Any persistence.xml file for the PersistenceManagerFactory creation
• Any JDO XML MetaData files for your persistable classes (not used in this example)
• Apache POI driver class(es) needed for accessing your datastore
• The JDO API JAR (defining the JDO interface)
• The DataNucleus Core, DataNucleus JDO API and DataNucleus Excel JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

1 1 4 T u t o r i a l w i t h E x c e l 685

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant (you need the included "persistence.xml" to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/jdo-api.jar:lib/datanucleus-core.jar:lib/datanucleus-excel.jar:

 lib/datanucleus-api-jdo.jar:lib/poi.jar:target/classes/:.

 org.datanucleus.samples.jdo.tutorial.Main

Manually on Windows :

java -cp lib\jdo-api.jar;lib\datanucleus-core.jar;lib\datanucleus-excel.jar;

 lib\datanucleus-api-jdo.jar;lib\poi.jar;target\classes\;.

 org.datanucleus.samples.jdo.tutorial.Main

Output :

DataNucleus Tutorial

=============

Persisting products

Product and Book have been persisted

Retrieving Extent for Products

> Product : Sony Discman [A standard discman from Sony]

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

Deleted 2 products

End of Tutorial

114.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JDO and persist objects to Excel. Obviously
this just scratches the surface of what you can do, and to use JDO requires minimal work from the
user. In this second part we show some further things that you are likely to want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

1 1 4 T u t o r i a l w i t h E x c e l 686

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

114.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema.

<?xml version="1.0"?>

<!DOCTYPE orm PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/orm_2_0.dtd">

<orm>

 <package name="org.datanucleus.samples.jdo.tutorial">

 <class name="Inventory" table="Inventories">

 <field name="name">

 <column name="Name" length="100"/>

 </field>

 <field name="products"/>

 </class>

 <class name="Product" table="Products">

 <inheritance strategy="complete-table"/>

 <field name="id">

 <column name="Id" position="0"/>

 </field>

 <field name="name">

 <column name="Name" position="1"/>

 </field>

 <field name="description">

 <column name="Description" position="2"/>

 </field>

 <field name="price">

 <column name="Price" position="3"/>

 </field>

 </class>

 <class name="Book" table="Books">

 <inheritance strategy="complete-table"/>

 <field name="Product.id">

 <column name="Id" position="0"/>

 </field>

 <field name="author">

 <column name="Author" position="4"/>

 </field>

 <field name="isbn">

 <column name="ISBN" position="5"/>

 </field>

 <field name="publisher">

 <column name="Publisher" position="6"/>

 </field>

 </class>

 </package>

</orm>

1 1 4 T u t o r i a l w i t h E x c e l 687

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

With JDO you have various options as far as where this XML MetaData files is placed in the file
structure, and whether they refer to a single class, or multiple classes in a package. With the above
example, we have both classes specified in the same file package-excel.orm, in the package these
classes are in, since we want to persist to Excel.

114.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the SchemaTool to generate the tables where these domain objects will
be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked from Maven2/
Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to update the
persistence.xml file with your database details.

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="excel:file:test.xml"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 1 4 T u t o r i a l w i t h E x c e l 688

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven2 :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-excel.jar:

 lib/datanucleus-jdo-api.jar:lib/jdo-api.jar:lib/poi.jar

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-excel.jar;

 lib\datanucleus-api-jdo.jar;lib\jdo-api.jar;lib\poi.jar

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, etc for the classes defined in the JDO Meta-Data file.

114.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 1 5 T u t o r i a l w i t h M o n g o D B 689

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

115 Tutorial with MongoDB
...

115.1 DataNucleus - Tutorial for JDO using MongoDB

115.1.1 Background

An application can be JDO-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the DataNucleus Eclipse plugin. Alternatively the project
could use Ant, Maven or some other build tool. In this case this tutorial should be used as a guiding
way for using DataNucleus in the application. The JDO process is quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jdo-tutorial-*").

115.1.2 Prerequisite : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution
zip appropriate to your datastore (MongoDB in this case). You can do this from SourceForge
DataNucleus download page. When you open the zip you will find DataNucleus jars in the lib
directory, and dependency jars in the deps directory.

115.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 1 5 T u t o r i a l w i t h M o n g o D B 690

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jdo.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jdo.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jdo.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 1 5 T u t o r i a l w i t h M o n g o D B 691

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as PersistenceCapable so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object (or use datastore-identity if no field

meets this requirement).
So this is what we do now. Note that we could define persistence using XML metadata, annotations or
via the JDO API. In this tutorial we will use annotations.

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Inventory

{

 @PrimaryKey

 String name = null;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Product

{

 @PrimaryKey

 @Persistent(valueStrategy=IdGeneratorStrategy.INCREMENT)

 long id;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @PersistenceCapable and their primary key
field(s) with @PrimaryKey. In addition we defined a valueStrategy for Product field id so that it
will have its values generated automatically. In this tutorial we are using application identity which
means that all objects of these classes will have their identity defined by the primary key field(s).
You can read more in datastore identity and application identity when designing your systems
persistence.

1 1 5 T u t o r i a l w i t h M o n g o D B 692

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

115.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JDO tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="mongodb:/nucleus"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Note that you could equally use a properties file to define the persistence with JDO, but in this tutorial
we use persistence.xml for convenience.

115.1.5 Step 3 : Enhance your classes

JDO relies on the classes that you want to persist implementing PersistenceCapable. You could
write your classes manually to do this but this would be laborious. Alternatively you can use a post-
processing step to compilation that "enhances" your compiled classes, adding on the necessary extra
methods to make them PersistenceCapable. There are several ways to do this, most notably at post-
compile, or at runtime. We use the post-compile step in this tutorial. DataNucleus JDO provides its
own byte-code enhancer for instrumenting/enhancing your classes (in datanucleus-core) and this is
included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various source and jdo
files are stored

1 1 5 T u t o r i a l w i t h M o n g o D B 693

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

src/main/java/org/datanucleus/samples/jdo/tutorial/Book.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jdo/tutorial/Book.class

target/classes/org/datanucleus/samples/jdo/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jdo/tutorial/Product.class

[when using Ant]]

lib/jdo-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jdo.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven2 :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jdo.jar:lib/jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jdo.jar;lib\jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances the .class files that have @PersistenceCapable annotations. If you
accidentally omitted this step, at the point of running your application and trying to persist an
object, you would get a ClassNotPersistenceCapableException thrown. The use of the enhancer is
documented in more detail in the Enhancer Guide. The output of this step are a set of class files that
represent PersistenceCapable classes.

1 1 5 T u t o r i a l w i t h M o n g o D B 694

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

115.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JDO
is performed via a PersistenceManager. This provides methods for persisting of objects, removal
of objects, querying for persisted objects, etc. This section gives examples of typical scenarios
encountered in an application.

The initial step is to obtain access to a PersistenceManager, which you do as follows

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("Tutorial");

PersistenceManager pm = pmf.getPersistenceManager();

Now that the application has a PersistenceManager it can persist objects. This is performed as follows

Transaction tx=pm.currentTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 pm.makePersistent(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

Note the following

• We have persisted the Inventory but since this referenced the Product then that is also persisted.
• The finally step is important to tidy up any connection to the datastore, and close the

PersistenceManager
If you want to retrieve an object from persistent storage, something like this will give what you need.
This uses a "Query", and retrieves all Product objects that have a price below 150.00, ordering them in
ascending price order.

1 1 5 T u t o r i a l w i t h M o n g o D B 695

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 Query q = pm.newQuery("SELECT FROM " + Product.class.getName() +

 " WHERE price < 150.00 ORDER BY price ASC");

 List<Product> products = (List<Product>)q.execute();

 Iterator<Product> iter = products.iterator();

 while (iter.hasNext())

 {

 Product p = iter.next();

 ... (use the retrieved objects)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 ... (retrieval of objects etc)

 pm.deletePersistent(product);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

1 1 5 T u t o r i a l w i t h M o n g o D B 696

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JDO book will provide many examples.

115.1.7 Step 5 : Run your application

To run your JDO-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• Any persistence.xml file for the PersistenceManagerFactory creation
• Any JDO XML MetaData files for your persistable classes (not used in this example)
• MongoDB driver class needed for accessing your datastore
• The JDO API JAR (defining the JDO interface)
• The DataNucleus Core, DataNucleus JDO API and DataNucleus MongoDB JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

1 1 5 T u t o r i a l w i t h M o n g o D B 697

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant (you need the included "persistence.xml" to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/jdo-api.jar:lib/datanucleus-core.jar:lib/datanucleus-mongodb.jar:

 lib/datanucleus-api-jdo.jar:lib/{mongodb_jars}:target/classes/:.

 org.datanucleus.samples.jdo.tutorial.Main

Manually on Windows :

java -cp lib\jdo-api.jar;lib\datanucleus-core.jar;lib\datanucleus-mongodb.jar;

 lib\datanucleus-api-jdo.jar;lib\{mongodb_jars};target\classes\;.

 org.datanucleus.samples.jdo.tutorial.Main

Output :

DataNucleus Tutorial

=============

Persisting products

Product and Book have been persisted

Retrieving Extent for Products

> Product : Sony Discman [A standard discman from Sony]

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

Deleted 2 products

End of Tutorial

115.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JDO and persist objects to MongoDB.
Obviously this just scratches the surface of what you can do, and to use JDO requires minimal work
from the user. In this second part we show some further things that you are likely to want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

1 1 5 T u t o r i a l w i t h M o n g o D B 698

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

115.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema.

<?xml version="1.0"?>

<!DOCTYPE orm PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/orm_2_0.dtd">

<orm>

 <package name="org.datanucleus.samples.jdo.tutorial">

 <class name="Inventory" identity-type="datastore" table="INVENTORIES">

 <inheritance strategy="new-table"/>

 <field name="name">

 <column name="INVENTORY_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="products">

 <join/>

 </field>

 </class>

 <class name="Product" identity-type="datastore" table="PRODUCTS">

 <inheritance strategy="new-table"/>

 <field name="name">

 <column name="PRODUCT_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description">

 <column length="255" jdbc-type="VARCHAR"/>

 </field>

 </class>

 <class name="Book" identity-type="datastore" table="BOOKS">

 <inheritance strategy="new-table"/>

 <field name="isbn">

 <column length="20" jdbc-type="VARCHAR"/>

 </field>

 <field name="author">

 <column length="40" jdbc-type="VARCHAR"/>

 </field>

 <field name="publisher">

 <column length="40" jdbc-type="VARCHAR"/>

 </field>

 </class>

 </package>

</orm>

With JDO you have various options as far as where this XML MetaData files is placed in the file
structure, and whether they refer to a single class, or multiple classes in a package. With the above
example, we have both classes specified in the same file package-mongodb.orm, in the package these
classes are in, since we want to persist to MongoDB.

1 1 5 T u t o r i a l w i t h M o n g o D B 699

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

115.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the SchemaTool to generate the tables where these domain objects will
be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked from Maven2/
Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to update the
persistence.xml file with your database details.

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="mongodb:/nucleus"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 1 5 T u t o r i a l w i t h M o n g o D B 700

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven2 :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-mongodb.jar:

 lib/datanucleus-jdo-api.jar:lib/jdo-api.jar:lib/{mongodb_driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-mongodb.jar;

 lib\datanucleus-api-jdo.jar;lib\jdo-api.jar;lib\{mongodb_driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, etc for the classes defined in the JDO Meta-Data file.

115.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 1 6 T u t o r i a l w i t h H B a s e 701

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

116 Tutorial with HBase
...

116.1 DataNucleus - Tutorial for JDO using HBase

116.1.1 Background

An application can be JDO-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the DataNucleus Eclipse plugin. Alternatively the project
could use Ant, Maven or some other build tool. In this case this tutorial should be used as a guiding
way for using DataNucleus in the application. The JDO process is quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jdo-tutorial-*").

116.1.2 Prerequisite : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore (HBase in this case). You can do this from SourceForge DataNucleus
download page. When you open the zip you will find DataNucleus jars in the lib directory, and
dependency jars in the deps directory.

116.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 1 6 T u t o r i a l w i t h H B a s e 702

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jdo.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jdo.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jdo.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 1 6 T u t o r i a l w i t h H B a s e 703

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as PersistenceCapable so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object (or use datastore-identity if no field

meets this requirement).
So this is what we do now. Note that we could define persistence using XML metadata, annotations or
via the JDO API. In this tutorial we will use annotations.

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Inventory

{

 @PrimaryKey

 String name = null;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Product

{

 @PrimaryKey

 @Persistent(valueStrategy=IdGeneratorStrategy.INCREMENT)

 long id;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @PersistenceCapable and their primary key
field(s) with @PrimaryKey. In addition we defined a valueStrategy for Product field id so that it
will have its values generated automatically. In this tutorial we are using application identity which
means that all objects of these classes will have their identity defined by the primary key field(s).
You can read more in datastore identity and application identity when designing your systems
persistence.

1 1 6 T u t o r i a l w i t h H B a s e 704

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

116.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JDO tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="hbase:"/>

 </properties>

 </persistence-unit>

</persistence>

Note that you could equally use a properties file to define the persistence with JDO, but in this tutorial
we use persistence.xml for convenience.

116.1.5 Step 3 : Enhance your classes

JDO relies on the classes that you want to persist implementing PersistenceCapable. You could
write your classes manually to do this but this would be laborious. Alternatively you can use a post-
processing step to compilation that "enhances" your compiled classes, adding on the necessary extra
methods to make them PersistenceCapable. There are several ways to do this, most notably at post-
compile, or at runtime. We use the post-compile step in this tutorial. DataNucleus JDO provides its
own byte-code enhancer for instrumenting/enhancing your classes (in datanucleus-core) and this is
included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various source and jdo
files are stored

1 1 6 T u t o r i a l w i t h H B a s e 705

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

src/main/java/org/datanucleus/samples/jdo/tutorial/Book.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Product.java

src/main/resources/persistence.xml

target/classes/org/datanucleus/samples/jdo/tutorial/Book.class

target/classes/org/datanucleus/samples/jdo/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jdo/tutorial/Product.class

[when using Ant]

lib/jdo-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jdo.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven2 :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jdo.jar:lib/jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jdo.jar;lib\jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances the .class files that have @PersistenceCapable annotations. If you
accidentally omitted this step, at the point of running your application and trying to persist an
object, you would get a ClassNotPersistenceCapableException thrown. The use of the enhancer is
documented in more detail in the Enhancer Guide. The output of this step are a set of class files that
represent PersistenceCapable classes.

1 1 6 T u t o r i a l w i t h H B a s e 706

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

116.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JDO
is performed via a PersistenceManager. This provides methods for persisting of objects, removal
of objects, querying for persisted objects, etc. This section gives examples of typical scenarios
encountered in an application.

The initial step is to obtain access to a PersistenceManager, which you do as follows

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("Tutorial");

PersistenceManager pm = pmf.getPersistenceManager();

Now that the application has a PersistenceManager it can persist objects. This is performed as follows

Transaction tx=pm.currentTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 pm.makePersistent(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

Note the following

• We have persisted the Inventory but since this referenced the Product then that is also persisted.
• The finally step is important to tidy up any connection to the datastore, and close the

PersistenceManager
If you want to retrieve an object from persistent storage, something like this will give what you need.
This uses a "Query", and retrieves all Product objects that have a price below 150.00, ordering them in
ascending price order.

1 1 6 T u t o r i a l w i t h H B a s e 707

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 Query q = pm.newQuery("SELECT FROM " + Product.class.getName() +

 " WHERE price < 150.00 ORDER BY price ASC");

 List<Product> products = (List<Product>)q.execute();

 Iterator<Product> iter = products.iterator();

 while (iter.hasNext())

 {

 Product p = iter.next();

 ... (use the retrieved objects)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 ... (retrieval of objects etc)

 pm.deletePersistent(product);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

1 1 6 T u t o r i a l w i t h H B a s e 708

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JDO book will provide many examples.

116.1.7 Step 5 : Run your application

To run your JDO-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• Any persistence.xml file for the PersistenceManagerFactory creation
• Any JDO XML MetaData files for your persistable classes (not used in this example)
• HBase driver class(es) needed for accessing your datastore
• The JDO API JAR (defining the JDO interface)
• The DataNucleus Core, DataNucleus JDO API and DataNucleus HBase JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

1 1 6 T u t o r i a l w i t h H B a s e 709

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant (you need the included "persistence.xml" to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/jdo-api.jar:lib/datanucleus-core.jar:lib/datanucleus-hbase.jar:

 lib/datanucleus-api-jdo.jar:lib/{hbase_jars}:target/classes/:.

 org.datanucleus.samples.jdo.tutorial.Main

Manually on Windows :

java -cp lib\jdo-api.jar;lib\datanucleus-core.jar;lib\datanucleus-hbase.jar;

 lib\datanucleus-api-jdo.jar;lib\{hbase_jars};target\classes\;.

 org.datanucleus.samples.jdo.tutorial.Main

Output :

DataNucleus Tutorial

=============

Persisting products

Product and Book have been persisted

Retrieving Extent for Products

> Product : Sony Discman [A standard discman from Sony]

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

Deleted 2 products

End of Tutorial

116.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JDO and persist objects to HBase. Obviously
this just scratches the surface of what you can do, and to use JDO requires minimal work from the
user. In this second part we show some further things that you are likely to want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

1 1 6 T u t o r i a l w i t h H B a s e 710

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

116.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema.

<?xml version="1.0"?>

<!DOCTYPE orm PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/orm_2_0.dtd">

<orm>

 <package name="org.datanucleus.samples.jdo.tutorial">

 <class name="Inventory" identity-type="datastore" table="INVENTORIES">

 <inheritance strategy="new-table"/>

 <field name="name">

 <column name="INVENTORY_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="products">

 <join/>

 </field>

 </class>

 <class name="Product" identity-type="datastore" table="PRODUCTS">

 <inheritance strategy="new-table"/>

 <field name="name">

 <column name="PRODUCT_NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description">

 <column length="255" jdbc-type="VARCHAR"/>

 </field>

 </class>

 <class name="Book" identity-type="datastore" table="BOOKS">

 <inheritance strategy="new-table"/>

 <field name="isbn">

 <column length="20" jdbc-type="VARCHAR"/>

 </field>

 <field name="author">

 <column length="40" jdbc-type="VARCHAR"/>

 </field>

 <field name="publisher">

 <column length="40" jdbc-type="VARCHAR"/>

 </field>

 </class>

 </package>

</orm>

With JDO you have various options as far as where this XML MetaData files is placed in the file
structure, and whether they refer to a single class, or multiple classes in a package. With the above
example, we have both classes specified in the same file package-hbase.orm, in the package these
classes are in, since we want to persist to HBase.

1 1 6 T u t o r i a l w i t h H B a s e 711

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

116.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the SchemaTool to generate the tables where these domain objects will
be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked from Maven2/
Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to update the
persistence.xml file with your database details

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="hbase:"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 1 6 T u t o r i a l w i t h H B a s e 712

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven2 :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-hbase.jar:

 lib/datanucleus-jdo-api.jar:lib/jdo-api.jar:lib/{hbase_driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-hbase.jar;

 lib\datanucleus-api-jdo.jar;lib\jdo-api.jar;lib\{hbase_driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -pu Tutorial

Note that "hbase_driver" typically means hbase.jar, hadoop-core.jar, zookeeper.jar and commons-logging.jar

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, etc for the classes defined in the JDO Meta-Data file.

116.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 1 7 T u t o r i a l w i t h N e o 4 j 713

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

117 Tutorial with Neo4j
...

117.1 DataNucleus - Tutorial for JDO using Neo4J

117.1.1 Background

An application can be JDO-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the DataNucleus Eclipse plugin. Alternatively the project
could use Ant, Maven or some other build tool. In this case this tutorial should be used as a guiding
way for using DataNucleus in the application. The JDO process is quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jdo-tutorial-*").

117.1.2 Prerequisite : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore (Neo4J in this case, so get the full download). You can do this from
SourceForge DataNucleus download page. When you open the zip you will find DataNucleus jars in
the lib directory, and dependency jars in the deps directory.

117.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 1 7 T u t o r i a l w i t h N e o 4 j 714

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jdo.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jdo.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jdo.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 1 7 T u t o r i a l w i t h N e o 4 j 715

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as PersistenceCapable so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object (or use datastore-identity if no field

meets this requirement).
So this is what we do now. Note that we could define persistence using XML metadata, annotations or
via the JDO API. In this tutorial we will use annotations.

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Inventory

{

 @PrimaryKey

 String name = null;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Product

{

 @PrimaryKey

 @Persistent(valueStrategy=IdGeneratorStrategy.NATIVE)

 long id;

 ...

}

package org.datanucleus.samples.jdo.tutorial;

@PersistenceCapable

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @PersistenceCapable and their primary key
field(s) with @PrimaryKey. In addition we defined a valueStrategy for Product field id so that it
will have its values generated automatically. In this tutorial we are using application identity which
means that all objects of these classes will have their identity defined by the primary key field(s).
You can read more in datastore identity and application identity when designing your systems
persistence.

1 1 7 T u t o r i a l w i t h N e o 4 j 716

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

117.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JDO tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jdo.tutorial.Product</class>

 <class>org.datanucleus.samples.jdo.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="neo4j:testDB"/>

 </properties>

 </persistence-unit>

</persistence>

Note that you could equally use a properties file to define the persistence with JDO, but in this tutorial
we use persistence.xml for convenience.

117.1.5 Step 3 : Enhance your classes

JDO relies on the classes that you want to persist implementing PersistenceCapable. You could
write your classes manually to do this but this would be laborious. Alternatively you can use a post-
processing step to compilation that "enhances" your compiled classes, adding on the necessary extra
methods to make them PersistenceCapable. There are several ways to do this, most notably at post-
compile, or at runtime. We use the post-compile step in this tutorial. DataNucleus JDO provides its
own byte-code enhancer for instrumenting/enhancing your classes (in datanucleus-core) and this is
included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various source and jdo
files are stored

1 1 7 T u t o r i a l w i t h N e o 4 j 717

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

src/main/java/org/datanucleus/samples/jdo/tutorial/Book.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jdo/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jdo/tutorial/Book.class

target/classes/org/datanucleus/samples/jdo/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jdo/tutorial/Product.class

[when using Ant]

lib/jdo-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jdo.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven2 :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jdo.jar:lib/jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jdo.jar;lib\jdo-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances the .class files that have @PersistenceCapable annotations. If you
accidentally omitted this step, at the point of running your application and trying to persist an
object, you would get a ClassNotPersistenceCapableException thrown. The use of the enhancer is
documented in more detail in the Enhancer Guide. The output of this step are a set of class files that
represent PersistenceCapable classes.

1 1 7 T u t o r i a l w i t h N e o 4 j 718

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

117.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JDO
is performed via a PersistenceManager. This provides methods for persisting of objects, removal
of objects, querying for persisted objects, etc. This section gives examples of typical scenarios
encountered in an application.

The initial step is to obtain access to a PersistenceManager, which you do as follows

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("Tutorial");

PersistenceManager pm = pmf.getPersistenceManager();

Now that the application has a PersistenceManager it can persist objects. This is performed as follows

Transaction tx=pm.currentTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 pm.makePersistent(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

Note the following

• We have persisted the Inventory but since this referenced the Product then that is also persisted.
• The finally step is important to tidy up any connection to the datastore, and close the

PersistenceManager
If you want to retrieve an object from persistent storage, something like this will give what you need.
This uses a "Query", and retrieves all Product objects that have a price below 150.00, ordering them in
ascending price order.

1 1 7 T u t o r i a l w i t h N e o 4 j 719

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 Query q = pm.newQuery("SELECT FROM " + Product.class.getName() +

 " WHERE price < 150.00 ORDER BY price ASC");

 List<Product> products = (List<Product>)q.execute();

 Iterator<Product> iter = products.iterator();

 while (iter.hasNext())

 {

 Product p = iter.next();

 ... (use the retrieved objects)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = pm.currentTransaction();

try

{

 tx.begin();

 ... (retrieval of objects etc)

 pm.deletePersistent(product);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

}

1 1 7 T u t o r i a l w i t h N e o 4 j 720

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JDO book will provide many examples.

117.1.7 Step 5 : Run your application

To run your JDO-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• Any persistence.xml file for the PersistenceManagerFactory creation
• Any JDO XML MetaData files for your persistable classes (not used in this example)
• Neo4J jar needed for accessing your datastore
• The JDO API JAR (defining the JDO interface)
• The DataNucleus Core, DataNucleus JDO API and DataNucleus Neo4J JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

1 1 7 T u t o r i a l w i t h N e o 4 j 721

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant (you need the included "persistence.xml" to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/jdo-api.jar:lib/datanucleus-core.jar:lib/datanucleus-neo4j.jar:

 lib/datanucleus-api-jdo.jar:lib/{neo4j_jars}:target/classes/:.

 org.datanucleus.samples.jdo.tutorial.Main

Manually on Windows :

java -cp lib\jdo-api.jar;lib\datanucleus-core.jar;lib\datanucleus-neo4j.jar;

 lib\datanucleus-api-jdo.jar;lib\{neo4j_jars};target\classes\;.

 org.datanucleus.samples.jdo.tutorial.Main

Output :

DataNucleus Tutorial

=============

Persisting products

Product and Book have been persisted

Retrieving Extent for Products

> Product : Sony Discman [A standard discman from Sony]

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

Deleted 2 products

End of Tutorial

117.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JDO and persist objects to Neo4J. Obviously
this just scratches the surface of what you can do, and to use JDO requires minimal work from the
user. In this second part we show some further things that you are likely to want to do.

1. Step 6 : Controlling the property names.

117.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the property names of the Nodes generated
for these classes. Now let's pay more attention to this part by defining XML Metadata for the schema.

1 1 7 T u t o r i a l w i t h N e o 4 j 722

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0"?>

<!DOCTYPE orm PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/orm_2_0.dtd">

<orm>

 <package name="org.datanucleus.samples.jdo.tutorial">

 <class name="Inventory" identity-type="datastore">

 <inheritance strategy="new-table"/>

 <field name="name">

 <column name="INVENTORY_NAME"/>

 </field>

 <field name="products">

 <join/>

 </field>

 </class>

 <class name="Product" identity-type="datastore">

 <inheritance strategy="new-table"/>

 <field name="name">

 <column name="PRODUCT_NAME"/>

 </field>

 <field name="description">

 </field>

 </class>

 <class name="Book" identity-type="datastore">

 <inheritance strategy="new-table"/>

 <field name="isbn">

 <column name="ISBN"/>

 </field>

 <field name="author">

 <column name="Authors Name"/>

 </field>

 <field name="publisher">

 <column name="Publisher Name"/>

 </field>

 </class>

 </package>

</orm>

With JDO you have various options as far as where this XML MetaData files is placed in the file
structure, and whether they refer to a single class, or multiple classes in a package. With the above
example, we have both classes specified in the same file package-neo4j.orm, in the package these
classes are in, since we want to persist to Neo4J.

117.2.2 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 1 8 1 - N B i d i r F K R e l a t i o n 723

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

118 1-N Bidir FK Relation
...

118.1 JDO Samples : 1-N Bidirectional Relation using Foreign-Key

This guide demonstrates a 1-N collection relationship between 2 classes. In this sample we have Pack
and Card such that each Pack can contain many Cards. In addition each Card has a Pack that it
belongs to. We demonstrate the classes themselves, and the MetaData necessary to persist them to the
datastore in the way that we require. In this case we are going to persist the relation to an RDBMS
using a ForeignKey.

1. Classes - Design your Java classes to represent what you want to model in your system.
Persistence doesn't have much of an impact on this stage, but we'll analyse the very minor
influence it does have.

2. Object Identity - Decide how the identities of your objects of these classes will be defined. Do
you want JDO to give them id's or will you do it yourself.

3. Meta-Data - Define how your objects of these classes will be persisted.

1. New Database Schema - you have a clean sheet of paper and can have them persisted with
no constraints.

2. Existing Database Schema - you have existing tables that you need the objects persisted to.

118.1.1 The Classes

Lets look at our initial classes for the example. We want to represent a pack of cards.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/one_to_many_fk_bidir

1 1 8 1 - N B i d i r F K R e l a t i o n 724

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.packofcards.inverse;

public class Pack

{

 String name=null;

 String description=null;

 Set cards=new HashSet();

 public Pack(String name, String desc)

 {

 this.name = name;

 this.description = desc;

 }

 public void addCard(Card card)

 {

 cards.add(card);

 }

 public void removeCard(Card card)

 {

 cards.remove(card);

 }

 public Set getCards()

 {

 return cards;

 }

 public int getNumberOfCards()

 {

 return cards.size();

 }

}

public class Card

{

 String suit=null;

 String number=null;

 Pack pack=null;

 public Card(String suit,String number)

 {

 this.suit = suit;

 this.number = number;

 }

 public String getSuit()

 {

 return suit;

 }

 public String getNumber()

 {

 return number;

 }

 public Pack getPack()

 {

 return pack;

 }

 public void setPack(Pack pack)

 {

 this.pack = pack;

 }

 public String toString()

 {

 return "The " + number + " of " + suit;

 }

}

1 1 8 1 - N B i d i r F K R e l a t i o n 725

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The first thing that we need to do is add a default constructor. This is a requirement of JDO. This can
be private if we wish, so we add

public class Pack

{

 private Pack()

 {

 }

 ...

}

public class Card

{

 private Card()

 {

 }

 ...

}

118.1.2 Object Identity

The next thing to do is decide if we want to allow DataNucleus to generate the identities of our
objects, or whether we want to do it ourselves. In our case we will allow DataNucleus to create the
identities for our Packs and also for our Cards.

In the case of Pack there is nothing more to code since DataNucleus will handle the identities.
Similarly, in the case of Card there is nothing more to add.

118.1.3 MetaData for New Schema

Now that we've decided on our classes and how we want to define their identities we can decide on
the precise persistence definition in the datastore. In this section we'll describe how to persist these
objects to a new database schema where we can create new tables and don't need to write to some
existing table.

Some JDO tools provide an IDE to generate Meta-Data files, but DataNucleus doesn't currently.
Either way it is a good idea to become familiar with the structure of these files since they define how
your classes are persisted. Lets start with the header area. You add a block like this to define that the
file is JDO Meta-Data

<?xml version="1.0"?>

<!DOCTYPE jdo PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/jdo_2_0.dtd">

<jdo>

Now let's define the persistence for our Pack class. We are going to use datastore identity here,
meaning that DataNucleus will assign id's to each Pack object persisted. We define it as follows

1 1 8 1 - N B i d i r F K R e l a t i o n 726

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <package name="org.datanucleus.samples.packofcards.inverse">

 <class name="Pack" identity-type="datastore">

 <field name="name" persistence-modifier="persistent">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description" persistence-modifier="persistent">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="cards" persistence-modifier="persistent" mapped-by="pack">

 <collection element-type="org.datanucleus.samples.packofcards.inverse.Card">

 </collection>

 </field>

 </class>

Here we've defined that our name field will be persisted to a VARCHAR(100) column, our
description field will be persisted to a VARCHAR(255) column, and that our cards field is a
Collection containing org.datanucleus.examples.packofcards.inverse.Card objects. In addition,
it specifies that there is a pack field in the Card class (the mapped-by attribute) that gives the
related pack (with the Pack being the owner of the relationship). This final information is to inform
DataNucleus to link the table for this class (via a foreign key) to the table for Card class. This is what
is termed a ForeignKey relationship. Please refer to the 1-N Relationships Guide for more details on
this. We'll discuss join table relationships in a different example.

Now lets define the persistence for our Card class. We are going to use datastore identity here,
meaining that DataNucleus will assign the id's for any object of type Card. We define it as follows

 <class name="Card" identity-type="datastore">

 <field name="suit">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="number">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="pack">

 </field>

 </class>

 </package>

Here we've defined that our suit field will be persisted to a VARCHAR(10) column, our number field
will be persisted to a VARCHAR(20) column.

We finally terminate the Meta-Data file with the closing tag

</jdo>

118.1.4 MetaData for Existing Schema

Now that we've decided on our classes and how we want to define their identities we can decide on
the precise persistence definition. In this section we'll describe how to persist these objects to an
existing database schema where we already have some database tables from a previous persistence

1 1 8 1 - N B i d i r F K R e l a t i o n 727

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

mechanism and we want to use those tables (because they have data in them). Our existing tables are
shown below.

We will take the Meta-Data that was described in the previous section (New Schema) and continue
from there. To recap, here is what we arrived at

<?xml version="1.0"?>

<!DOCTYPE jdo PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/jdo_2_0.dtd">

<jdo>

 <package name="org.datanucleus.samples.packofcards.inverse">

 <class name="Pack" identity-type="datastore">

 <field name="name" persistence-modifier="persistent">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description" persistence-modifier="persistent">

 <column length="255" jdbc-type="VARCHAR"/>

 </field>

 <field name="cards" persistence-modifier="persistent" mapped-by="pack">

 <collection element-type="org.datanucleus.samples.packofcards.inverse.Card">

 </collection>

 </field>

 </class>

 <class name="Card" identity-type="datastore">

 <field name="suit">

 <column length="10" jdbc-type="VARCHAR"/>

 </field>

 <field name="number">

 <column length="20" jdbc-type="VARCHAR"/>

 </field>

 <field name="pack">

 </field>

 </class>

 </package>

</jdo>

The first thing we need to do is map the Pack class to the table that we have in our database. It needs
to be mapped to a table called "DECK", with columns "IDENTIFIERNAME" and "DETAILS",
and the identity column that DataNucleus uses needs to be called IDENTIFIER_ID. We do this by
changing the Meta-Data to be

1 1 8 1 - N B i d i r F K R e l a t i o n 728

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <class name="Pack" identity-type="datastore" table="DECK">

 <datastore-identity>

 <column name="IDENTIFIER_ID"/>

 </datastore-identity>

 <field name="name" persistence-modifier="persistent">

 <column name="IDENTIFIERNAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description" persistence-modifier="persistent">

 <column name="DETAILS" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="cards" persistence-modifier="persistent" mapped-by="pack">

 <collection element-type="org.datanucleus.samples.packofcards.inverse.Card"/>

 </field>

 </class>

So we made use of the attribute table (of element class) and name (of element column) to align to
the table that is there. In addition we made use of the datastore-identity element to map the identity
column name. Lets now dothe same for the class Card. In our database we want this to map to a table
called "PLAYINGCARD", with columns "SET" and "VALUE". So we do the same thing to its Meta-
Data

 <class name="Card" identity-type="datastore" table="PLAYINGCARD">

 <datastore-identity>

 <column name="PLAYINGCARD_ID"/>

 </datastore-identity>

 <field name="suit">

 <column name="SET" length="10" jdbc-type="VARCHAR"/>

 </field>

 <field name="number">

 <column name="VALUE" length="20" jdbc-type="VARCHAR"/>

 </field>

 <field name="pack">

 <column name="DECK_ID"/>

 </field>

 </class>

OK, so we've now mapped our 2 classes to their tables. This completes our job. The only other aspect
that is likely to be met is where a column in the database is of a particular type, but we'll cover that in
a different example.

One thing worth mentioning is the difference if our Collection class was a List, ArrayList, Vector, etc.
In this case we need to specify the ordering column for maintaining the order within the List. In our
case we want to specify this column to be called "IDX", so we do it like this.

1 1 8 1 - N B i d i r F K R e l a t i o n 729

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <class name="Card" identity-type="datastore" table="PLAYINGCARD">

 <datastore-identity>

 <column name="PLAYINGCARD_ID"/>

 </datastore-identity>

 <field name="suit">

 <column name="SET" length="10" jdbc-type="VARCHAR"/>

 </field>

 <field name="number">

 <column name="VALUE" length="20" jdbc-type="VARCHAR"/>

 </field>

 <field name="pack">

 <column name="DECK_ID"/>

 <order column="IDX"/>

 </field>

 </class>

1 1 9 M - N R e l a t i o n 730

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

119 M-N Relation
...

119.1 JDO Samples : M-N Relation

This guide demonstrates an M-N collection relationship between 2 classes. In this sample we have
Supplier and Customer such that each Customer can contain many Suppliers. In addition each
Supplier can have many Customers. We demonstrate the classes themselves, and the MetaData
necessary to persist them to the datastore in the way that we require. In this example we use XML
metadata, but you could easily use annotations

1. Classes - Design your Java classes to represent what you want to model in your system. JDO
doesn't have much of an impact on this, but we'll analyse the very minor influence it does have.

2. Meta-Data - Define how your objects of these classes will be persisted.

1. New Database Schema - you have a clean sheet of paper and can have them persisted with
no constraints.

2. Existing Database Schema - you have existing tables that you need the objects persisted to.
3. Managing the Relationship - How we add/remove elements to/from the M-N relation.

119.1.1 The Classes

Lets look at our initial classes for the example. We want to represent the relation between a customer
and a supplier.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/many_to_many

1 1 9 M - N R e l a t i o n 731

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.m_to_n;

public class Customer

{

 String name = null;

 String description = null;

 Collection suppliers = new HashSet();

 public Customer(String name, String desc)

 {

 this.name = name;

 this.description = desc;

 }

 public void addSupplier(Supplier supplier)

 {

 suppliers.add(supplier);

 }

 public void removeSupplier(Supplier supplier)

 {

 suppliers.remove(supplier);

 }

 public Collection getSuppliers()

 {

 return suppliers;

 }

 public int getNumberOfSuppliers()

 {

 return suppliers.size();

 }

}

1 1 9 M - N R e l a t i o n 732

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Supplier

{

 String name = null;

 String address = null;

 Collection customers = new HashSet();

 public Supplier(String name, String address)

 {

 this.name = name;

 this.address = address;

 }

 public String getName()

 {

 return name;

 }

 public String getAddress()

 {

 return address;

 }

 public void addCustomer(Customer customer)

 {

 customers.add(customer);

 }

 public void removeCustomer(Customer customer)

 {

 customers.remove(customer);

 }

 public Collection getCustomers()

 {

 return customerers;

 }

 public int getNumberOfCustomers()

 {

 return customers.size();

 }

}

The first thing that we need to do is add a default constructor. This is a requirement of JDO. In our
case we are using the DataNucleus enhancer and this will automatically add the default constructor
when not present, so we omit this.

In this example we don't care about the "identity" type chosen so we will use datastore-identity.
Please refer to the documentation for examples of application and datastore identity for how to
specify them.

1 1 9 M - N R e l a t i o n 733

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

119.1.2 MetaData for New Schema

Now that we've decided on our classes and how we want to define their identities we can decide on
the precise persistence definition. In this section we'll describe how to persist these objects to a new
database schema where we can create new tables and don't need to write to some existing table.

Some JDO tools provide an IDE to generate Meta-Data files, but DataNucleus doesn't currently.
Either way it is a good idea to become familiar with the structure of these files since they define how
your classes are persisted. Lets start with the header area. You add a block like this to define that the
file is JDO Meta-Data

<?xml version="1.0"?>

<!DOCTYPE jdo PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/jdo_2_0.dtd">

<jdo>

Now let's define the persistence for our Customer class. We define it as follows

 <package name="org.datanucleus.samples.m_to_n">

 <class name="Customer" identity-type="datastore">

 <field name="name" persistence-modifier="persistent">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description" persistence-modifier="persistent">

 <column length="255" jdbc-type="VARCHAR"/>

 </field>

 <field name="suppliers" persistence-modifier="persistent" mapped-by="customers">

 <collection element-type="org.datanucleus.samples.m_to_n.Supplier"/>

 <join/>

 </field>

 </class>

Here we've defined that our name field will be persisted to a VARCHAR(100) column, our
description field will be persisted to a VARCHAR(255) column, and that our suppliers field is a
Collection containing org.datanucleus.examples.m_to_n.Supplier objects. In addition, it specifies
that there is a customers field in the Supplier class (the mapped-by attribute) that gives the related
customers for the Supplier. This final information is to inform DataNucleus to link the table for this
class to the table for Supplier class. This is what is termed an M-N relationship. Please refer to the
M-N Relationships Guide for more details on this.

Now lets define the persistence for our Supplier class. We define it as follows

1 1 9 M - N R e l a t i o n 734

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <class name="Supplier" identity-type="datastore">

 <field name="name">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="address">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="customers">

 <collection element-type="org.datanucleus.samples.m_to_n.Supplier"/>

 <join/>

 </field>

 </class>

 </package>

Here we've defined that our name field will be persisted to a VARCHAR(100) column, our address
field will be persisted to a VARCHAR(100) column.

We finally terminate the Meta-Data file with the closing tag

</jdo>

119.1.3 MetaData for Existing Schema

Now that we've decided on our classes and how we want to define their identities we can decide on
the precise persistence definition. In this section we'll describe how to persist these objects to an
existing database schema where we already have some database tables from a previous persistence
mechanism and we want to use those tables (because they have data in them). Our existing tables are
shown below.

We will take the Meta-Data that was described in the previous section (New Schema) and continue
from there. To recap, here is what we arrived at

1 1 9 M - N R e l a t i o n 735

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0"?>

<!DOCTYPE jdo PUBLIC

 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/jdo_2_0.dtd">

<jdo>

 <package name="org.datanucleus.samples.m_to_n">

 <class name="Customer" identity-type="datastore">

 <field name="name" persistence-modifier="persistent">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description" persistence-modifier="persistent">

 <column length="255" jdbc-type="VARCHAR"/>

 </field>

 <field name="suppliers" persistence-modifier="persistent" mapped-by="customers">

 <collection element-type="org.datanucleus.samples.m_to_n.Supplier"/>

 <join/>

 </field>

 </class>

 <class name="Supplier" identity-type="datastore">

 <field name="name">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="address">

 <column length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="customers">

 <collection element-type="org.datanucleus.samples.m_to_n.Customer"/>

 <join/>

 </field>

 </class>

 </package>

</jdo>

The first thing we need to do is map the Customer class to the table that we have in our database.
It needs to be mapped to a table called "CUSTOMER", with columns "NAME" and "DESC", and
the identity column that DataNucleus uses needs to be called CUST_ID. We do this by changing the
Meta-Data to be

1 1 9 M - N R e l a t i o n 736

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <class name="Customer" identity-type="datastore" table="CUSTOMER">

 <datastore-identity>

 <column name="CUST_ID"/>

 </datastore-identity>

 <field name="name" persistence-modifier="persistent">

 <column name="NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description" persistence-modifier="persistent">

 <column name="DESC" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="suppliers" persistence-modifier="persistent" mapped-by="customers">

 <collection element-type="org.datanucleus.samples.m_to_n.Supplier"/>

 <join/>

 </field>

 </class>

We now need to define the mapping for the join table storing the relationship information. So we
make use of the "table" attribute of field to define this, and use the join and element subelements to
define the columns of the join table. Like this

 <class name="Customer" identity-type="datastore" table="CUSTOMER">

 <datastore-identity>

 <column name="CUST_ID"/>

 </datastore-identity>

 <field name="name" persistence-modifier="persistent">

 <column name="NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="description" persistence-modifier="persistent">

 <column name="DESC" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="suppliers" persistence-modifier="persistent" mapped-by="customers" table="CUSTOMER_SUPPLIER">

 <collection element-type="org.datanucleus.samples.m_to_n.Supplier"/>

 <join>

 <column name="CUST_ID"/>

 </join>

 <element>

 <column name="SUPP_ID"/>

 </element>

 </field>

 </class>

Lets now dothe same for the class Supplier. In our database we want this to map to a table called
"SUPPLIER", with columns "SUPP_ID" (identity), "NAME" and "ADDR". We need to do nothing
more for the join table since it is shared and we have defined its table/columns above.

1 1 9 M - N R e l a t i o n 737

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <class name="Supplier" identity-type="datastore" table="SUPPLIER">

 <datastore-identity>

 <column name="SUPP_ID"/>

 </datastore-identity>

 <field name="name">

 <column name="NAME" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="address">

 <column name="ADDR" length="100" jdbc-type="VARCHAR"/>

 </field>

 <field name="customers">

 <collection element-type="org.datanucleus.samples.m_to_n.Customer"/>

 <join/>

 </field>

 </class>

OK, so we've now mapped our 2 classes to their tables. This completes our job. The only other aspect
that is likely to be met is where a column in the database is of a particular type, but we'll cover that in
a different example.

119.1.4 Management of the Relation

We now have our classes and the definition of persistence and we need to use our classes in the
application. This section defines how we maintain the relation between the objects. Let's start by
creating a few objects

1 1 9 M - N R e l a t i o n 738

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 PersistenceManager pm = pmf.getPersistenceManager();

 Transaction tx = pm.currentTransaction();

 Object[] custIds = new Object[2];

 Object[] suppIds = new Object[3];

 try

 {

 tx.begin();

 Customer cust1 = new Customer("DFG Stores", "Small shop in London");

 Customer cust2 = new Customer("Kevins Cards", "Gift shop");

 Supplier supp1 = new Supplier("Stationery Direct", "123 The boulevard, Milton Keynes, UK");

 Supplier supp2 = new Supplier("Grocery Wholesale", "56 Jones Industrial Estate, London, UK");

 Supplier supp3 = new Supplier("Makro", "1 Parkville, Wembley, UK");

 pm.makePersistent(cust1);

 pm.makePersistent(cust2);

 pm.makePersistent(supp1);

 pm.makePersistent(supp2);

 pm.makePersistent(supp3);

 tx.commit();

 custIds[0] = JDOHelper.getObjectId(cust1);

 custIds[1] = JDOHelper.getObjectId(cust2);

 suppIds[0] = JDOHelper.getObjectId(supp1);

 suppIds[1] = JDOHelper.getObjectId(supp2);

 suppIds[2] = JDOHelper.getObjectId(supp3);

 }

 catch (Exception e)

 {

 // Handle any errors

 }

 finally

 {

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

 }

OK. We've now persisted some Customers and Suppliers into our datastore. We now need to
establish the relations.

1 1 9 M - N R e l a t i o n 739

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 PersistenceManager pm = pmf.getPersistenceManager();

 Transaction tx = pm.currentTransaction();

 try

 {

 tx.begin();

 Customer cust1 = (Customer)pm.getObjectById(custIds[0]);

 Customer cust2 = (Customer)pm.getObjectById(custIds[1]);

 Supplier supp1 = (Supplier)pm.getObjectById(suppIds[0]);

 Supplier supp2 = (Supplier)pm.getObjectById(suppIds[1]);

 // Establish the relation customer1 uses supplier2

 cust1.addSupplier(supp2);

 supp2.addCustomer(cust1);

 // Establish the relation customer2 uses supplier1

 cust2.addSupplier(supp1);

 supp1.addCustomer(cust2);

 tx.commit();

 }

 catch (Exception e)

 {

 // Handle any errors

 }

 finally

 {

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

 }

You note that we set both sides of the relation. This is important since JDO doesnt define support for
"managed relations" before JDO2.1. We could have adapted the Customer method addSupplier to
add both sides of the relation (or alternatively via Supplier method addCustomer) to simplify this
process.

Let's now assume that over time we want to change our relationships.

1 1 9 M - N R e l a t i o n 740

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 PersistenceManager pm = pmf.getPersistenceManager();

 Transaction tx = pm.currentTransaction();

 try

 {

 tx.begin();

 // Retrieve the objects

 Customer cust1 = (Customer)pm.getObjectById(custIds[0]);

 Customer cust2 = (Customer)pm.getObjectById(custIds[1]);

 Supplier supp1 = (Supplier)pm.getObjectById(suppIds[0]);

 Supplier supp2 = (Supplier)pm.getObjectById(suppIds[1]);

 Supplier supp2 = (Supplier)pm.getObjectById(suppIds[1]);

 // Remove the relation from customer1 to supplier2, and add relation to supplier3

 cust1.removeSupplier(supp2);

 supp2.removeCustomer(cust1);

 cust1.addSupplier(supp3);

 supp3.addCustomer(cust1);

 // Add a relation customer2 uses supplier3

 cust2.addSupplier(supp3);

 supp3.addCustomer(cust2);

 tx.commit();

 }

 catch (Exception e)

 {

 // Handle any errors

 }

 finally

 {

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

 }

So now we have customer1 with a relation to supplier3, and we have customer2 with relations to
supplier1 and suppier3. That should give enough idea of how to manage the relations. The most
important thing with any bidirectional relation is to set both sides of the relation.

1 2 0 M - N A t t r i b u t e d R e l a t i o n 741

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

120 M-N Attributed Relation
...

120.1 JDO Samples : M-N Attributed Relation

DataNucleus provides support for standard JDO M-N relations where we have a relation between,
for example, Customer and Supplier, where a Customer has many Suppliers and a Supplier has many
Customers. A slight modification on this is where you have the relation carrying some additional
attributes of the relation. Let's take some classes

public class Customer

{

 private long id; // PK

 private String name;

 private Set supplierRelations = new HashSet();

 ...

}

public class Supplier

{

 private long id; // PK

 private String name;

 private Set customerRelations = new HashSet();

 ...

}

Now we obviously cant define an "attributed relation" using Java and just these classes so we invent
an intermediate "associative" class, that will also contain the attributes.

public class BusinessRelation

{

 private Customer customer; // PK

 private Supplier supplier; // PK

 private String relationLevel;

 private String meetingLocation;

 public BusinessRelation(Customer cust, Supplier supp, String level, String meeting)

 {

 this.customer = cust;

 this.supplier = supp;

 this.relationLevel = level;

 this.meetingLocation = meeting;

 }

 ...

}

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/many_to_many_attributed

1 2 0 M - N A t t r i b u t e d R e l a t i o n 742

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we define the metadata like this

<jdo>

 <package name="mydomain.business">

 <class name="Customer" detachable="true" table="CUSTOMER">

 <field name="id" primary-key="true" value-strategy="increment" column="ID"/>

 <field name="name" column="NAME"/>

 <field name="supplierRelations" persistence-modifier="persistent" mapped-by="customer">

 <collection element-type="BusinessRelation"/>

 </field>

 </class>

 <class name="Supplier" detachable="true" table="SUPPLIER">

 <field name="id" primary-key="true" value-strategy="increment" column="ID"/>

 <field name="name" column="NAME"/>

 <field name="customerRelations" persistence-modifier="persistent" mapped-by="supplier">

 <collection element-type="BusinessRelation"/>

 </field>

 </class>

 <class name="BusinessRelation" type="application" detachable="true"

 objectid-class="BusinessRelation$PK" table="BUSINESSRELATION">

 <field name="customer" primary-key="true" column="CUSTOMER_ID"/>

 <field name="supplier" primary-key="true" column="SUPPLIER_ID"/>

 <field name="relationLevel" column="RELATION_LEVEL"/>

 <field name="meetingLocation" column="MEETING_LOCATION"/>

 </class>

 </package>

</jdo>

So we've used a 1-N "CompoundIdentity" relation between Customer and BusinessRelation, and
similarly between Supplier and BusinessRelation meaning that BusinessRelation has a composite PK
define like this

1 2 0 M - N A t t r i b u t e d R e l a t i o n 743

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class BusinessRelation

{

 ...

 public static class PK implements Serializable

 {

 public LongIdentity customer; // Use same name as BusinessRelation field

 public LongIdentity supplier; // Use same name as BusinessRelation field

 public PK()

 {

 }

 public PK(String s)

 {

 StringTokenizer st = new StringTokenizer(s, "::");

 this.customer = new LongIdentity(Customer.class, st.nextToken());

 this.supplier = new LongIdentity(Supplier.class, st.nextToken());

 }

 public String toString()

 {

 return (customer.toString() + "::" + supplier.toString());

 }

 public int hashCode()

 {

 return customer.hashCode() ^ supplier.hashCode();

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return this.customer.equals(otherPK.customer) && this.supplier.equals(otherPK.supplier);

 }

 return false;

 }

 }

}

This arrangement will result in the following schema

So all we need to do now is persist some objects using these classes

1 2 0 M - N A t t r i b u t e d R e l a t i o n 744

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("jpox.properties");

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

Object holderId = null;

try

{

 tx1.begin();

 Customer cust1 = new Customer("Web design Inc");

 Supplier supp1 = new Supplier("DataNucleus Corporation");

 pm.makePersistent(cust1);

 pm.makePersistent(supp1);

 BusinessRelation rel_1_1 = new BusinessRelation(cust1, supp1, "Very Friendly", "Hilton Hotel, London");

 cust1.addRelation(rel_1_1);

 supp1.addRelation(rel_1_1);

 pm.makePersistent(rel_1_1);

 tx.commit();

}

finally

{

 if (tx1.isActive())

 {

 tx1.rollback();

 }

 pm1.close();

}

This will now have persisted an entry in table "CUSTOMER", an entry in table "SUPPLIER", and an
entry in table "BUSINESSRELATION". We can now utilise the BusinessRelation objects to update
the attributes of the M-N relation as we wish.

1 2 1 S p a t i a l T y p e s T u t o r i a l 745

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

121 Spatial Types Tutorial
...

121.1 Persistence of Spatial Data using JDO

121.1.1 Background

dataNucleus-spatial allows the use of DataNucleus as persistence layer for geospatial applications
in an environment that supports the OGC SFA specification. It allows the persistence of the Java
geometry types from the JTS topology suite as well as those from the PostGIS project.

In this tutorial, we perform the basic persistence operations over spatial types using MySQL/MariaDB
and Postgis products.

1. Step 1 : Install the database server and spatial extensions.
2. Step 2 : Download DataNucleus and PostGis libraries.
3. Step 3 : Design and implement the persistent data model.
4. Step 4 : Design and implement the persistent code.
5. Step 5 : Run your application.

121.1.2 Step 1 : Install the database server and spatial extensions

Download MySQL/MariaDB database and PostGIS. Install MySQL/MariaDB and PostGis. During
PostGis installation, you will be asked to select the database schema where the spatial extensions will
be enabled. You will use this schema to run the tutorial application.

121.1.3 Step 2 : Download DataNucleus and PostGis libraries

Download the DataNucleus core, RDBMS and Spatial jars and any dependencies. Configure your
development environment by adding the PostGIS and JDO jars to the classpath.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jdo/tree/master/geospatial
http://www.mariadb.org/
http://postgis.refractions.net/
http://www.datanucleus.org/download.html

1 2 1 S p a t i a l T y p e s T u t o r i a l 746

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

121.1.4 Step 3 : Design and implement the persistent data model

package org.datanucleus.samples.spatial;

import org.postgis.Point;

public class Position

{

 private String name;

 private Point point;

 public Position(String name, Point point)

 {

 this.name = name;

 this.point = point;

 }

 public String getName()

 {

 return name;

 }

 public Point getPoint()

 {

 return point;

 }

 public String toString()

 {

 return "[name] "+ name + " [point] "+point;

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jdo SYSTEM "file:/javax/jdo/jdo.dtd">

<jdo>

<package name="org.datanucleus.samples.jdo.spatial">

<extension vendor-name="datanucleus" key="spatial-dimension" value="2"/>

<extension vendor-name="datanucleus" key="spatial-srid" value="4326"/>

<class name="Position" table="spatialpostut" detachable="true">

<field name="name"/>

<field name="point" persistence-modifier="persistent"/>

</class>

</package>

</jdo>

The above JDO metadata has two extensions spatial-dimension and spatial-srid. These settings
specifies the format of the spatial data. SRID stands for spatial referencing system identifier and
Dimension the number of coordinates.

1 2 1 S p a t i a l T y p e s T u t o r i a l 747

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

121.1.5 Step 4 : Design and implement the persistent code

In this tutorial, we query for all locations where the X coordinate is greater than 10 and Y coordinate
is 0.

1 2 1 S p a t i a l T y p e s T u t o r i a l 748

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.spatial;

import java.sql.SQLException;

import java.util.List;

import javax.jdo.JDOHelper;

import javax.jdo.PersistenceManager;

import javax.jdo.PersistenceManagerFactory;

import javax.jdo.Query;

import javax.jdo.Transaction;

import org.postgis.Point;

public class Main

{

 public static void main(String args[]) throws SQLException

 {

 // Create a PersistenceManagerFactory for this datastore

 PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("MyUnit");

 System.out.println("DataNucleus JDO Spatial Sample");

 System.out.println("==============================");

 // Persistence of a Product and a Book.

 PersistenceManager pm = pmf.getPersistenceManager();

 Transaction tx=pm.currentTransaction();

 try

 {

 //create objects

 tx.begin();

 Position[] sps = new Position[3];

 Point[] points = new Point[3];

 points[0] = new Point("SRID=4326;POINT(5 0)");

 points[1] = new Point("SRID=4326;POINT(10 0)");

 points[2] = new Point("SRID=4326;POINT(20 0)");

 sps[0] = new Position("market",points[0]);

 sps[1] = new Position("rent-a-car",points[1]);

 sps[2] = new Position("pizza shop",points[2]);

 Point homepoint = new Point("SRID=4326;POINT(0 0)");

 Position home = new Position("home",homepoint);

 System.out.println("Persisting spatial data...");

 System.out.println(home);

 System.out.println(sps[0]);

 System.out.println(sps[1]);

 System.out.println(sps[2]);

 System.out.println("");

 pm.makePersistentAll(sps);

 pm.makePersistent(home);

 tx.commit();

 //query for the distance

 tx.begin();

 Double distance = new Double(12.0);

 System.out.println("Retriving position where distance to home is less than "+distance+" ... Found:");

 Query query = pm.newQuery(Position.class, "name != 'home' && Spatial.distance(this.point, :homepoint) < :distance");

 List list = (List) query.execute(homepoint, distance);

 for(int i=0; i<list.size(); i++)

 {

 System.out.println(list.get(i));

 }

 //clean up database.. just for fun :)

 pm.newQuery(Position.class).deletePersistentAll();

 tx.commit();

 }

 finally

 {

 if (tx.isActive())

 {

 tx.rollback();

 }

 pm.close();

 }

 System.out.println("");

 System.out.println("End of Tutorial");

 }

}

1 2 1 S p a t i a l T y p e s T u t o r i a l 749

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

We define a persistence.xml file with connection properties to MySQL

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"

 version="1.0">

 <persistence-unit name="MyTest">

 <mapping-file>org/datanucleus/samples/jdo/spatial/package.jdo</mapping-file>

 <exclude-unlisted-classes />

 <properties>

 <property name="javax.jdo.option.ConnectionURL" value="jdbc:mysql://127.0.0.1/nucleus"/>

 <property name="javax.jdo.option.ConnectionDriverName" value="com.mysql.jdbc.Driver"/>

 <property name="javax.jdo.option.ConnectionUserName" value="mysql"/>

 <property name="javax.jdo.option.ConnectionPassword" value=""/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.autoCreateColumns" value="true"/>

 </properties>

 </persistence-unit>

</persistence>

121.1.6 Step 5 : Run your application

Before running the application, you must enhancethe persistent classes. Finally, configure the
application classpath with the DataNucleus Core, DataNucleus RDBMS, DataNucleus Spatial, JDO2,
MySQL and PostGis libraries and run the application as any other java application.

The output for the application is:

DataNucleus JDO Spatial Sample

==============================

Persisting spatial data...

[name] home [point] SRID=4326;POINT(0 0)

[name] market [point] SRID=4326;POINT(5 0)

[name] rent-a-car [point] SRID=4326;POINT(10 0)

[name] pizza shop [point] SRID=4326;POINT(20 0)

Retrieving position where X position is > 10 and Y position is 0 ... Found:

[name] pizza shop [point] SRID=4326;POINT(20 0)

End of Sample

1 2 2 J P A A P I 750

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

122 JPA API
...

122.1 JPA : API
JPA defines an interface (or API) to persist normal Java objects (or POJO's in some peoples
terminology) to an RDBMS datastore. The JPA API itself is provided by the persistence-api
(or javax.persistence) JAR. DataNucleus provides an implementation of JPA, embodied in the
datanucleus-api-jpa JAR. While DataNucleus allows you to use JPA against any of its supported
datastores if you are intent on using JPA for persistence to a non-RDBMS datastore we highly
recommend that you think deeply about that decision, and consider JDO instead since the
design of JPA and in particular JPQL force assumptions to be made in how the persistence/query
process operates.

Note that this version of DataNucleus requires the JPA 2.1 API

JPA uses a definition of how the users Java objects map to the chosen datastore structure. This
mapping can be provided by way of XML metadata, or alternatively by having Java annotations in
the code. The whole point of having a standard mapping and API is that users can, in principle, swap
between implementations of JPA without changing their code. Make sure you have datanucleus-
api-jpa.jar in your CLASSPATH for this API. The process of mapping a class can be split into the
following areas

• The first thing to do is to mark the classes that are to be persisted as such
• JPA allows fields/properties to be defined for persistence, and you can control which of these

are persisted, and how they are persisted.
• Since JPA is oriented to RDBMS datastores only you now need to define the Object-Relational

Mapping (ORM)
Note that with DataNucleus, you can map your classes using JDO MetaData (XML/ Annotations)
OR using JPA MetaData (XML/ Annotations) and still use the JPA API with these classes.

At runtime the JPA code can be split into several sections.

• You firstly need to create an EntityManagerFactory to connect to a datastore
• You then need to create an EntityManager to provide the interface to persisting/accessing

objects
• Controlling the transaction
• Accessing persisted object via queries, using JPQL, or Native (SQL, CQL etc)

If in doubt about how things fit together, please make use of the JPA Tutorial

If you just want to get the JPA API javadocs, then you can access those here

122.1.1 JPA References

• JPA 2.1 Specification
• JPA 2.1 Javadocs
• JPA Group mailing lists
• ORM comparison : JDO .v. JPA

http://java.sun.com/javaee/7/docs/api/javax/persistence/package-summary.html
http://jcp.org/aboutJava/communityprocess/final/jsr338/index.html
http://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
http://java.net/projects/jpa-spec/lists
http://db.apache.org/jdo/jdo_v_jpa.html

1 2 3 C l a s s M a p p i n g 751

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

123 Class Mapping
...

123.1 JPA : Class Mapping
The first thing to decide when implementing your persistence layer is which classes are to be
persisted. If you need to persist a field/property then you must mark that class as persistable. In JPA
there are three types of persistable classes.

• Entity - persistable class with full control over its persistence.
• MappedSuperclass - persistable class that will not be persisted into its own table simply

providing some fields to be persisted. Consequently an inheritance tree cannot just have a
mapped superclass on its own. Read more

• Embeddable - persistable class that is only persistable embedded into an entity class. Read
more

Let's take a sample class (Hotel) as an example We can define a class as persistable using either
annotations in the class, or XML metadata.

To achieve the above aim with XML metadata, we do this

<entity class="org.datanucleus.test.Hotel">

 ...

</entity>

Alternatively, using JPA Annotations, like this

@Entity

public class Hotel

{

 ...

}

In the above example we have marked the class as an entity. We could equally have marked it as
mapped-superclass (using annotation @MappedSuperclass, or XML element <mapped-superclass>)
or as embeddable (using annotation @Embeddable, or XML element <embeddable>).

See also :-

• JPA XML reference
• JPA Annotations reference

123.1.1 Persistence Aware

With JPA you cannot access public fields of classes. DataNucleus allows an extension to permit this,
but such classes need special enhancement. To allow this you need to

• Annotate the class that will access these public fields (assuming it isn't an Entity) with the
DataNucleus extension annotation @PersistenceAware

You perform the annotation of the class as follows

1 2 3 C l a s s M a p p i n g 752

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PersistenceAware

public class MyClassThatAccessesPublicFields

{

 ...

}

See also :-

• Annotations reference for @PersistenceAware

123.1.2 Read-Only

You can, if you wish, make a class read-only. This is a DataNucleus extension and you set it as
follows

@Entity

@Extension(vendorName="datanucleus", key="read-only", value="true")

public class MyClass

{

 ...

}

1 2 4 A p p l i c a t i o n I d e n t i t y 753

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

124 Application Identity
...

124.1 JPA : Application Identity
With application identity you are taking control of the specification of id's to DataNucleus.
Application identity requires a primary key class (unless using SingleFieldIdentity, where one is
provided for you), and each persistent capable class may define a different class for its primary key,
and different persistent capable classes can use the same primary key class, as appropriate. With
application identity the field(s) of the primary key will be present as field(s) of the class itself. To
specify that a class is to use application identity, you add the following to the MetaData for the class.

<entity class="org.mydomain.MyClass">

 <id-class class="org.mydomain.MyIdClass"/>

 <attributes>

 <id name="myPrimaryKeyField"/>

 </attributes>

</entity>

For JPA we specify the id field and id-class. Alternatively, if we are using annotations

@Entity

@IdClass(class=MyIdClass.class)

public class MyClass

{

 @Id

 private long myPrimaryKeyField;

}

When you have an inheritance hierarchy, you should specify the identity type in the base instantiable
class for the inheritance tree. This is then used for all persistent classes in the tree. This means that you
can have MappedSuperclass without any identity fields/properties as superclass, and then the base instantiable
class is the first persistable class which has the identity field(s). This is a change from DataNucleus 2.2 where
you had to have identity fields in the base persistable class of the inheritance tree.

See also :-

• MetaData reference for <id> element
• Annotations reference for @Id

124.1.1 Primary Key

Using application identity requires the use of a Primary Key class. With JPA when you have a
single-field you don't need to provide a primary key class. Where the class has multiple fields that
form the primary key a Primary Key class must be provided (via the id-class).

See also :-

• Primary Key Guide - user-defined and built-in primary keys

1 2 4 A p p l i c a t i o n I d e n t i t y 754

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

124.1.2 Generating identities

By choosing application identity you are controlling the process of identity generation for this class.
This does not mean that you have a lot of work to do for this. JPA1 defines many ways of generating
these identities and DataNucleus supports all of these and provides some more of its own besides.

See also :-

• Identity Generation Guide - strategies for generating ids

124.1.3 Changing Identities

JPA doesn't define what happens if you change the identity (an identity field) of an object once
persistent. DataNucleus doesn't currently support changes to identities.

124.1.4 Accessing objects by Identity

You access an object from its object class name and identity "value" as follows

Object obj = em.find(MyClass.class, mykey);

If you have defined your own "IdClass" then the mykey is the toString() form if the identity of your
PK class.

124.2 JPA : PrimaryKey Classes
When you choose application identity you are defining which fields of the class are part of the
primary key, and you are taking control of the specification of id's to DataNucleus. Application
identity requires a primary key (PK) class, and each persistent capable class may define a different
class for its primary key, and different persistent capable classes can use the same primary key class,
as appropriate. If you have only a single primary-key field then there are builtin PK classes so you can
forget this section. Where you have more than 1 primary key field, you would define the PK class like
this

<entity class="MyClass">

 <id-class class="MyIdClass"/>

 ...

</entity>

or using annotations

@Entity

@IdClass(class=MyIdClass.class)

public class MyClass

{

 ...

}

You now need to define the PK class to use. This is simplified for you because if you have only one
PK field then you dont need to define a PK class and you only define it when you have a composite
PK.

An important thing to note is that the PK can only be made up of fields of the following Java types

• Primitives : boolean, byte, char, int, long, short

1 2 4 A p p l i c a t i o n I d e n t i t y 755

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• java.lang : Boolean, Byte, Character, Integer, Long, Short, String, Enum, StringBuffer
• java.math : BigInteger
• java.sql : Date, Time, Timestamp
• java.util : Date, Currency, Locale, TimeZone, UUID
• java.net : URI, URL
• persistable

Note that the types in bold are JPA standard types. Any others are DataNucleus extensions and, as
always, check the specific datastore docs to see what is supported for your datastore.

124.2.1 Single PrimaryKey field

The simplest way of using application identity is where you have a single PK field, and in this case
you use an inbuilt primary key class that DataNucleus provides, so you don't need to specify the
objectid-class. Let's take an example

public class MyClass

{

 long id;

 ...

}

<entity class="MyClass">

 <attributes>

 <id name="id"/>

 ...

 </attributes>

</entity>

or using annotations

@Entity

public class MyClass

{

 @Id

 long id;

 ...

}

So we didnt specify the JPA "id-class". You will, of course, have to give the field a value before
persisting the object, either by setting it yourself, or by using a value-strategy on that field.

124.2.2 Multiple PrimaryKey field

Since there are many possible combinations of primary-key fields it is impossible for JPA to provide
a series of builtin composite primary key classes. However the DataNucleus enhancer provides a
mechanism for auto-generating a primary-key class for a persistable class. It follows the rules listed
below and should work for all cases. Obviously if you want to tailor the output of things like the PK

1 2 4 A p p l i c a t i o n I d e n t i t y 756

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

toString() method then you ought to define your own. The enhancer generation of primary-key class is
only enabled if you don't define your own class.

124.2.3 Rules for User-Defined PrimaryKey classes

If you wish to use application identity and don't want to use the "SingleFieldIdentity" builtin
PK classes then you must define a Primary Key class of your own. You can't use classes like
java.lang.String, or java.lang.Long directly. You must follow these rules when defining your primary
key class.

• the Primary Key class must be public
• the Primary Key class must implement Serializable
• the Primary Key class must have a public no-arg constructor, which might be the default

constructor
• The PrimaryKey class can have a constructor taking the primary key fields, or can use Java bean

setters/getters
• the field types of all non-static fields in the Primary Key class must be serializable, and are

recommended to be primitive, String, Date, or Number types
• all serializable non-static fields in the Primary Key class can be public, but package/protected/

private should also be fine
• the names of the non-static fields in the Primary Key class must include the names of the primary

key fields in the Entity, and the types of the common fields must be identical
• the equals() and hashCode() methods of the Primary Key class must use the value(s) of all the

fields corresponding to the primary key fields in the JDO class
• if the Primary Key class is an inner class, it must be static
• the Primary Key class must override the toString() method defined in Object, and return a String

that can be used as the parameter of a constructor
• the Primary Key class must provide a String constructor that returns an instance that compares

equal to an instance that returned that String by the toString() method.
• the Primary Key class must be only used within a single inheritence tree.

Please note that if one of the fields that comprises the primary key is in itself a persistable object then
you have Compound Identity and should consult the documentation for that feature which contains its
own example.

124.2.4 PrimaryKey Example - Multiple Field

Here's an example of a composite (multiple field) primary key class

1 2 4 A p p l i c a t i o n I d e n t i t y 757

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

@IdClass(ComposedIdKey.class)

public class MyClass

{

 @Id

 String field1;

 @Id

 String field2;

 ...

}

public class ComposedIdKey implements Serializable

{

 public String field1;

 public String field2;

 /**

 * Default constructor.

 */

 public ComposedIdKey ()

 {

 }

 /**

 * Constructor accepting same input as generated by toString().

 */

 public ComposedIdKey(String value)

 {

 StringTokenizer token = new StringTokenizer (value, "::");

 //field1

 this.field1 = token.nextToken ();

 //field2

 this.field2 = token.nextToken ();

 }

 public boolean equals(Object obj)

 {

 if (obj == this)

 {

 return true;

 }

 if (!(obj instanceof ComposedIdKey))

 {

 return false;

 }

 ComposedIdKey c = (ComposedIdKey)obj;

 return field1.equals(c.field1) && field2.equals(c.field2);

 }

 public int hashCode ()

 {

 return this.field1.hashCode() ^ this.field2.hashCode();

 }

 public String toString ()

 {

 // Give output expected by String constructor

 return "" + this.field1 + "::" + this.field2;

 }

}

1 2 5 D a t a s t o r e I d e n t i t y 758

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

125 Datastore Identity
...

125.1 JPA : Datastore Identity

While JPA defines support for application identity only DataNucleus also provides support for
datastore identity. With datastore identity you are leaving the assignment of id's to DataNucleus
and your class will not have a field for this identity - it will be added to the datastore representation
by DataNucleus. It is, to all extents and purposes a surrogate key that will have its own column in
the datastore. To specify that a class is to use datastore identity with JPA, you define the following
annotations on your class

@Entity

@org.datanucleus.api.jpa.annotations.DatastoreIdentity

public class MyClass

{

 ...

}

Please note that since the JPA XML metadata is poorly designed it is not possible to specify datastore
identity using XML, you have to use the annotations.

When you have an inheritance hierarchy, you should specify the identity type in the base class for the
inheritance tree. This is then used for all persistent classes in the tree.

125.1.1 Generating identities

By choosing datastore identity you are handing the process of identity generation to the
DataNucleus. This does not mean that you haven't got any control over how it does this. JPA defines
many ways of generating these identities and DataNucleus supports all of these and provides some
more of its own besides.

Defining which one to use is a simple matter of adding a MetaData element to your classes definition,
like this

@Entity

@org.datanucleus.api.jpa.annotations.DatastoreIdentity(generationType=GenerationType.TABLE)

public class MyClass

{

 ...

}

See also :-

• Identity Generation Guide - strategies for generating ids
• Annotations reference for @DatastoreIdentity

1 2 5 D a t a s t o r e I d e n t i t y 759

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

125.1.2 Accessing the Identity

When using datastore identity, the class has no associated field so you can't just access a field of the
class to see its identity - if you need a field to be able to access the identity then you should be using
application identity. There are, however, ways to get the identity for the datastore identity case, if you
have the object.

import org.datanucleus.api.jpa.NucleusJPAHelper;

Object idKey = NucleusJPAHelper.getDatastoreIdForEntity(obj);

From this you can use the "find" method to retrieve the object

Object obj = em.find(MyClass.class, idKey);

1 2 6 C o m p o u n d I d e n t i t y 760

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

126 Compound Identity
...

126.1 JPA : Compound Identity Relationships
An identifying relationship (or "compound identity relationship") is a relationship between two
objects of two classes in which the child object must coexist with the parent object and where the
primary key of the child includes the Entity object of the parent. So effectively the key aspect of this
type of relationship is that the primary key of one of the classes includes a Entity field (hence why is
is referred to as Compound Identity). This type of relation is available in the following forms

• 1-1 unidirectional
• 1-N collection bidirectional using ForeignKey
• 1-N map bidirectional using ForeignKey (key stored in value)

126.1.1 1-1 Relationship

Lets take the same classes as we have in the 1-1 Relationships. In the 1-1 relationships guide we note
that in the datastore representation of the User and Account the ACCOUNT table has a primary key
as well as a foreign-key to USER. In our example here we want to just have a primary key that is also
a foreign-key to USER. To do this we need to modify the classes slightly and add primary-key fields
and use "application-identity".

In addition we need to define primary key classes for our User and Account classes

1 2 6 C o m p o u n d I d e n t i t y 761

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class User

{

 long id;

 ... (remainder of User class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public long id;

 public PK()

 {

 }

 public PK(String s)

 {

 this.id = Long.valueOf(s).longValue();

 }

 public String toString()

 {

 return "" + id;

 }

 public int hashCode()

 {

 return (int)id;

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.id == this.id;

 }

 return false;

 }

 }

}

public class Account

{

 User user;

 ... (remainder of Account class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public User.PK user; // Use same name as the real field above

 public PK()

 {

 }

 public PK(String s)

 {

 StringTokenizer token = new StringTokenizer(s,"::");

 this.user = new User.PK(token.nextToken());

 }

 public String toString()

 {

 return "" + this.user.toString();

 }

 public int hashCode()

 {

 return user.hashCode();

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return this.user.equals(otherPK.user);

 }

 return false;

 }

 }

}

1 2 6 C o m p o u n d I d e n t i t y 762

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

To achieve what we want with the datastore schema we define the MetaData like this

<entity-mappings>

 <entity class="mydomain.User">

 <table name="USER"/>

 <id-class class="mydomain.User.PK"/>

 <attributes>

 <id name="id">

 <column name="USER_ID"/>

 </id>

 <basic name="login">

 <column name="LOGIN" length="20"/>

 </basic>

 </entity>

 <entity class="mydomain.Account">

 <table name="ACCOUNT"/>

 <id-class class="mydomain.Account.PK"/>

 <attributes>

 <id name="user">

 <column name="USER_ID"/>

 </id>

 <basic name="firstName">

 <column name="FIRSTNAME" length="50"/>

 </basic>

 <basic name="secondName">

 <column name="LASTNAME" length="50"/>

 </basic>

 <one-to-one name="user"/>

 </attributes>

 </entity>

</entity-mappings>

So now we have the following datastore schema

Things to note :-

• In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes

1 2 6 C o m p o u n d I d e n t i t y 763

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• You can only have one "Account" object linked to a particular "User" object since the FK to the
"User" is now the primary key of "Account". To remove this restriction you could also add a
"long id" to "Account" and make the "Account.PK" a composite primary-key

126.1.2 1-N Collection Relationship

Lets take the same classes as we have in the 1-N Relationships (FK). In the 1-N relationships guide
we note that in the datastore representation of the Account and Address classes the ADDRESS table
has a primary key as well as a foreign-key to ACCOUNT. In our example here we want to have the
primary-key to ACCOUNT to include the foreign-key. To do this we need to modify the classes
slightly, adding primary-key fields to both classes, and use "application-identity" for both.

In addition we need to define primary key classes for our Account and Address classes

1 2 6 C o m p o u n d I d e n t i t y 764

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 long id; // PK field

 Set addresses = new HashSet();

 ... (remainder of Account class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public long id;

 public PK()

 {

 }

 public PK(String s)

 {

 this.id = Long.valueOf(s).longValue();

 }

 public String toString()

 {

 return "" + id;

 }

 public int hashCode()

 {

 return (int)id;

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.id == this.id;

 }

 return false;

 }

 }

}

public class Address

{

 long id;

 Account account;

 .. (remainder of Address class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public long id; // Same name as real field above

 public Account.PK account; // Same name as the real field above

 public PK()

 {

 }

 public PK(String s)

 {

 StringTokenizer token = new StringTokenizer(s,"::");

 this.id = Long.valueOf(token.nextToken()).longValue();

 this.account = new Account.PK(token.nextToken());

 }

 public String toString()

 {

 return "" + id + "::" + this.account.toString();

 }

 public int hashCode()

 {

 return (int)id ^ account.hashCode();

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.id == this.id && this.account.equals(otherPK.account);

 }

 return false;

 }

 }

}

1 2 6 C o m p o u n d I d e n t i t y 765

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

To achieve what we want with the datastore schema we define the MetaData like this

<entity-mappings>

 <entity class="mydomain.Account">

 <table name="ACCOUNT"/>

 <id-class class="mydomain.Account.PK"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 <basic name="firstName">

 <column name="FIRSTNAME" length="50"/>

 </basic>

 <basic name="secondName">

 <column name="LASTNAME" length="50"/>

 </basic>

 <one-to-many name="addresses" mapped-by="account"/>

 </entity>

 <entity class="mydomain.Address">

 <table name="ADDRESS"/>

 <id-class class="mydomain.Address.PK"/>

 <attributes>

 <id name="id">

 <column name="ID"/>

 </id>

 <id name="account">

 <column name="ACCOUNT_ID"/>

 </id>

 <basic name="city">

 <column name="CITY"/>

 </basic>

 <basic name="street">

 <column name="STREET"/>

 </basic>

 <many-to-one name="account"/>

 </attributes>

 </entity>

</entity-mappings>

So now we have the following datastore schema

Things to note :-

1 2 6 C o m p o u n d I d e n t i t y 766

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes
• If we had omitted the "id" field from "Address" it would have only been possible to have one

"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have
the "id" field too.

126.1.3 1-N Map Relationship

Lets take the same classes as we have in the 1-N Relationships (FK). In this guide we note that in
the datastore representation of the Account and Address classes the ADDRESS table has a primary
key as well as a foreign-key to ACCOUNT. In our example here we want to have the primary-key
to ACCOUNT to include the foreign-key. To do this we need to modify the classes slightly, adding
primary-key fields to both classes, and use "application-identity" for both.

In addition we need to define primary key classes for our Account and Address classes

1 2 6 C o m p o u n d I d e n t i t y 767

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 long id; // PK field

 Set addresses = new HashSet();

 ... (remainder of Account class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public long id;

 public PK()

 {

 }

 public PK(String s)

 {

 this.id = Long.valueOf(s).longValue();

 }

 public String toString()

 {

 return "" + id;

 }

 public int hashCode()

 {

 return (int)id;

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.id == this.id;

 }

 return false;

 }

 }

}

public class Address

{

 String alias;

 Account account;

 .. (remainder of Address class)

 /**

 * Inner class representing Primary Key

 */

 public static class PK implements Serializable

 {

 public String alias; // Same name as real field above

 public Account.PK account; // Same name as the real field above

 public PK()

 {

 }

 public PK(String s)

 {

 StringTokenizer token = new StringTokenizer(s,"::");

 this.alias = Long.valueOf(token.nextToken()).longValue();

 this.account = new Account.PK(token.nextToken());

 }

 public String toString()

 {

 return alias + "::" + this.account.toString();

 }

 public int hashCode()

 {

 return alias.hashCode() ^ account.hashCode();

 }

 public boolean equals(Object other)

 {

 if (other != null && (other instanceof PK))

 {

 PK otherPK = (PK)other;

 return otherPK.alias.equals(this.alias) && this.account.equals(otherPK.account);

 }

 return false;

 }

 }

}

1 2 6 C o m p o u n d I d e n t i t y 768

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

To achieve what we want with the datastore schema we define the MetaData like this

<entity-mappings>

 <entity class="mydomain.Account">

 <table name="ACCOUNT"/>

 <id-class class="mydomain.Account.PK"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 <basic name="firstName">

 <column name="FIRSTNAME" length="50"/>

 </basic>

 <basic name="secondName">

 <column name="LASTNAME" length="50"/>

 </basic>

 <one-to-many name="addresses" mapped-by="account">

 <map-key name="alias"/>

 </one-to-many>

 </entity>

 <entity class="mydomain.Address">

 <table name="ADDRESS"/>

 <id-class class="mydomain.Address.PK"/>

 <attributes>

 <id name="account">

 <column name="ACCOUNT_ID"/>

 </id>

 <id name="alias">

 <column name="KEY"/>

 </id>

 <basic name="city">

 <column name="CITY"/>

 </basic>

 <basic name="street">

 <column name="STREET"/>

 </basic>

 <many-to-one name="account"/>

 </attributes>

 </entity>

</entity-mappings>

So now we have the following datastore schema

1 2 6 C o m p o u n d I d e n t i t y 769

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Things to note :-

• In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes
• If we had omitted the "alias" field from "Address" it would have only been possible to have one

"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have
the "alias" field too as part of the PK.

1 2 7 V e r s i o n i n g 770

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

127 Versioning
...

127.1 JPA : Versioning
JPA allows objects of classes to be versioned. The version is typically used as a way of detecting
if the object has been updated by another thread or EntityManager since retrieval using the current
EntityManager - for use by Optimistic Transactions.

127.1.1 Version Field/Property

JPAs mechanism for versioning of objects is to mark a field of the class to store the version. The field
must be Integer/Long based. With JPA you can specify the details of this version field as follows.

<entity name="mydomain.User">

 <attributes>

 <id name="id"/>

 <version name="version"/>

 </attributes>

</entity>

or alternatively using annotations

@Entity

public class User

{

 @Id

 long id;

 @Version

 int version;

 ...

}

The specification above will use the "version" field for storing the version of the object. DataNucleus
will use a "version-number" strategy for populating the value.

127.1.2 Surrogate Version for Class

While the above mechanism should always be used for portability, DataNucleus also supports a
surrogate version for objects of a class. With this you don't have a particular field that stores the
version and instead DataNucleus persists the version in the datastore with the field values in its own
"column" You do this as follows.

1 2 7 V e r s i o n i n g 771

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity name="mydomain.User">

 <surrogate-version column="version"/>

 <attributes>

 <id name="id"/>

 </attributes>

</entity>

or alternatively using annotations

import org.datanucleus.api.jpa.annotations.SurrogateVersion;

@Entity

@SurrogateVersion

public class User

{

 @Id

 long id;

 ...

}

To access the "surrogate" version, you can make use of the following method

import org.datanucleus.api.jpa.NucleusJPAHelper;

Object version = NucleusJPAHelper.getSurrogateVersionForEntity(obj);

1 2 8 I n h e r i t a n c e 772

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

128 Inheritance
...

128.1 JPA : Inheritance Strategies
In Java it is a normal situation to have inheritance between classes. With JPA you have choices to
make as to how you want to persist your classes for the inheritance tree. For each inheritance tree (for
the root class) you select how you want to persist those classes information. You have the following
choices.

1. The default strategy is to select a class to have its fields persisted in the table of the base class.
There is only one table per inheritance hierarchy. In JPA this is known as SINGLE_TABLE.

2. The next way is to have a table for each class in the inheritance hierarchy, and for each table to
only hold columns for the fields of that class. Fields of superclasses are persisted into the table
of the superclass. Consequently to get all field values for a subclass object a join is made of all
tables of superclasses. In JPA this is referred to as JOINED

3. The third way is like JOINED except that each table will also contain columns for all inherited
fields. In JPA this is referred to as TABLE_PER_CLASS.

In order to demonstrate the various inheritance strategies we need an example. Here are a few simple
classes representing products in a (online) store. We have an abstract base class, extending this to
provide something that we can represent any product by. We then provide a few specialisations for
typical products. We will use these classes later when defining how to persistent these objects in the
different inheritance strategies.

1 2 8 I n h e r i t a n c e 773

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The default JPA strategy is "SINGLE_TABLE", namely that the base class will have a table and all
subclasses will be persisted into that same table. So if you dont specify an "inheritance strategy" in
your root class this is what you will get.

Please note that you must specify the identity of objects in the root persistable class of the inheritance
hierarchy. You cannot redefine it down the inheritance tree

See also :-

• MetaData reference for <inheritance> element
• MetaData reference for <discriminator-column> element
• Annotations reference for @Inheritance
• Annotations reference for @DiscriminatorColumn

1 2 8 I n h e r i t a n c e 774

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

128.1.1 Discriminator

Applicable to RDBMS, HBase, MongoDB

A discriminator is an extra "column" stored alongside data to identify the class of which that
information is part. It is useful when storing objects which have inheritance to provide a quick way of
determining the object type on retrieval. A discriminator in JPA will store the a specified value (or the
class name if you provide no value). You specify a discriminator as follows

<entity name="mydomain.Product">

 <discriminator-column name="OBJECT" discriminator-type="STRING"/>

 <discriminator-value>MyClass</discriminator-value>

 ...

or with annotations

@Entity

@DiscriminatorColumn(name="OBJECT_TYPE", discriminatorType=DiscriminatorType.STRING)

@DiscriminatorValue("MyClass")

public class Product {...}

128.1.2 SINGLE_TABLE

Applicable to RDBMS

"SINGLE_TABLE" strategy is where the root class has a table and all subclasses are also persisted
into that table. This corresponds to JDOs "new-table" for the root class and "superclass-table" for all
subclasses. This has the advantage that retrieval of an object is a single DB call to a single table. It
also has the disadvantage that the single table can have a very large number of columns, and database
readability and performance can suffer, and additionally that a discriminator column is required.
In our example, lets ignore the AbstractProduct class for a moment and assume that Product is
the base class (with the "id"). We have no real interest in having separate tables for the Book and
CompactDisc classes and want everything stored in a single table PRODUCT. We change our
MetaData as follows

1 2 8 I n h e r i t a n c e 775

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity name="Product">

 <inheritance strategy="SINGLE_TABLE"/>

 <discriminator-value>PRODUCT</discriminator-value>

 <discriminator-column name="PRODUCT_TYPE" discriminator-type="STRING"/>

 <attributes>

 <id name="id">

 <column name="PRODUCT_ID"/>

 </id>

 <basic name="price">

 <column name="PRICE"/>

 </basic>

 </attributes>

</entity>

<entity name="Book">

 <discriminator-value>BOOK</discriminator-value>

 <attributes>

 <basic name="isbn">

 <column name="ISBN"/>

 </basic>

 <basic name="author">

 <column name="AUTHOR"/>

 </basic>

 <basic name="title">

 <column name="TITLE"/>

 </basic>

 </attributes>

</entity>

<entity name="TravelGuide">

 <discriminator-value>TRAVELGUIDE</discriminator-value>

 <attributes>

 <basic name="country">

 <column name="COUNTRY"/>

 </basic>

 </attributes>

</entity>

<entity name="CompactDisc">

 <discriminator-value>COMPACTDISC</discriminator-value>

 <attributes>

 <basic name="artist">

 <column name="ARTIST"/>

 </basic>

 <basic name="title">

 <column name="DISCTITLE"/>

 </basic>

 </attributes>

</entity>

or using annotations

1 2 8 I n h e r i t a n c e 776

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

public class Product {...}

This change of use of the inheritance element has the effect of using the PRODUCT table for all
classes, containing the fields of Product, Book, CompactDisc, and TravelGuide. You will also
note that we used a discriminator-column element for the Product class. The specification above
will result in an extra column (called PRODUCT_TYPE) being added to the PRODUCT table, and
containing the "discriminator-value" of the object stored. So for a Book it will have "BOOK" in that
column for example. This column is used in discriminating which row in the database is of which
type. The final thing to note is that in our classes Book and CompactDisc we have a field that is
identically named. With CompactDisc we have defined that its column will be called DISCTITLE
since both of these fields will be persisted into the same table and would have had identical names
otherwise - this gets around the problem.

In the above example, when we insert a TravelGuide object into the datastore, a row will be inserted
into the PRODUCT table only.

128.1.3 JOINED

Applicable to RDBMS

"JOINED" strategy means that each entity in the inheritance hierarchy has its own table and that
the table of each class only contains columns for that class. Inherited fields are persisted into the
tables of the superclass(es). This corresponds to JDO2s "new-table" (for all classes in the inheritance
hierarchy). This has the advantage of being the most normalised data definition. It also has the
disadvantage of being slower in performance since multiple tables will need to be accessed to retrieve
an object of a sub-type. Let's try an example using the simplest to understand strategy JOINED. We
have the classes defined above, and we want to persist our classes each in their own table. We define
the Meta-Data for our classes like this

1 2 8 I n h e r i t a n c e 777

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity class="AbstractProduct">

 <inheritance strategy="JOINED"/>

 <attributes>

 <id name="id">

 <column name="PRODUCT_ID"/>

 </id>

 <basic name="name">

 <column name="NAME"/>

 </basic>

 <basic name="description">

 <column name="DESCRIPTION"/>

 </basic>

 </attributes>

</entity>

<entity class="Product">

 <attributes>

 <basic name="price">

 <column name="PRICE"/>

 </basic>

 </attributes>

</entity>

<entity class="Book">

 <attributes>

 <basic name="isbn">

 <column name="ISBN"/>

 </basic>

 <basic name="author">

 <column name="AUTHOR"/>

 </basic>

 <basic name="title">

 <column name="TITLE"/>

 </basic>

 </attributes>

</entity>

<entity class="TravelGuide">

 <attributes>

 <basic name="country">

 <column name="COUNTRY"/>

 </basic>

 </attributes>

</entity>

<entity class="CompactDisc">

 <attributes>

 <basic name="artist">

 <column name="ARTIST"/>

 </basic>

 <basic name="title">

 <column name="TITLE"/>

 </basic>

 </attributes>

</entity>

1 2 8 I n h e r i t a n c e 778

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

or using annotations

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

public class Product {...}

So we will have 5 tables - ABSTRACTPRODUCT, PRODUCT, BOOK, COMPACTDISC, and
TRAVELGUIDE. They each contain just the fields for that class (and not any inherited fields, except
the identity to join with).

In the above example, when we insert a TravelGuide object into the datastore, a row will be inserted
into ABSTRACTPRODUCT, PRODUCT, BOOK, and TRAVELGUIDE.

128.1.4 TABLE_PER_CLASS

Applicable to all datastores

This strategy is like "JOINED" except that in addition to each class having its own table, the table also
holds columns for all inherited fields. So taking the same classes as used above

1 2 8 I n h e r i t a n c e 779

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity class="AbstractProduct">

 <inheritance strategy="TABLE_PER_CLASS"/>

 <attributes>

 <id name="id">

 <column name="PRODUCT_ID"/>

 </id>

 <basic name="name">

 <column name="NAME"/>

 </basic>

 <basic name="description">

 <column name="DESCRIPTION"/>

 </basic>

 </attributes>

</entity>

<entity class="Product">

 <attributes>

 <basic name="price">

 <column name="PRICE"/>

 </basic>

 </attributes>

</entity>

<entity class="Book">

 <attributes>

 <basic name="isbn">

 <column name="ISBN"/>

 </basic>

 <basic name="author">

 <column name="AUTHOR"/>

 </basic>

 <basic name="title">

 <column name="TITLE"/>

 </basic>

 </attributes>

</entity>

<entity class="TravelGuide">

 <attributes>

 <basic name="country">

 <column name="COUNTRY"/>

 </basic>

 </attributes>

</entity>

<entity class="CompactDisc">

 <attributes>

 <basic name="artist">

 <column name="ARTIST"/>

 </basic>

 <basic name="title">

 <column name="TITLE"/>

 </basic>

 </attributes>

</entity>

1 2 8 I n h e r i t a n c e 780

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

or using annotations

@Entity

@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)

public class Product {...}

This then implies a datastore schema as follows

So any object of explicit type Book is persisted into the table BOOK. Similarly any TravelGuide is
persisted into the table TRAVELGUIDE, etc In addition if any class in the inheritance tree is abstract
then it won't have a table since there cannot be any instances of that type. DataNucleus currently has
limitations when using a class using this inheritance as the element of a collection.

128.1.5 Mapped Superclasses

JPA defines entities called "mapped superclasses" for the situation where you dont persist an actual
object of a superclass type but that all subclasses of that type that are entities will also persist the
values for the fields of the "mapped superclass". That is a "mapped superclass" has no table to store
its objects in a datastore. Instead its fields are stored in the tables of its subclasses. Let's take an
example

1 2 8 I n h e r i t a n c e 781

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<mapped-superclass class="AbstractProduct">

 <attributes>

 <id name="id">

 <column name="PRODUCT_ID"/>

 </id>

 <basic name="name">

 <column name="NAME"/>

 </basic>

 <basic name="description">

 <column name="DESCRIPTION"/>

 </basic>

 </attributes>

</mapped-superclass>

<entity class="Product">

 <attributes>

 <basic name="price">

 <column name="PRICE"/>

 </basic>

 </attributes>

</entity>

In this case we will have a table for Product and the fields of AbstractProduct will be stored in this
table. If the mapping information (column names etc) for these fields need setting then you should use
<attribute-override> in the MetaData for Product.

1 2 9 F i e l d s / P r o p e r t i e s 782

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

129 Fields/Properties
...

129.1 JPA : Persistent Fields or Properties
Now that we have defined the class as persistable we need to define how to persist the different fields/
properties that are to be persisted. Please note that JPA cannot persist static or final fields. There
are two distinct modes of persistence definition; the most common uses fields, whereas an alternative
uses properties.

129.1.1 Persistent Fields

The most common form of persistence is where you have a field in a class and want to persist it to the
datastore. With this mode of operation DataNucleus will persist the values stored in the fields into the
datastore, and will set the values of the fields when extracting it from the datastore.

Requirement : you have a field in the class. This can be public, protected, private or package
access, but cannot be static or final.
An example of how to define the persistence of a field is shown below

@Entity

public class MyClass

{

 @Basic

 Date birthday;

 @Transient

 String someOtherField;

}

So, using annotations, we have marked this class as persistent, and the field birthday also as
persistent, whereas field someOtherField is not persisted. Using XML MetaData we would have done

<entity name="mydomain.MyClass">

 <attributes>

 <basic name="birthday"/>

 <transient name="someOtherField"/>

 </attributes>

</entity>

Please note that the field Java type defines whether it is, by default, persistable. Look at the
Types Guide and if the type has a tick in the column "Persistent?" then you can omit the "basic"
specification.

129.1.2 Persistent Properties

A second mode of operation is where you have Java Bean-style getter/setter for a property. In this
situation you want to persist the output from getXXX to the datastore, and use the setXXX to load up
the value into the object when extracting it from the datastore.

Requirement : you have a property in the class with Java Bean getter/setter methods. These
methods can be public, protected, private or package access, but cannot be static. The class
must have BOTH getter AND setter methods.

1 2 9 F i e l d s / P r o p e r t i e s 783

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

An example of how to define the persistence of a property is shown below

@Entity

public class MyClass

{

 @Basic

 Date getBirthday()

 {

 ...

 }

 void setBirthday(Date date)

 {

 ...

 }

}

So, using annotations, we have marked this class as persistent, and the getter is marked as persistent.
By default a property is non-persistent, so we have no need in specifying the someOtherField as
transient. Using XML MetaData we would have done

<entity name="mydomain.MyClass">

 <attributes>

 <basic name="birthday"/>

 </attributes>

</entity>

129.1.3 Field/Property positioning

With some datastores (notably spreadsheets) it is desirable to be able to specify the relative position
of a column. The default (for DataNucleus) is just to put them in ascending alphabetical order. JPA
doesn't allow configuration of this, but DataNucleus provides the following vendor extension. It is
currently only possible using (DataNucleus) annotations

1 2 9 F i e l d s / P r o p e r t i e s 784

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

@Table(name="People")

public class Person

{

 @Id

 @ColumnPosition(0)

 long personNum;

 @ColumnPosition(1)

 String firstName;

 @ColumnPosition(2)

 String lastName;

}

1 3 0 J a v a T y p e s 785

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

130 Java Types
...

130.1 JPA : Persistable Java Types
When persisting a class, a persistence solution needs to know how to persist the types of each field
in the class. Clearly a persistence solution can only support a finite number of Java types; it cannot
know how to persist every possible type creatable. The JPA specification define lists of types that
are required to be supported by all implementations of those specifications. This support can be
conveniently split into two parts

130.1.1 Primary Types

An object that can be referred to (object reference, providing a relation) and that has an "identity" is
termed a primary type. DataNucleus supports the following Java types as primary

• persistable : any Entity that can be persisted with its own identity in the datastore
• interface where the interface field represents an Entity
• java.lang.Object where the field represents an Entity

130.1.2 Secondary Types

An object that does not have an "identity" is termed a secondary type. This is something like a String
or Date field in a class, or alternatively a Collection (that contains other objects), or an embedded
Entity. The table below shows the currently supported secondary java types in DataNucleus. The
table shows

• Extension? : whether the type is JPA standard, or is a DataNucleus extension
• EAGER : whether the field is retrieved by default when retrieving the object itself.
• Persistent : whether the field is persisted by default, or whether the user has to mark the field as

persistent in XML/annotations to persist it
• Proxied : whether the field is represented by a "proxy" that intercepts any operations to detect

whether it has changed internally (such as a Collection, Map).
• PK : whether the field can be used as part of the primary-key

Java Type Extension? EAGER? Persistent? Proxied? PK? Plugin

boolean datanucleus-
core

byte datanucleus-
core

char datanucleus-
core

double datanucleus-
core

float datanucleus-
core

int datanucleus-
core

long datanucleus-
core

1 3 0 J a v a T y p e s 786

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

short datanucleus-
core

boolean[] datanucleus-
core

byte[] datanucleus-
core

char[] datanucleus-
core

double[] datanucleus-
core

float[] datanucleus-
core

int[] datanucleus-
core

long[] datanucleus-
core

short[] datanucleus-
core

java.lang.Boolean datanucleus-
core

java.lang.Byte datanucleus-
core

java.lang.Character datanucleus-
core

java.lang.Double datanucleus-
core

java.lang.Float datanucleus-
core

java.lang.Integer datanucleus-
core

java.lang.Long datanucleus-
core

java.lang.Short datanucleus-
core

java.lang.Boolean[] datanucleus-
core

java.lang.Byte[] datanucleus-
core

java.lang.Character[] datanucleus-
core

java.lang.Double[] datanucleus-
core

java.lang.Float[] datanucleus-
core

java.lang.Integer[] datanucleus-
core

1 3 0 J a v a T y p e s 787

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.lang.Long[] datanucleus-
core

java.lang.Short[] datanucleus-
core

java.lang.Number
[2]

datanucleus-
core

java.lang.Object datanucleus-
core

java.lang.String datanucleus-
core

java.lang.StringBuffer
[1]

datanucleus-
core

java.lang.String[] datanucleus-
core

java.lang.Class datanucleus-
core

java.math.BigDecimal datanucleus-
core

java.math.BigInteger datanucleus-
core

java.math.BigDecimal[] datanucleus-
core

java.math.BigInteger[] datanucleus-
core

java.sql.Date datanucleus-
core

java.sql.Time datanucleus-
core

java.sql.Timestamp datanucleus-
core

java.util.ArrayList datanucleus-
core

java.util.BitSet datanucleus-
core

java.util.Calendar
[5]

datanucleus-
core

java.util.Collection datanucleus-
core

java.util.Currency datanucleus-
core

java.util.Date datanucleus-
core

java.util.Date[] datanucleus-
core

java.util.GregorianCalendar
[5]

datanucleus-
core

1 3 0 J a v a T y p e s 788

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.util.HashMap datanucleus-
core

java.util.HashSet datanucleus-
core

java.util.Hashtable datanucleus-
core

java.util.LinkedHashMap
[3]

datanucleus-
core

java.util.LinkedHashSet
[4]

datanucleus-
core

java.util.LinkedList datanucleus-
core

java.util.List datanucleus-
core

java.util.Locale datanucleus-
core

java.util.Locale[] datanucleus-
core

java.util.Map datanucleus-
core

java.util.Properties datanucleus-
core

java.util.PriorityQueue datanucleus-
core

java.util.Queue datanucleus-
core

java.util.Set datanucleus-
core

java.util.SortedMap datanucleus-
core

java.util.SortedSet datanucleus-
core

java.util.Stack datanucleus-
core

java.util.TimeZone datanucleus-
core

java.util.TreeMap datanucleus-
core

java.util.TreeSet datanucleus-
core

java.util.UUID datanucleus-
core

java.util.Vector datanucleus-
core

java.awt.Color datanucleus-
core

1 3 0 J a v a T y p e s 789

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java.awt.image.BufferedImage datanucleus-
core

java.awt.Point datanucleus-
geospatial

java.awt.Rectangle datanucleus-
geospatial

java.net.URI datanucleus-
core

java.net.URL datanucleus-
core

java.io.Serializable datanucleus-
core

java.io.File [6] datanucleus-
rdbms

persistable datanucleus-
core

persistable[] datanucleus-
core

java.lang.Enum datanucleus-
core

java.lang.Enum[] datanucleus-
core

java.time.LocalDateTime datanucleus-
java8

java.time.LocalTime datanucleus-
java8

java.time.LocalDate datanucleus-
java8

java.time.MonthDay datanucleus-
java8

java.time.YearMonth datanucleus-
java8

java.time.Year datanucleus-
java8

java.time.Period datanucleus-
java8

java.time.Instant datanucleus-
java8

java.time.Duration datanucleus-
java8

java.time.ZoneId datanucleus-
java8

java.time.ZoneOffset datanucleus-
java8

org.joda.time.DateTime datanucleus-
jodatime

1 3 0 J a v a T y p e s 790

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

org.joda.time.LocalTime datanucleus-
jodatime

org.joda.time.LocalDate datanucleus-
jodatime

org.joda.time.LocalDateTime datanucleus-
jodatime

org.joda.time.Duration datanucleus-
jodatime

org.joda.time.Interval datanucleus-
jodatime

org.joda.time.Period datanucleus-
jodatime

com.google.common.collect.Multiset datanucleus-
guava

• [1] - java.lang.StringBuffer dirty check mechanism is limited to immutable mode, it means, if
you change a StringBuffer object field, you must reassign it to the owner object field to make
sure changes are propagated to the database.

• [2] - java.lang.Number will be stored in a column capable of storing a BigDecimal, and will
store to the precision of the object to be persisted. On reading back the object will be returned
typically as a BigDecimal since there is no mechanism for determing the type of the object that
was stored.

• [3] - java.util.LinkedHashMap treated as a Map currently. No List-ordering is supported.
• [4] - java.util.LinkedHashSet treated as a Set currently. No List-ordering is supported.
• [5] - java.util.Calendar is, by default, stored in one column (Timestamp - assumes that this stores

the TimeZone) but can be stored into two columns (millisecs, Timezone) if requested.
• [6] - available only for RDBMS, persisted into LONGVARBINARY, and retrieved as

streamable so as not to adversely affect memory utilisation, hence suitable for large files.
Note that support is available for persisting other types depending on the datastore to which you are
persisting

• RDBMS GeoSpatial types via the DataNucleus RDBMS Spatial plugin
If you have support for any additional types and would either like to contribute them, or have them
listed here, let us know

You can add support for other basic Java types quite easily, particularly if you can store it as a String
or Long and then retrieve it back into its object form from that - See the Java Types plugin-point You
can also define more specific support for it with RDBMS datastores - See the RDBMS Java Types
plugin-point

130.1.3 SortedSet/SortedMap/Queue/PriorityQueue

SortedSet (and implementations) allow the user to have a comparator to order the elements of the set.
When an object is pulled back from the datastore via query JPA would need to know the class name
of the comparator to use. You specify it like this

1 3 0 J a v a T y p e s 791

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 @OneToMany

 @Extension(vendorName="datanucleus", key="comparator-name", value="mydomain.model.MyComparator")

 SortedSet<MyElementType> elements;

and when instantiating the SortedSet field will create it with a comparator of the specified class
(which must have a default constructor). Same for Queue, PriorityQueue and SortedMap.

130.1.4 JPA Attribute Converters

JPA2.1 introduces an API for conversion of an attribute of an Entity to its datastore value. You can
define a "converter" that will convert to the datastore value and back from it, implementing this
interface.

public interface AttributeConverter<X,Y>

{

 public Y convertToDatabaseColumn (X attributeObject);

 public X convertToEntityAttribute (Y dbData);

}

so if we have a simple converter to allow us to persist fields of type URL in a String form in the
datastore, like this

1 3 0 J a v a T y p e s 792

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class URLStringConverter implements AttributeConverter<URL, String>

{

 public URL convertToEntityAttribute(String str)

 {

 if (str == null)

 {

 return null;

 }

 URL url = null;

 try

 {

 url = new java.net.URL(str.trim());

 }

 catch (MalformedURLException mue)

 {

 throw new IllegalStateException("Error converting the URL", mue);

 }

 return url;

 }

 public String convertToDatabaseColumn(URL url)

 {

 return url != null ? url.toString() : null;

 }

}

and now in our Entity class we mark any URL field as being converted using this converter

@Entity

public class MyClass

{

 @Id

 long id;

 @Basic

 @Convert(converter=URLStringConverter.class)

 URL url;

 ...

}

Note that in strict JPA 2.1 you have to mark all converters with the @Converter annotation. In
DataNucleus if you specify the converter class name in the @Convert then we know its a converter
so don't really see why we need a user to annotate the converter too. We only require annotation as
@Converter if you want the converter to always be applied to fields of a particular type. i.e if you
want all URL fields to be persisted using the above converter (without needing to put @Convert on
each field of that type) then you would add the annotation

1 3 0 J a v a T y p e s 793

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Converter(autoApply=true)

public class URLStringConverter implements AttributeConverter<URL, String>

{

 ...

}

Note that if you have some java type with a @Converter registered to "autoApply", you can turn it off
on a field-by-field basis with

 @Convert(disableConversion=true)

 URL url;

A further use of AttributeConverter is where you want to apply type conversion to the key/value of
a Map field, or to the element of a Collection field. The Collection element case is simple, you just
specify the @Convert against the field and it will be applied to the element. If you want to apply type
conversion to a key/value of a map do this.

 @Convert(attributeName="key", converter=URLStringConverter.class)

 Map<URL, OtherEntity> myMap;

So we specify the attributeName to be key, and to use it on the value we would set it to value.

130.1.5 Enums

By default an Enum is persisted as either a String form (the name), or as an integer form (the ordinal).
You control which form by specifying the @Enumerated annotation (or equivalent XML).

An extension to this for RDBMS is where you have an Enum that defines its own "value"s for the
different enum options.

1 3 0 J a v a T y p e s 794

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public enum MyColour

{

 RED((short)1), GREEN((short)3), BLUE((short)5), YELLOW((short)8);

 private short value;

 private MyColour(short value)

 {

 this.value = value;

 }

 public short getValue()

 {

 return value;

 }

 public static MyColour getEnumByValue(short value)

 {

 switch (value)

 {

 case 1:

 return RED;

 case 3:

 return GREEN;

 case 5:

 return BLUE;

 default:

 return YELLOW;

 }

 }

}

With the default persistence it would persist as String-based, so persisting "RED" "GREEN" "BLUE"
etc. With jdbc-type as INTEGER it would persist 0, 1, 2, 3 being the ordinal values. If you define the
metadata as

@Extensions({

 @Extension(vendorName="datanucleus", key="enum-getter-by-value", value="getEnumByValue"),

 @Extension(vendorName="datanucleus", key="enum-value-getter", value="getValue")

 })

MyColour colour;

this will now persist 1, 3, 5, 8, being the "value" of each of the enum options.

130.1.6 Eclipse EMF models

You could try to persist Eclipse EMF models using the Texo project to generate POJOs

http://wiki.eclipse.org/Texo

1 3 1 V a l u e G e n e r a t i o n 795

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

131 Value Generation
...

131.1 JPA : Value Generation
Fields of a class can either have the values set by you the user, or you can set DataNucleus to generate
them for you. This is of particular importance with identity fields where you want unique identities.
You can use this value generation process with the identity field(s) in JPA. There are many different
"strategies" for generating values, as defined by the JPA specification. Some strategies are specific to
a particular datastore, and some are generic. You should choose the strategy that best suits your target
datastore. The available strategies are :-

• AUTO - this is the default and allows DataNucleus to choose the most suitable for the datastore
• SEQUENCE - this uses a datastore sequence (if supported by the datastore)
• IDENTITY - these use autoincrement/identity/serial features in the datastore (if supported by

the datastore)
• TABLE - this is datastore neutral and increments a sequence value using a table.
• Custom generators - these are beyond the scope of the JPA spec but provided by DataNucleus

See also :-

• JPA MetaData reference for <generated-value>
• JPA Annotation reference for @GeneratedValue

Please note that the JPA spec only requires the ability to generate values for identity fields.
DataNucleus allows you to do it for any field. Please bear this in mind when considering portability.

Please note that by defining a value-strategy for a field then it will, by default, always
generate a value for that field on persist. If the field can store nulls and you only want it to
generate the value at persist when it is null (i.e you haven't assigned a value yourself) then
you can add the extension "strategy-when-notnull" as false

131.1.1 AUTO

With this strategy DataNucleus will choose the most appropriate strategy for the datastore being used.
If you define the field as String-based then it will choose uuid-hex. Otherwise the field is numeric in
which case it chooses identity if supported, otherwise sequence if supported, otherwise increment
if supported otherwise throws an exception. On RDBMS you can get the behaviour used up until DN
v3.0 by specifying the persistence property datanucleus.rdbms.useLegacyNativeValueStrategy as
true. For a class using application identity you need to set the value-strategy attribute on the primary
key field. You can configure the Meta-Data for the class something like this

<entity class="MyClass">

 <attributes>

 <id name="myId">

 <generated-value strategy="AUTO"/>

 </id>

 </attributes>

</entity>

or using annotations

1 3 1 V a l u e G e n e r a t i o n 796

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class MyClass

{

 @Id

 @GeneratedValue(strategy=GenerationType.AUTO)

 private long myId;

 ...

}

To configure a class to use this generation using datastore identity you need to look at the
@DatastoreId extension annotation or the XML <datastore-id> tag

131.1.2 SEQUENCE

A sequence is a user-defined database function that generates a sequence of unique numeric ids.
The unique identifier value returned from the database is translated to a java type: java.lang.Long.
DataNucleus supports sequences for the following datastores:

• Oracle
• PostgreSQL
• SAP DB
• DB2
• Firebird
• HSQLDB
• H2
• Derby (from v10.6)
• SQLServer (from v2012)
• NuoDB

To configure a class to use either of these generation methods using application identity you would
add the following to the class' Meta-Data

<sequence-generator name="SEQ1" sequence-name="MY_SEQ" initial-value="5" allocation-size="10"/>

<entity class="MyClass">

 <attributes>

 <id name="myId">

 <generated-value strategy="SEQUENCE" generator="SEQ1"/>

 </id>

 </attributes>

</entity>

or using annotations

1 3 1 V a l u e G e n e r a t i o n 797

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

@SequenceGenerator(name="SEQ1", sequenceName="MY_SEQ", initialValue=5, allocationSize=10)

public class MyClass

{

 @Id

 @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="SEQ1")

 private long myId;

 ...

}

If the sequence does not yet exist in the database at the time DataNucleus needs a new unique
identifier, a new sequence is created in the database based on the JPA Meta-Data configuration.
Additional properties for configuring sequences are set in the JPA Meta-Data, see the available
properties below. Unsupported properties by a database are silently ignored by DataNucleus.

Property Description Required

key-database-cache-size specifies how many sequence
numbers are to be preallocated
and stored in memory for faster
access. This is an optimization
feature provided by the database

No

sequence-catalog-name Name of the catalog where the
sequence is.

No.

sequence-schema-name Name of the schema where the
sequence is.

No.

To configure a class to use this generation using datastore identity you need to look at the
@DatastoreId extension annotation or the XML <datastore-id> tag

This value generator will generate values unique across different JVMs

131.1.3 IDENTITY

Auto-increment/identity/serial are primary key columns that are populated when a row is inserted
in the table. These use the databases own keywords on table creation and so rely on having the table
structure either created by DataNucleus or having the column with the necessary keyword.

DataNucleus supports auto-increment/identity/serial keys for many databases including :

• DB2 (IDENTITY)
• MySQL (AUTOINCREMENT)
• MSSQL (IDENTITY)
• Sybase (IDENTITY)
• HSQLDB (IDENTITY)
• H2 (IDENTITY)
• PostgreSQL (SERIAL)
• Derby (IDENTITY)
• MongoDB - String based
• Neo4j - long based

1 3 1 V a l u e G e n e r a t i o n 798

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• NuoDB (IDENTITY)
This generation strategy should only be used if there is a single "root" table for the inheritance
tree. If you have more than 1 root table (e.g using subclass-table inheritance) then you should
choose a different generation strategy

For a class using application identity you need to set the value-strategy attribute on the primary key
field. You can configure the Meta-Data for the class something like this

<entity class="MyClass">

 <attributes>

 <id name="myId">

 <generated-value strategy="IDENTITY"/>

 </id>

 </attributes>

</entity>

or using annotations

@Entity

public class MyClass

{

 @Id

 @GeneratedValue(strategy=GenerationType.IDENTITY)

 private long myId;

 ...

}

Please be aware that if you have an inheritance tree with the base class defined as using "identity"
then the column definition for the PK of the base table will be defined as "AUTO_INCREMENT"
or "IDENTITY" or "SERIAL" (dependent on the RDBMS) and all subtables will NOT have this
identifier added to their PK column definitions. This is because the identities are assigned in the base
table (since all objects will have an entry in the base table).

Please note that if using optimistic transactions, this strategy will mean that the value is only set
when the object is actually persisted (i.e at flush() or commit())

To configure a class to use this generation using datastore identity you need to look at the
@DatastoreId extension annotation or the XML <datastore-id> tag

This value generator will generate values unique across different JVMs

131.1.4 TABLE

This method is database neutral and uses a sequence table that holds an incrementing sequence value.
The unique identifier value returned from the database is translated to a java type: java.lang.Long.
This strategy will work with any datastore. This method require a sequence table in the database and
creates one if doesn't exist.

To configure an application identity class to use this generation method you simply add this to the
class' Meta-Data. If your class is in an inheritance tree you should define this for the base class only.

1 3 1 V a l u e G e n e r a t i o n 799

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity class="MyClass">

 <attributes>

 <id name="myId">

 <generated-value strategy="TABLE"/>

 </id>

 </attributes>

</entity>

or using annotations

@Entity

public class MyClass

{

 @Id

 @GeneratedValue(strategy=GenerationType.TABLE)

 private long myId;

 ...

}

Additional properties for configuring this generator are set in the JPA Meta-Data, see the available
properties below. Unsupported properties are silently ignored by DataNucleus.

Property Description Required

key-initial-value First value to be allocated. No. Defaults to 1

key-cache-size number of unique identifiers to
cache. The keys are pre-allocated,
cached and used on demand. If
key-cache-size is greater than 1, it
may generate holes in the object
keys in the database, if not all keys
are used.

No. Default is 50

sequence-table-basis Whether to define uniqueness on
the base class name or the base
table name. Since there is no "base
table name" when the root class
has "subclass-table" this should be
set to "class" when the root class
has "subclass-table" inheritance

No. Defaults to class, but the other
option is table

sequence-name name for the sequence (overriding
the "sequence-table-basis" above).
The row in the table will use this in
the PK column

No

sequence-table-name Table name for storing the
sequence.

No. Defaults to
SEQUENCE_TABLE

sequence-catalog-name Name of the catalog where the
table is.

No.

sequence-schema-name Name of the schema where the
table is.

No.

sequence-name-column-name Name for the column that represent
sequence names.

No. Defaults to
SEQUENCE_NAME

1 3 1 V a l u e G e n e r a t i o n 800

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

sequence-nextval-column-name Name for the column that represent
incremeting sequence values.

No. Defaults to NEXT_VAL

table-name Name of the table whose column
we are generating the value for
(used when we have no previous
sequence value and want a start
point.

No.

column-name Name of the column we are
generating the value for (used
when we have no previous
sequence value and want a start
point.

No.

To configure a class to use this generation using datastore identity you need to look at the
@DatastoreId extension annotation or the XML <datastore-id> tag

This value generator will generate values unique across different JVMs

131.1.5 Custom Value generators

JPA only provides a very restricted set of value generators. DataNucleus provides various others
internally. To access these you need to use a custom annotation as follows

<entity class="MyClass">

 <attributes>

 <id name="myId">

 <generated-value strategy="uuid"/>

 </id>

 </attributes>

</entity>

or using annotations

@Entity

public class MyClass

{

 @Id

 @ValueGenerator(strategy="uuid")

 private String myId;

 ...

}

This will generate java UUID strings in the "myId" field. You can also set the "strategy" to
"timestamp", "auid", "uuid-string", "uuid-hex", and "timestamp_value". Please read the JDO
documentation for full details of these generators.

1 3 2 E m b e d d e d F i e l d s 801

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

132 Embedded Fields
...

132.1 JPA : Embedded Fields
The JPA persistence strategy typically involves persisting the fields of any class into its own table,
and representing any relationships from the fields of that class across to other tables. There are
occasions when this is undesirable, maybe due to an existing datastore schema, or because a more
convenient datastore model is required. JPA allows the persistence of fields as embedded typically
into the same table as the "owning" class.

One important decision when defining objects of a type to be embedded into another type is whether
objects of that type will ever be persisted in their own right into their own table, and have an identity.
JPA provides a MetaData attribute that you can use to signal this.

<embeddable name="mydomain.MyClass">

 ...

</embeddable>

or using annotations

@Embeddable

public class MyClass

{

 ...

}

With the above MetaData (using the embeddable definition), in our application any objects of the
class MyClass can be embedded into other objects.

JPA's definition of embedding encompasses several types of fields. These are described below
• Embedded Entities - where you have a 1-1 relationship and you want to embed the other Entity

into the same table as the your object.
• Embedded Nested Entities - like the first example except that the other object also has another

Entity that also should be embedded
• Embedded Collection elements - where you want to embed the elements of a collection into a

join table (instead of persisting them into their own table)

132.1.1 Embedding entities (1-1)

Applicable to RDBMS, Excel, OOXML, ODF, HBase, MongoDB, Neo4j, Cassandra, JSON.

In a typical 1-1 relationship between 2 classes, the 2 classes in the relationship are persisted to their
own table, and a foreign key is managed between them. With JPA and DataNucleus you can persist
the related entity object as embedded into the same table. This results in a single table in the datastore
rather than one for each of the 2 classes.

Let's take an example. We are modelling a Computer, and in our simple model our Computer has
a graphics card and a sound card. So we model these cards using a ComputerCard class. So our
classes become

1 3 2 E m b e d d e d F i e l d s 802

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Computer

{

 private String operatingSystem;

 private ComputerCard graphicsCard;

 private ComputerCard soundCard;

 public Computer(String osName, ComputerCard graphics, ComputerCard sound)

 {

 this.operatingSystem = osName;

 this.graphicsCard = graphics;

 this.soundCard = sound;

 }

 ...

}

public class ComputerCard

{

 public static final int ISA_CARD = 0;

 public static final int PCI_CARD = 1;

 public static final int AGP_CARD = 2;

 private String manufacturer;

 private int type;

 public ComputerCard(String manufacturer, int type)

 {

 this.manufacturer = manufacturer;

 this.type = type;

 }

 ...

}

The traditional (default) way of persisting these classes would be to have a table to represent each
class. So our datastore will look like this

However we decide that we want to persist Computer objects into a table called COMPUTER and
we also want to persist the PC cards into the same table. We define our MetaData like this

1 3 2 E m b e d d e d F i e l d s 803

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity name="mydomain.Computer">

 <attributes>

 <basic name="operatingSystem">

 <column="OS_NAME"/>

 </basic>

 <embedded name="graphicsCard">

 <attribute-override name="manufacturer">

 <column="GRAPHICS_MANUFACTURER"/>

 </attribute-override>

 <attribute-override name="type">

 <column="GRAPHICS_TYPE"/>

 </attribute-override>

 </embedded>

 <embedded name="soundCard">

 <attribute-override name="manufacturer">

 <column="SOUND_MANUFACTURER"/>

 </attribute-override>

 <attribute-override name="type">

 <column="SOUND_TYPE"/>

 </attribute-override>

 </embedded>

 </attributes>

</entity>

<embeddable name="mydomain.ComputerCard">

 <attributes>

 <basic name="manufacturer"/>

 <basic name="type"/>

 </attributes>

</embeddable>

So here we will end up with a TABLE called "COMPUTER" with columns
"COMPUTER_ID", "OS_NAME", "GRAPHICS_MANUFACTURER", "GRAPHICS_TYPE",
"SOUND_MANUFACTURER", "SOUND_TYPE". If we call persist() on any objects of type
Computer, they will be persisted into this table.

It should be noted that in this latter (embedded) case we can still persist objects of type
ComputerCard into their own table - the MetaData definition for ComputerCard is used for the
table definition in this case.

DataNucleus supports embedded persistable objects with the following proviso :-

1 3 2 E m b e d d e d F i e l d s 804

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• You can represent inheritence of embedded objects using a discriminator (you must define it in
the metadata of the embedded type. Note that this is a DataNucleus extension since JPA doesn't
define any support for embedded inherited persistable objects

See also :-

• MetaData reference for <embedded> element
• Annotations reference for @Embeddable
• Annotations reference for @Embedded

132.1.2 Embedding Nested Entities

Applicable to RDBMS, Excel, OOXML, ODF, HBase, MongoDB, Neo4j, Cassandra, JSON.

In the above example we had an embedded Entity within a persisted object. What if our embedded
Persistable object also contain another Entity object. So, using the above example what if
ComputerCard contains an object of type Connector ?

@Embeddable

public class ComputerCard

{

 ...

 @Embedded

 Connector connector;

 public ComputerCard(String manufacturer, int type, Connector conn)

 {

 this.manufacturer = manufacturer;

 this.type = type;

 this.connector = conn;

 }

 ...

}

@Embeddable

public class Connector

{

 int type;

}

Well we want to store all of these objects into the same record in the COMPUTER table.

1 3 2 E m b e d d e d F i e l d s 805

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity name="mydomain.Computer">

 <attributes>

 <basic name="operatingSystem">

 <column="OS_NAME"/>

 </basic>

 <embedded name="graphicsCard">

 <attribute-override name="manufacturer">

 <column="GRAPHICS_MANUFACTURER"/>

 </attribute-override>

 <attribute-override name="type">

 <column="GRAPHICS_TYPE"/>

 </attribute-override>

 <attribute-override name="connector.type">

 <column="GRAPHICS_CONNECTOR_TYPE"/>

 </attribute-override>

 </embedded>

 <embedded name="soundCard">

 <attribute-override name="manufacturer">

 <column="SOUND_MANUFACTURER"/>

 </attribute-override>

 <attribute-override name="type">

 <column="SOUND_TYPE"/>

 </attribute-override>

 <attribute-override name="connector.type">

 <column="SOUND_CONNECTOR_TYPE"/>

 </attribute-override>

 </embedded>

 </attributes>

</entity>

<embeddable name="mydomain.ComputerCard">

 <attributes>

 <basic name="manufacturer"/>

 <basic name="type"/>

 </attributes>

</embeddable>

<embeddable name="mydomain.Connector">

 <attributes>

 <basic name="type"/>

 </attributes>

</embeddable>

So we simply nest the embedded definition of the Connector objects within the embedded definition
of the ComputerCard definitions for Computer. JPA supports this to as many levels as you
require! The Connector objects will be persisted into the GRAPHICS_CONNECTOR_TYPE, and
SOUND_CONNECTOR_TYPE columns in the COMPUTER table.

1 3 2 E m b e d d e d F i e l d s 806

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

132.1.3 Embedding Collection Elements

Applicable to RDBMS, MongoDB

In a typical 1-N relationship between 2 classes, the 2 classes in the relationship are persisted to their
own table, and either a join table or a foreign key is used to relate them. With JPA and DataNucleus
you have a variation on the join table relation where you can persist the objects of the "N" side into
the join table itself so that they don't have their own identity, and aren't stored in the table for that
class. This is supported in DataNucleus with the following provisos

• You can have inheritance in embedded keys/values and a discriminator is added (you must
define the discriminator in the metadata of the embedded type).

• When retrieving embedded elements, all fields are retrieved in one call. That is, fetch plans are
not utilised. This is because the embedded element has no identity so we have to retrieve all
initially.

It should be noted that where the collection "element" is not Persistable or of a "reference" type
(Interface or Object) it will always be embedded, and this functionality here applies to Persistable
elements only. DataNucleus doesn't support the embedding of reference type objects currently.

Let's take an example. We are modelling a Network, and in our simple model our Network has
collection of Devices. So we define our classes as

1 3 2 E m b e d d e d F i e l d s 807

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Network

{

 private String name;

 @Embedded

 @ElementCollection

 private Collection<Device> devices = new HashSet();

 public Network(String name)

 {

 this.name = name;

 }

 ...

}

@Embeddable

public class Device

{

 private String name;

 private String ipAddress;

 public Device(String name, String addr)

 {

 this.name = name;

 this.ipAddress = addr;

 }

 ...

}

We decide that instead of Device having its own table, we want to persist them into the join table
of its relationship with the Network since they are only used by the network itself. We define our
MetaData like this

1 3 2 E m b e d d e d F i e l d s 808

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity name="mydomain.Network">

 <attributes>

 <basic name="name">

 <column="NAME" length="40"/>

 </basic>

 <element-collection name="devices">

 <collection-table name="NETWORK_DEVICES">

 <join-column name="NETWORK_ID"/>

 </collection-table>

 </element-collection>

 </attributes>

</entity>

<embeddable name="mydomain.Device">

 <attributes>

 <basic name="name">

 <column="DEVICE_NAME"/>

 </basic>

 <basic name="ipAddress">

 <column="DEVICE_IP_ADDR"/>

 </basic>

 </attributes>

</embeddable>

So here we will end up with a table called "NETWORK" with columns "NETWORK_ID",
and "NAME", and a table called "NETWORK_DEVICES" with columns "NETWORK_ID",
"ADPT_PK_IDX", "DEVICE_NAME", "DEVICE_IP_ADDR". When we persist a Network object,
any devices are persisted into the NETWORK_DEVICES table.

See also :-

• MetaData reference for <embeddable> element
• MetaData reference for <embedded> element
• MetaData reference for <element-collection> element
• MetaData reference for <collection-table> element
• Annotations reference for @Embeddable
• Annotations reference for @Embedded
• Annotations reference for @ElementCollection

1 3 3 S e r i a l i s e d F i e l d s 809

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

133 Serialised Fields
...

133.1 JPA : Serialising Objects
JPA1 provides a way for users to specify that a field will be persisted serialised. This is of use, for
example, to collections/maps/arrays which typically are stored using join tables or foreign-keys to
other records. By specifying that a field is serialised a column will be added to store that field and the
field will be serialised into it.

JPA's definition of serialising applies to any field and all in the same way, unlike the situation
with JDO which provides much more flexibility. Perhaps the most important thing to bear in mind
when deciding to serialise a field is that that object in the field being serialised must implement
java.io.Serializable.

133.1.1 Serialised Fields

Applicable to RDBMS, HBase, MongoDB

If you wish to serialise a particular field into a single column (in the table of the class), you need to
simply mark the field as a "lob" (large object). Let's take an example. We have the following classes

and we want the animals collection to be serialised into a single column in the table storing the Farm
class, so we define our MetaData like this

<entity class="Farm">

 <table name="FARM"/>

 <attributes>

 ...

 <basic name="animals">

 <column name="ANIMALS"/>

 <lob/>

 </basic>

 ...

 </attributes>

</entity>

So we make use of the lob element (or @Lob annotation). This specification results in a table like this

1 3 3 S e r i a l i s e d F i e l d s 810

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Provisos to bear in mind are

• Queries cannot be performed on collections stored as serialised.
If the field that we want to serialise is of type String, byte[], char[], Byte[] or Character[] then the
field will be serialised into a CLOB column rather than BLOB.

See also :-

• MetaData reference for <basic> element
• Annotations reference for @Lob

133.1.2 Serialised Field to Local File

Applicable to RDBMS

Note this is not part of the JPA spec, but is available in DataNucleus to ease your usage. If you
have a non-relation field that implements Serializable you have the option of serialising it into a file
on the local disk. This could be useful where you have a large file and don't want to persist very large
objects into your RDBMS. Obviously this will mean that the field is no longer queryable, but then if
its a large file you likely don't care about that. So let's give an example

@Entity

public class Person

{

 @Id

 long id;

 @Basic

 @Lob

 @Extension(vendorName="datanucleus", key="serializeToFileLocation"

 value="person_avatars")

 AvatarImage image;

}

Or using XML

1 3 3 S e r i a l i s e d F i e l d s 811

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity class="Person">

 <attributes>

 ...

 <basic name="image">

 <lob/>

 <extension key="serializeToFileLocation" value="person_avatars"

 </basic>

 ...

 </attributes>

</entity>

So this will now persist a file into a folder person_avatars with filename as the String form of the
identity of the owning object. In a real world example you likely will specify the extension value as an
absolute path name, so you can place it anywhere in the local disk.

1 3 4 I n t e r f a c e F i e l d s 812

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

134 Interface Fields
...

134.1 JPA : Interface Fields

JPA doesn't define support for persisting fields of type interface, but DataNucleus provides an
extension whereby the implementations of the interface are persistable objects. It follows the same
general process as for java.lang.Object since both interfaces and java.lang.Object are basically
references to some persistable object.

To demonstrate interface handling let's introduce some classes. Let's suppose you have an interface
with a selection of classes implementing the interface something like this

You then have a class that contains an object of this interface type

public class ShapeHolder

{

 protected Shape shape=null;

 ...

}

DataNucleus allows the following strategies for mapping this field

• per-implementation : a FK is created for each implementation so that the datastore can provide
referential integrity. The other advantage is that since there are FKs then querying can be
performed. The disadvantage is that if there are many implementations then the table can become
large with many columns not used

• identity : a single column is added and this stores the class name of the implementation
stored, as well as the identity of the object. The advantage is that if you have large numbers
of implementations then this can cope with no schema change. The disadvantages are that no
querying can be performed, and that there is no referential integrity.

• xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

1 3 4 I n t e r f a c e F i e l d s 813

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The user controls which one of these is to be used by specifying the extension mapping-strategy on
the field containing the interface. The default is "per-implementation"

In terms of the implementations of the interface, you can either leave the field to accept any
known about implementation, or you can restrict it to only accept some implementations (see
"implementation-classes" metadata extension). If you are leaving it to accept any persistable
implementation class, then you need to be careful that such implementations are known to
DataNucleus at the point of encountering the interface field. By this we mean, DataNucleus has to
have encountered the metadata for the implementation so that it can allow for the implementation
when handling the field. You can force DataNucleus to know about a persistable class by using an
autostart mechanism, or using persistence.xml, or by placement of the package.jdo file so that when
the owning class for the interface field is encountered so is the metadata for the implementations.

134.1.1 1-1

To allow persistence of this interface field with DataNucleus you have 2 levels of control. The first
level is global control. Since all of our Square, Circle, Rectangle classes implement Shape then we
just define them in the MetaData as we would normally.

public class Square implement Shape

{

 ...

}

public class Circle implement Shape

{

 ...

}

public class Rectangle implement Shape

{

 ...

}

The global way means that when mapping that field DataNucleus will look at all Entities it knows
about that implement the specified interface.

DataNucleus also allows users to specify a list of classes implementing the interface on a field-by-
field basis, defining which of these implementations are accepted for a particular interface field. To do
this you define the Meta-Data like this

@Entity

public class ShapeHolder

{

 @OneToOne

 @Extension(key="implementation-classes",

 value="mydomain.Circle,mydomain.Rectangle,mydomain.Square")

 Shape shape;

 ...

}

That is, for any interface object in a class to be persisted, you define the possible implementation
classes that can be stored there. DataNucleus interprets this information and will map the above
example classes to the following in the database

1 3 4 I n t e r f a c e F i e l d s 814

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So DataNucleus adds foreign keys from the containers table to all of the possible implementation
tables for the shape field.

If we use mapping-strategy of "identity" then we get a different datastore schema.

@Entity

public class ShapeHolder

{

 @OneToOne

 @Extensions(

 @Extension(key="implementation-classes",

 value="mydomain.Circle,mydomain.Rectangle,mydomain.Square"),

 @Extension(key="mapping-strategy", value="identity")})

 Shape shape;

 ...

}

and the datastore schema becomes

1 3 4 I n t e r f a c e F i e l d s 815

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

and the column "SHAPE" will contain strings such as mydomain.Circle:1 allowing retrieval of the
related implementation object.

134.1.2 1-N

You can have a Collection/Map containing elements of an interface type. You specify this in the same
way as you would any Collection/Map. You can have a Collection of interfaces as long as you use
a join table relation and it is unidirectional. The "unidirectional" restriction is that the interface
is not persistent on its own and so cannot store the reference back to the owner object. Use the 1-N
relationship guides for the metadata definition to use.

You need to use a DataNucleus extension tag "implementation-classes" if you want to restrict the
collection to only contain particular implementations of an interface. For example

@Entity

public class ShapeHolder

{

 @OneToMany

 @JoinTable

 @Extensions(

 @Extension(key="implementation-classes",

 value="mydomain.Circle,mydomain.Rectangle,mydomain.Square"),

 @Extension(key="mapping-strategy", value="identity")})

 Collection<Shape> shapes;

 ...

}

So the shapes field is a Collection of mydomain.Shape and it will accept the implementations of type
Circle, Rectangle, Square and Triangle. If you omit the implementation-classes tag then you have
to give DataNucleus a way of finding the metadata for the implementations prior to encountering this
field.

1 3 4 I n t e r f a c e F i e l d s 816

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

134.1.3 Dynamic Schema Updates

The default mapping strategy for interface fields and collections of interfaces is to have
separate FK column(s) for each possible implementation of the interface. Obviously if you
have an application where new implementations are added over time the schema will need
new FK column(s) adding to match. This is possible if you enable the persistence property
datanucleus.rdbms.dynamicSchemaUpdates, setting it to true. With this set, any insert/update
operation of an interface related field will do a check if the implementation being stored is known
about in the schema and, if not, will update the schema accordingly.

1 3 5 O b j e c t F i e l d s 817

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

135 Object Fields
...

135.1 JPA : Fields of type java.lang.Object

JPA doesn't specify support for persisting fields of type java.lang.Object, however DataNucleus does
support this where the values of that field are persistable objects themselves. This follows the same
general process as for Interfaces since both interfaces and java.lang.Object are basically references to
some persistable object.

java.lang.Object cannot be used to persist non-persistable types with fixed schema datastore (e.g
RDBMS). Think of how you would expect it to be stored if you think it ought to

DataNucleus allows the following ways of persisting Object fields :-

• per-implementation : a FK is created for each "implementation" so that the datastore can
provide referential integrity. The other advantage is that since there are FKs then querying can be
performed. The disadvantage is that if there are many implementations then the table can become
large with many columns not used

• identity : a single column is added and this stores the class name of the "implementation" stored,
as well as the identity of the object. The disadvantages are that no querying can be performed,
and that there is no referential integrity.

• xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

The user controls which one of these is to be used by specifying the extension mapping-strategy on
the field containing the interface. The default is "per-implementation"

135.1.1 1-1/N-1 relation

Let's suppose you have a field in a class and you have a selection of possible persistable class that
could be stored there, so you decide to make the field a java.lang.Object. So let's take an example. We
have the following class

public class ParkingSpace

{

 String location;

 Object occupier;

}

So we have a space in a car park, and in that space we have an occupier of the space. We have
some legacy data and so can't make the type of this "occupier" an interface type, so we just use
java.lang.Object. Now we know that we can only have particular types of objects stored there (since
there are only a few types of vehicle that can enter the car park). So we define our MetaData like this

1 3 5 O b j e c t F i e l d s 818

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class ParkingSpace

{

 String location;

 @OneToOne

 @Extension(key="implementation-classes",

 value="mydomain.samples.vehicles.Car,mydomain.samples.vehicles.Motorbike")

 Object occupier;

}

This will result in the following database schema.

So DataNucleus adds foreign keys from the ParkingSpace table to all of the possible implementation
tables for the occupier field.

In conclusion, when using "per-implementation" mapping for any java.lang.Object field in a class to
be persisted (as non-serialised), you must define the possible "implementation" classes that can be
stored there.

If we use mapping-strategy of "identity" then we get a different datastore schema.

public class ParkingSpace

{

 String location;

 @OneToOne

 @Extensions({

 @Extension(key="implementation-classes",

 value="mydomain.samples.vehicles.Car,mydomain.samples.vehicles.Motorbike"),

 @Extension(key="mapping-strategy", value="identity")})

 Object occupier;

}

and the datastore schema becomes

1 3 5 O b j e c t F i e l d s 819

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

and the column "OCCUPIER" will contain strings such as com.mydomain.samples.object.Car:1
allowing retrieval of the related implementation object.

135.1.2 Collections of Objects

You can have a Collection/Map containing elements of java.lang.Object. You specify this in the same
way as you would any Collection/Map. DataNucleus supports having a Collection of references with
multiple implementation types as long as you use a join table relation.

135.1.3 Serialised Objects

By default a field of type java.lang.Object is stored as an instance of the underlying persistable in the
table of that object. If either your Object field represents non-persistable objects or you simply wish to
serialise the Object into the same table as the owning object, you need to specify it as "lob", like this

public class MyClass

{

 @Lob

 Object myObject;

}

Please refer to the serialised fields guide for more details of storing objects in this way.

1 3 6 A r r a y F i e l d s 820

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

136 Array Fields
...

136.1 JPA : Array Fields
JPA defines support the persistence of arrays but only arrays of byte[], Byte[], char[], Character[].
DataNucleus supports all types of arrays, as follows

• Single Column - the array is byte-streamed into a single column in the table of the containing
object.

• JoinTable (Non-Entity) - the array is stored in a "join" table, with a column in that table storing
each element of the array

• JoinTable (Entity) - the array is stored via a "join" table, with FK across to the element Entity.
• ForeignKey (Entity) - the array is stored via a FK in the element Entity.

136.1.1 Single Column Arrays (serialised)

Let's suppose you have a class something like this

So we have an Account and it has a number of permissions, each expressed as a byte. We want to
persist the permissions in a single-column into the table of the account. We then define MetaData
something like this

<entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 ...

 <basic name="permissions">

 <column name="PERMISSIONS"/>

 <lob/>

 </basic>

 ...

 </attributes>

</entity>

This results in a datastore schema as follows

1 3 6 A r r a y F i e l d s 821

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

See also :-
• MetaData reference for <basic> element
• Annotations reference for @Basic

136.1.2 Arrays stored in join table

If you want an array of non-persistable objects be stored in a "join" table, you can follow this
example. We have an Account that stores a Collection of addresses. These addresses are simply
Strings. We define the annotations like this

@Entity

public class Account

{

 ...

 @ElementCollection

 @CollectionTable(name="ACCOUNT_ADDRESSES")

 String[] addresses;

}

or using XML metadata

<entity class="mydomain.Account">

 <attributes>

 ...

 <element-collection name="addresses">

 <collection-table name="ACCOUNT_ADDRESSES"/>

 </element-collection>

 </attributes>

</entity>

In the datastore the following is created

Use @Column on the field/method to define the column details of the element in the join table.

1 3 6 A r r a y F i e l d s 822

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

136.1.3 Arrays of Entity persisted into Join Tables

DataNucleus will support arrays persisted into a join table. Let's take the example of a class Account
with an array of Permission objects, so we have

So an Account has an array of Permissions, and both of these objects are entities. We want to persist
the relationship using a join table. We define the MetaData as follows

@Entity

public class Account

{

 ...

 @OneToMany

 @JoinTable(name="ACCOUNT_PERMISSIONS", joinColumns={@Column(name="ACCOUNT_ID")}, inverseJoinColumns={@Column(name="PERMISSION_ID")})

 @OrderColumn(name="PERMISSION_ORDER_IDX")

 String[] addresses;

}

@Entity

public class Permission

{

 ...

}

or using XML metadata

<entity class="mydomain.Account">

 <attributes>

 ...

 <one-to-many name="permissions">

 <join-table name="ACCOUNT_PERMISSIONS">

 <join-column name="ACCOUNT_ID"/>

 <inverse-join-column name="PERMISSION_ID"/>

 </join-table>

 <order-column name="PERMISSION_ORDER_IDX"/>

 </one-to-many>

 </attributes>

</entity>

<entity name="Permission" table="PERMISSION">

</entity>

This results in a datastore schema as follows

1 3 6 A r r a y F i e l d s 823

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

136.1.4 Arrays of Entity persisted using Foreign-Keys

DataNucleus will support arrays persisted via a foreign-key in the element table. This is only
applicable when the array is of a persistable type. Let's take the same example above. So we have

So an Account has an array of Permissions, and both of these objects are persistable. We want
to persist the relationship using a foreign-key in the table for the Permission class. We define the
MetaData as follows

@Entity

public class Account

{

 ...

 @OneToMany

 @JoinColumn(name="ACCOUNT_ID")

 @OrderColumn(name="PERMISSION_ORDER_IDX")

 String[] addresses;

}

@Entity

public class Permission

{

 ...

}

or using XML metadata

1 3 6 A r r a y F i e l d s 824

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity class="mydomain.Account">

 <attributes>

 ...

 <one-to-many name="permissions">

 <join-column name="ACCOUNT_ID"/>

 <order-column name="PERMISSION_ORDER_IDX"/>

 </one-to-many>

 </attributes>

</entity>

<entity name="Permission" table="PERMISSION">

</entity>

This results in a datastore schema as follows

1 3 7 1 - t o - 1 R e l a t i o n s 825

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

137 1-to-1 Relations
...

137.1 JPA : 1-1 Relationships
You have a 1-to-1 relationship when an object of a class has an associated object of another class
(only one associated object). It could also be between an object of a class and another object of the
same class (obviously). You can create the relationship in 2 ways depending on whether the 2 classes
know about each other (bidirectional), or whether only one of the classes knows about the other class
(unidirectional). These are described below.

For RDBMS a 1-1 relation is stored as a foreign-key column(s). For non-RDBMS it is stored as
a String "column" storing the 'id' (possibly with the class-name included in the string) of the
related object.

137.1.1 Unidirectional

For this case you could have 2 classes, User and Account, as below.

so the Account class knows about the User class, but not vice-versa. If you define the XML metadata
for these classes as follows

1 3 7 1 - t o - 1 R e l a t i o n s 826

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="User">

 <table name="USER"/>

 <attributes>

 <id name="id">

 <column name="USER_ID"/>

 </id>

 ...

 </entity>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-one name="user">

 <join-column name="USER_ID"/>

 </one-to-one>

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Account

{

 ...

 @OneToOne

 @JoinColumn(name="USER_ID")

 User user;

}

public class User

{

 ...

}

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT and a column USER_ID), as shown below.

Things to note :-

1 3 7 1 - t o - 1 R e l a t i o n s 827

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Account has the object reference to User (and so is the "owner" of the relation) and so its table
holds the foreign-key

• If you call EntityManager.remove() on the end of a 1-1 unidirectional relation without the
relation and that object is related to another object, an exception will typically be thrown
(assuming the RDBMS supports foreign keys). To delete this record you should remove the other
objects association first.

137.1.2 Bidirectional

For this case you could have 2 classes, User and Account again, but this time as below. Here the
Account class knows about the User class, and also vice-versa.

We create the 1-1 relationship with a single foreign-key. To do this you define the XML metadata as

<entity-mappings>

 <entity class="User">

 <table name="USER"/>

 <attributes>

 <id name="id">

 <column name="USER_ID"/>

 </id>

 ...

 <one-to-one name="account" mapped-by="user"/>

 </attributes>

 </entity>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-one name="user">

 <join-column name="USER_ID"/>

 </one-to-one>

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

1 3 7 1 - t o - 1 R e l a t i o n s 828

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @OneToOne

 @JoinColumn(name="USER_ID")

 User user;

}

public class User

{

 ...

 @OneToOne(mappedBy="user")

 Account account;

 ...

}

The difference is that we added mapped-by to the field of User making it bidirectional (and putting the FK at the
other side for RDBMS)

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT). For RDBMS it includes a USER_ID column in the ACCOUNT table, like this

For other types of datastore it will have a USER_ID column in the ACCOUNT table and a ACCOUNT
column in the USER table.

Things to note :-

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

1 3 8 1 - t o - N R e l a t i o n s 829

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

138 1-to-N Relations
...

138.1 JPA : 1-N Relationships
You have a 1-N (one to many) when you have one object of a class that has a Collection/Map of
objects of another class. In the java.util package there are an assortment of possible collection/
map classes and they all have subtly different behaviour with respect to allowing nulls, allowing
duplicates, providing ordering, etc. There are two ways in which you can represent a collection
or map in a datastore : Join Table (where a join table is used to provide the relationship mapping
between the objects), and Foreign-Key (where a foreign key is placed in the table of the object
contained in the collection or map.

We split our documentation based on what type of collection/map you are using.

• 1-N using Collection types
• 1-N using Set types
• 1-N using List type
• 1-N using Map type

1 3 9 C o l l e c t i o n s 830

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

139 Collections
...

139.1 JPA : 1-N Relationships with Collections
You have a 1-N (one to many) when you have one object of a class that has a Collection of objects
of another class. Please note that Collections allow duplicates, and so the persistence process
reflects this with the choice of primary keys. There are two ways in which you can represent this in
a datastore : Join Table (where a join table is used to provide the relationship mapping between the
objects), and Foreign-Key (where a foreign key is placed in the table of the object contained in the
Collection.

The various possible relationships are described below.

• 1-N Unidirectional using Join Table
• 1-N Unidirectional using Foreign-Key
• 1-N Bidirectional using Join Table
• 1-N Bidirectional using Foreign-Key
• 1-N Unidirectional of non-persistable using Join Table
• Collection of non-persistable using AttributeConverter into single column
• 1-N using shared join table (DataNucleus Extension)
• 1-N using shared foreign key (DataNucleus Extension)

Please note that RDBMS supports the full range of options on this page, whereas other
datastores (ODF, Excel, HBase, MongoDB, etc) persist the Collection in a column in the owner
object rather than using join-tables or foreign-keys since those concepts are RDBMS-only

139.1.1 equals() and hashCode()

Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to determine
equality and whether an element is contained in the Collection. Note also that the hashCode() should
be consistent throughout the lifetime of a persistable object. By that we mean that it should not
use some basis before persistence and then use some other basis (such as the object identity) after
persistence in the equals/hashCode methods.

139.2 1-N Collection Unidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Collection of objects of type Address, yet each Address knows nothing about the Account
objects that it relates to. Like this

There are 2 ways that we can persist this relationship. These are shown below

1 3 9 C o l l e c t i o n s 831

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

139.2.1 Using Join Table

If you define the XML metadata for these classes as follows

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address">

 <join-table name="ACCOUNT_ADDRESSES">

 <join-column name="ACCOUNT_ID_OID"/>

 <inverse-join-column name="ADDRESS_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Account

{

 ...

 @OneToMany

 @JoinTable(name="ACCOUNT_ADDRESSES",

 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},

 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})

 Collection<Address> addresses

}

public class Address

{

 ...

}

The crucial part is the join-table element on the field element - this signals to JPA to use a join table.

1 3 9 C o l l e c t i o n s 832

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

This will create 3 tables in the database, one for Address, one for Account, and a join table, as shown
below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• To specify the name of the join table, specify the join-table element below the one-to-many
element with the collection.

• To specify the names of the join table columns, use the join-column and inverse-join-column
elements below the join-table element.

• The join table will NOT be given a primary key (since a Collection can have duplicates).

139.2.2 Using Foreign-Key

In this relationship, the Account class has a List of Address objects, yet the Address knows nothing
about the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
XML metadata like this

1 3 9 C o l l e c t i o n s 833

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address">

 <join-column name="ACCOUNT_ID"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Account

{

 ...

 @OneToMany

 @JoinColumn(name="ACCOUNT_ID")

 Collection<Address> addresses

}

public class Address

{

 ...

}

Note that you MUST specify the join-column here otherwise it defaults to a join table with JPA!

There will be 2 tables, one for Address, and one for Account. If you wish to specify the names of the
column(s) used in the schema for the foreign key in the Address table you should use the join-column
element within the field of the collection.

1 3 9 C o l l e c t i o n s 834

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account collection field since the Address knows
nothing about the Account.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this
mode of persistence will not allow duplicate values in the Collection. If you want to allow duplicate
Collection entries, then use the "Join Table" variant above.

139.3 1-N Collection Bidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Collection of objects of type Address, and each Address has a reference to the Account
object that it relates to. Like this

There are 2 ways that we can persist this relationship. These are shown below

139.3.1 Using Join Table

If you define the XML metadata for these classes as follows

1 3 9 C o l l e c t i o n s 835

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address" mapped-by="account">

 <join-table name="ACCOUNT_ADDRESSES">

 <join-column name="ACCOUNT_ID_OID"/>

 <inverse-join-column name="ADDRESS_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 <many-to-one name="account"/>

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Account

{

 ...

 @OneToMany(mappedBy="account")

 @JoinTable(name="ACCOUNT_ADDRESSES",

 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},

 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})

 Collection<Address> addresses

}

public class Address

{

 ...

 @ManyToOne

 Account account;

 ...

}

1 3 9 C o l l e c t i o n s 836

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The crucial part is the join element on the field element - this signals to JPA to use a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as shown
below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• To specify the name of the join table, specify the join-table element below the one-to-many
element with the collection.

• To specify the names of the join table columns, use the join-column and inverse-join-column
elements below the join-table element.

• The join table will NOT be given a primary key (since a Collection can have duplicates).
• When forming the relation please make sure that you set the relation at BOTH sides since

DataNucleus would have no way of knowing which end is correct if you only set one end.

139.3.2 Using Foreign-Key

Here we have the 2 classes with both knowing about the relationship with the other.

If you define the XML metadata for these classes as follows

1 3 9 C o l l e c t i o n s 837

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address" mapped-by="account">

 <join-column name="ACCOUNT_ID"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 <many-to-one name="account"/>

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Account

{

 ...

 @OneToMany(mappedBy="account")

 @JoinColumn(name="ACCOUNT_ID")

 Collection<Address> addresses

}

public class Address

{

 ...

 @ManyToOne

 Account account;

 ...

}

The crucial part is the mapped-by attribute of the field on the "1" side of the relationship. This tells the JPA
implementation to look for a field called account on the Address class.

1 3 9 C o l l e c t i o n s 838

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

This will create 2 tables in the database, one for Address (including an ACCOUNT_ID to link to the
ACCOUNT table), and one for Account. Notice the subtle difference to this set-up to that of the Join
Table relationship earlier.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the
classelement

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this
mode of persistence will not allow duplicate values in the Collection. If you want to allow duplicate
Collection entries, then use the "Join Table" variant above.

139.4 1-N Collection of non-Entity objects

In JPA1 you cannot have a 1-N collection of non-Entity objects. All of the examples above show a 1-
N relationship between 2 persistable classes. If you want the element to be primitive or Object types
then follow this section. For example, when you have a Collection of Strings. This will be persisted
in the same way as the "Join Table" examples above. A join table is created to hold the collection
elements. Let's take our example. We have an Account that stores a Collection of addresses. These
addresses are simply Strings. We define the annotations like this

@Entity

public class Account

{

 ...

 @ElementCollection

 @CollectionTable(name="ACCOUNT_ADDRESSES")

 Collection<String> addresses;

}

or using XML metadata

1 3 9 C o l l e c t i o n s 839

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <entity class="mydomain.Account">

 <attributes>

 ...

 <element-collection name="addresses">

 <collection-table name="ACCOUNT_ADDRESSES"/>

 </element-collection>

 </attributes>

 </entity>

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". Use @Column on the
field/method to define the column details of the element in the join table.

139.5 Collection of non-persistable objects using AttributeConverter

Just like in the above example, here we have a Collection of simple types. In this case we are
wanting to store this Collection into a single column in the owning table. We do this by using a JPA
AttributeConverter.

public class Account

{

 ...

 @ElementCollection

 @Convert(CollectionStringToStringConverter.class)

 @Column(name="ADDRESSES")

 Collection<String> addresses;

}

and then define our converter. You can clearly define your conversion process how you want it. You
could, for example, convert the Collection into comma-separated strings, or could use JSON, or XML,
or some other format.

1 3 9 C o l l e c t i o n s 840

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class CollectionStringToStringConverter implements AttributeConverter<Collection<String>, String>

{

 public String convertToDatabaseColumn(Collection<String> attribute)

 {

 if (attribute == null)

 {

 return null;

 }

 StringBuilder str = new StringBuilder();

 ... convert Collection to String

 return str.toString();

 }

 public Collection<String> convertToEntityAttribute(String columnValue)

 {

 if (columnValue == null)

 {

 return null;

 }

 Collection<String> coll = new HashSet<String>();

 ... convert String to Collection

 return coll;

 }

}

139.6 Shared Join Tables

The relationships using join tables shown above rely on the join table relating to the relation in
question. DataNucleus allows the possibility of sharing a join table between relations. The example
below demonstrates this. We take the example as show above (1-N Unidirectional Join table
relation), and extend Account to have 2 collections of Address records. One for home addresses and
one for work addresses, like this

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

1 3 9 C o l l e c t i o n s 841

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="workAddresses" target-entity="com.mydomain.Address">

 <join-table name="ACCOUNT_ADDRESSES">

 <join-column name="ACCOUNT_ID_OID"/>

 <inverse-join-column name="ADDRESS_ID_EID"/>

 </join-table>

 <extension key="relation-discriminator-column" value="ADDRESS_TYPE"/>

 <extension key="relation-discriminator-pk" value="true"/>

 <extension key="relation-discriminator-value" value="work"/>

 </one-to-many>

 <one-to-many name="homeAddresses" target-entity="com.mydomain.Address">

 <join-table name="ACCOUNT_ADDRESSES">

 <join-column name="ACCOUNT_ID_OID"/>

 <inverse-join-column name="ADDRESS_ID_EID"/>

 </join-table>

 <extension key="relation-discriminator-column" value="ADDRESS_TYPE"/>

 <extension key="relation-discriminator-pk" value="true"/>

 <extension key="relation-discriminator-value" value="home"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 </attributes>

 </entity>

</entity-mappings>

or with annotations

1 3 9 C o l l e c t i o n s 842

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @OneToMany

 @JoinTable(name="ACCOUNT_ADDRESSES",

 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},

 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})

 @Extensions({@Extension(key="relation-discriminator-column", value="ADDRESS_TYPE"),

 @Extension(key="relation-discriminator-pk", value="true"),

 @Extension(key="relation-discriminator-value", value="work")}

 Collection<Address> workAddresses;

 @OneToMany

 @JoinTable(name="ACCOUNT_ADDRESSES",

 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},

 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})

 @Extensions({@Extension(key="relation-discriminator-column", value="ADDRESS_TYPE"),

 @Extension(key="relation-discriminator-pk", value="true"),

 @Extension(key="relation-discriminator-value", value="home")}

 Collection<Address> homeAddresses;

 ...

}

So we have defined the same join table for the 2 collections "ACCOUNT_ADDRESSES", and the
same columns in the join table, meaning that we will be sharing the same join table to represent
both relations. The important step is then to define the 3 DataNucleus extension tags. These define a
column in the join table (the same for both relations), and the value that will be populated when a row
of that collection is inserted into the join table. In our case, all "home" addresses will have a value of
"home" inserted into this column, and all "work" addresses will have "work" inserted. This means we
can now identify easily which join table entry represents which relation field.

This results in the following database schema

139.7 Shared Foreign Key

The relationships using foreign keys shown above rely on the foreign key relating to the relation
in question. DataNucleus allows the possibility of sharing a foreign key between relations between
the same classes. The example below demonstrates this. We take the example as show above (1-N
Unidirectional Foreign Key relation), and extend Account to have 2 collections of Address records.
One for home addresses and one for work addresses, like this

1 3 9 C o l l e c t i o n s 843

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="workAddresses" target-entity="com.mydomain.Address">

 <join-column name="ACCOUNT_ID_OID"/>

 <extension key="relation-discriminator-column" value="ADDRESS_TYPE"/>

 <extension key="relation-discriminator-value" value="work"/>

 </one-to-many>

 <one-to-many name="homeAddresses" target-entity="com.mydomain.Address">

 <join-column name="ACCOUNT_ID_OID"/>

 <extension key="relation-discriminator-column" value="ADDRESS_TYPE"/>

 <extension key="relation-discriminator-value" value="home"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 </attributes>

 </entity>

</entity-mappings>

or with annotations

1 3 9 C o l l e c t i o n s 844

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @OneToMany

 @Extensions({@Extension(key="relation-discriminator-column", value="ADDRESS_TYPE"),

 @Extension(key="relation-discriminator-value", value="work")}

 Collection<Address> workAddresses;

 @OneToMany

 @Extensions({@Extension(key="relation-discriminator-column", value="ADDRESS_TYPE"),

 @Extension(key="relation-discriminator-value", value="home")}

 Collection<Address> homeAddresses;

 ...

}

So we have defined the same foreign key for the 2 collections "ACCOUNT_ID_OID", The important
step is then to define the 2 DataNucleus extension tags. These define a column in the element table
(the same for both relations), and the value that will be populated when a row of that collection is
inserted into the element table. In our case, all "home" addresses will have a value of "home" inserted
into this column, and all "work" addresses will have "work" inserted. This means we can now identify
easily which element table entry represents which relation field.

This results in the following database schema

1 4 0 S e t s 845

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

140 Sets
...

140.1 JPA : 1-N Relationships with Sets
You have a 1-N (one to many) when you have one object of a class that has a Set of objects of another
class. Please note that Sets do not allow duplicates, and so the persistence process reflects this
with the choice of primary keys. There are two ways in which you can represent this in a datastore :
Join Table (where a join table is used to provide the relationship mapping between the objects), and
Foreign-Key (where a foreign key is placed in the table of the object contained in the Set.

The various possible relationships are described below.

• 1-N Unidirectional using Join Table
• 1-N Unidirectional using Foreign-Key
• 1-N Bidirectional using Join Table
• 1-N Bidirectional using Foreign-Key
• 1-N Unidirectional of non-PC using Join Table

This page is aimed at Set fields and so applies to fields of Java type java.util.HashSet,
java.util.LinkedHashSet, java.util.Set, java.util.SortedSet, java.util.TreeSet

Please note that RDBMS supports the full range of options on this page, whereas other
datastores (ODF, Excel, HBase, MongoDB, etc) persist the Set in a column in the owner object
rather than using join-tables or foreign-keys since those concepts are RDBMS-only

140.1.1 equals() and hashCode()

Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to determine
equality and whether an element is contained in the Collection. Note also that the hashCode() should
be consistent throughout the lifetime of a persistable object. By that we mean that it should not
use some basis before persistence and then use some other basis (such as the object identity) after
persistence, for this reason we do not recommend usage of JDOHelper.getObjectId(obj) in the equals/
hashCode methods.

140.2 1-N Set Unidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Set of objects of type Address, yet each Address knows nothing about the Account objects
that it relates to. Like this

There are 2 ways that we can persist this relationship. These are shown below

1 4 0 S e t s 846

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

140.2.1 Using Join Table

If you define the XML metadata for these classes as follows

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address">

 <join-table name="ACCOUNT_ADDRESSES">

 <join-column name="ACCOUNT_ID_OID"/>

 <inverse-join-column name="ADDRESS_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Account

{

 ...

 @OneToMany

 @JoinTable(name="ACCOUNT_ADDRESSES")

 @JoinColumn(name="ACCOUNT_ID_OID")

 @InverseJoinColumn(name="ADDRESS_ID_EID")

 Set<Address> addresses

}

public class Address

{

 ...

}

The crucial part is the join-table element on the field element - this signals to JPA to use a join table.

1 4 0 S e t s 847

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

This will create 3 tables in the database, one for Address, one for Account, and a join table, as shown
below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• To specify the name of the join table, specify the join-table element below the one-to-many
element with the Set

• To specify the names of the join table columns, use the join-column and inverse-join-column
elements below the join-table element.

• The join table will be given a primary key (since a Set can't have duplicates).

140.2.2 Using Foreign-Key

In this relationship, the Account class has a List of Address objects, yet the Address knows nothing
about the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
XML metadata like this

1 4 0 S e t s 848

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address">

 <join-column name="ACCOUNT_ID"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Account

{

 ...

 @OneToMany

 @JoinColumn(name="ACCOUNT_ID")

 Set<Address> addresses

}

public class Address

{

 ...

}

Note that you MUST specify the join-column here otherwise it defaults to a join table with JPA!

There will be 2 tables, one for Address, and one for Account. If you wish to specify the names of the
column(s) used in the schema for the foreign key in the Address table you should use the join-column
element within the field of the Set.

1 4 0 S e t s 849

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account Set field since the Address knows nothing
about the Account.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this
mode of persistence will not allow duplicate values in the Set. If you want to allow duplicate Set
entries, then use the "Join Table" variant above.

140.3 1-N Set Bidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Set of objects of type Address, and each Address has a reference to the Account object
that it relates to. Like this

There are 2 ways that we can persist this relationship. These are shown below

140.3.1 Using Join Table

If you define the XML metadata for these classes as follows

1 4 0 S e t s 850

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address" mapped-by="account">

 <join-table name="ACCOUNT_ADDRESSES">

 <join-column name="ACCOUNT_ID_OID"/>

 <inverse-join-column name="ADDRESS_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 <many-to-one name="account">

 </many-to-one>

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

1 4 0 S e t s 851

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @OneToMany(mappedBy="account")

 @JoinTable(name="ACCOUNT_ADDRESSES")

 @JoinColumn(name="ACCOUNT_ID_OID")

 @InverseJoinColumn(name="ADDRESS_ID_EID")

 Set<Address> addresses

}

public class Address

{

 ...

 @ManyToOne

 Account account;

 ...

}

The crucial part is the join element on the field element - this signals to JPA to use a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as shown
below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• To specify the name of the join table, specify the join-table element below the one-to-many
element with the set.

• To specify the names of the join table columns, use the join-column and inverse-join-column
elements below the join-table element.

• The join table will be given a primary key (since a Set can't have duplicates).
• When forming the relation please make sure that you set the relation at BOTH sides since

DataNucleus would have no way of knowing which end is correct if you only set one end.

1 4 0 S e t s 852

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

140.3.2 Using Foreign-Key

Here we have the 2 classes with both knowing about the relationship with the other.

If you define the XML metadata for these classes as follows

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address" mapped-by="account">

 <join-column name="ACCOUNT_ID"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 <many-to-one name="account">

 </many-to-one>

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Account

{

 ...

 @OneToMany(mappedBy="account")

 @JoinColumn(name="ACCOUNT_ID")

 Set<Address> addresses

}

public class Address

{

 ...

 @ManyToOne

 Account account;

 ...

}

1 4 0 S e t s 853

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The crucial part is the mapped-by attribute of the field on the "1" side of the relationship. This tells the JPA
implementation to look for a field called account on the Address class.

This will create 2 tables in the database, one for Address (including an ACCOUNT_ID to link to the
ACCOUNT table), and one for Account. Notice the subtle difference to this set-up to that of the Join
Table relationship earlier.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the
classelement

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this
mode of persistence will not allow duplicate values in the Set. If you want to allow duplicate Set
entries, then use the "Join Table" variant above.

140.4 1-N Collection of non-Entity objects

In JPA1 you cannot have a 1-N set of non-Entity objects. This is available in JPA2. All of the
examples above show a 1-N relationship between 2 persistable classes. If you want the element to
be primitive or Object types then follow this section. For example, when you have a Set of Strings.
This will be persisted in the same way as the "Join Table" examples above. A join table is created to
hold the collection elements. Let's take our example. We have an Account that stores a Collection of
addresses. These addresses are simply Strings. We define the annotations like this

@Entity

public class Account

{

 ...

 @ElementCollection

 @CollectionTable(name="ACCOUNT_ADDRESSES")

 Collection<String> addresses;

}

or using XML metadata

1 4 0 S e t s 854

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <entity class="mydomain.Account">

 <attributes>

 ...

 <element-collection name="addresses">

 <collection-table name="ACCOUNT_ADDRESSES"/>

 </element-collection>

 </attributes>

 </entity>

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". Use @Column on the
field/method to define the column details of the element in the join table.

1 4 1 L i s t s 855

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

141 Lists
...

141.1 JPA : 1-N Relationships with Lists
You have a 1-N (one to many) when you have one object of a class that has a List of objects of
another class. There are two ways in which you can represent this in a datastore. Join Table (where a
join table is used to provide the relationship mapping between the objects), and Foreign-Key (where
a foreign key is placed in the table of the object contained in the List.

The various possible relationships are described below.

• 1-N Unidirectional using Join Table
• 1-N Unidirectional using Foreign-Key
• 1-N Bidirectional using Join Table
• 1-N Bidirectional using Foreign-Key
• 1-N Unidirectional of non-PC using Join Table

This page is aimed at List fields and so applies to fields of Java type java.util.ArrayList,
java.util.LinkedList, java.util.List, java.util.Stack, java.util.Vector

Please note that RDBMS supports the full range of options on this page, whereas other
datastores (ODF, Excel, HBase, MongoDB, etc) persist the List in a column in the owner object
rather than using join-tables or foreign-keys since those concepts are RDBMS-only

In JPA1 all List relationships are "ordered Lists". If a List is an "ordered List" then the positions
of the elements in the List at persistence are not preserved (are not persisted) and instead an ordering
is defined for their retrieval. In JPA2 Lists can optionally use a surrogate column to handle the
ordering. This means that the positions of the elements in List at persistence are preserved. This is the
same situation as JDO provides.

141.1.1 equals() and hashCode()

Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to determine
equality and whether an element is contained in the Collection. Note also that the hashCode() should
be consistent throughout the lifetime of a persistable object. By that we mean that it should not
use some basis before persistence and then use some other basis (such as the object identity) after
persistence, for this reason we do not recommend usage of JDOHelper.getObjectId(obj) in the equals/
hashCode methods.

141.2 1-N List Unidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a List of objects of type Address, yet each Address knows nothing about the Account
objects that it relates to. Like this

There are 2 ways that we can persist this relationship. These are shown below

1 4 1 L i s t s 856

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

141.2.1 Using Join Table

If you define the XML metadata for these classes as follows

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address">

 <order-by>id</order-by>

 <join-table name="ACCOUNT_ADDRESSES">

 <join-column name="ACCOUNT_ID_OID"/>

 <inverse-join-column name="ADDRESS_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

1 4 1 L i s t s 857

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @OneToMany

 @OrderBy("id")

 @JoinTable(name="ACCOUNT_ADDRESSES",

 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},

 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})

 List<Address> addresses

}

public class Address

{

 ...

}

The crucial part is the join-table element on the field element - this signals to JPA to use a join table.

There will be 3 tables, one for Address, one for Account, and the join table. This is identical to the
handling for Sets/Collections. Note that we specified <order-by> which defines the order the elements
are retrieved in (the "id" is the field in the List element).

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• To specify the name of the join table, specify the join-table element below the one-to-many
element with the collection.

• To specify the names of the join table columns, use the join-column and inverse-join-column
elements below the join-table element.

• The join table will NOT be given a primary key (so that duplicates can be stored).
• If you want to have a surrogate column added to contain the ordering you should specify order-

column (@OrderColumn) instead of order-by. This is available from JPA2

141.2.2 Using Foreign-Key

In this relationship, the Account class has a List of Address objects, yet the Address knows nothing
about the Account. In this case we don't have a field in the Address to link back to the Account and so

1 4 1 L i s t s 858

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

DataNucleus has to use columns in the datastore representation of the Address class. So we define the
XML metadata like this

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address">

 <order-by>city</order-by>

 <join-column name="ACCOUNT_ID"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Account

{

 ...

 @OneToMany

 @OrderBy("city")

 @JoinColumn(name="ACCOUNT_ID")

 List<Address> addresses

}

public class Address

{

 ...

}

Note that you MUST specify the join-column here otherwise it defaults to a join table with JPA!

Again there will be 2 tables, one for Address, and one for Account. Note that we have no "mapped-
by" attribute specified, and also no "join" element. If you wish to specify the names of the columns
used in the schema for the foreign key in the Address table you should use the element element
within the field of the collection.

1 4 1 L i s t s 859

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In terms of operation within your classes of assigning the objects in the relationship. With
DataNucleus and List-based containers you have to take your Account object and add the Address to
the Account collection field since the Address knows nothing about the Account.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

Limitations

• If we are using an "ordered List" and the primary key of the join table contains owner and
element then duplicate elements can't be stored in a List. If you want to allow duplicate List
entries, then use the "Join Table" variant above.

141.3 1-N List Bidirectional
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a List of objects of type Address, and each Address has a reference to the Account object
that it relates to. Like this

There are 2 ways that we can persist this relationship. These are shown below

141.3.1 Using Join Table

If you define the XML metadata for these classes as follows

1 4 1 L i s t s 860

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address" mapped-by="account">

 <order-by>id</order-by>

 <join-table name="ACCOUNT_ADDRESSES">

 <join-column name="ACCOUNT_ID_OID"/>

 <inverse-join-column name="ADDRESS_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 <many-to-one name="account">

 </many-to-one>

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

1 4 1 L i s t s 861

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @OneToMany(mappedBy="account")

 @OrderBy("id")

 @JoinTable(name="ACCOUNT_ADDRESSES",

 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},

 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})

 List<Address> addresses

}

public class Address

{

 ...

 @ManyToOne

 Account account;

 ...

}

The crucial part is the join element on the field element - this signals to JPA to use a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as shown
below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips
• To specify the name of the table where a class is stored, specify the table element below the class

element
• To specify the names of the columns where the fields of a class are stored, specify the column

attribute on the basic element.
• To specify the name of the join table, specify the join-table element below the one-to-many

element with the collection.
• To specify the names of the join table columns, use the join-column and inverse-join-column

elements below the join-table element.
• The join table will NOT be given a primary key (so that duplicates can be stored).
• When forming the relation please make sure that you set the relation at BOTH sides since

DataNucleus would have no way of knowing which end is correct if you only set one end.
• If you want to have a surrogate column added to contain the ordering you should specify order-

column (@OrderColumn) instead of order-by. This is available from JPA2

1 4 1 L i s t s 862

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

141.3.2 Using Foreign-Key

Here we have the 2 classes with both knowing about the relationship with the other.

Please note that an Foreign-Key List will NOT, by default, allow duplicates. This is because
it stores the element position in the element table. If you need a List with duplicates we
recommend that you use the Join Table List implementation above. If you have an application
identity element class then you could in principle add the element position to the primary key to allow
duplicates, but this would imply changing your element class identity.

If you define the XML metadata for these classes as follows

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address" mapped-by="account">

 <order-by>city ASC</order-by>

 <join-column name="ACCOUNT_ID"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 <many-to-one name="account">

 </many-to-one>

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

1 4 1 L i s t s 863

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Account

{

 ...

 @OneToMany(mappedBy="account")

 @OrderBy("city")

 @JoinColumn(name="ACCOUNT_ID")

 List<Address> addresses

}

public class Address

{

 ...

 @ManyToOne

 Account account;

 ...

}

The crucial part is the mapped-by attribute of the field on the "1" side of the relationship. This tells the JPA
implementation to look for a field called account on the Address class.

This will create 2 tables in the database, one for Address (including an ACCOUNT_ID to link to the
ACCOUNT table), and one for Account. Notice the subtle difference to this set-up to that of the Join
Table relationship earlier.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the
classelement

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this
mode of persistence will not allow duplicate values in the Collection. If you want to allow duplicate
Collection entries, then use the "Join Table" variant above.

141.4 1-N Collection of non-Entity objects

1 4 1 L i s t s 864

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In JPA1 you cannot have a 1-N List of non-Entity objects. This is available in JPA2. All of the
examples above show a 1-N relationship between 2 persistable classes. If you want the element to
be primitive or Object types then follow this section. For example, when you have a List of Strings.
This will be persisted in the same way as the "Join Table" examples above. A join table is created to
hold the collection elements. Let's take our example. We have an Account that stores a Collection of
addresses. These addresses are simply Strings. We define the annotations like this

@Entity

public class Account

{

 ...

 @ElementCollection

 @CollectionTable(name="ACCOUNT_ADDRESSES")

 Collection<String> addresses;

}

or using XML metadata

 <entity class="mydomain.Account">

 <attributes>

 ...

 <element-collection name="addresses">

 <collection-table name="ACCOUNT_ADDRESSES"/>

 </element-collection>

 </attributes>

 </entity>

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". Use @Column on the
field/method to define the column details of the element in the join table.

1 4 2 M a p s 865

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

142 Maps
...

142.1 JPA : 1-N Relationships with Maps
You have a 1-N (one to many) when you have one object of a class that has a Map of objects of
another class. There are two general ways in which you can represent this in a datastore. Join Table
(where a join table is used to provide the relationship mapping between the objects), and Foreign-
Key (where a foreign key is placed in the table of the object contained in the Map.

The various possible relationships are described below.

• Map[Simple, Entity] using join table
• Map[Simple, Simple] using join table
• Map[Entity, Simple] using join table
• 1-N Unidirectional using Foreign-Key (key stored in the value class)
• 1-N Bidirectional using Foreign-Key (key stored in the value class)

This page is aimed at Map fields and so applies to fields of Java type java.util.HashMap,
java.util.Hashtable, java.util.LinkedHashMap, java.util.Map, java.util.SortedMap, java.util.TreeMap,
java.util.Properties

Please note that RDBMS supports the full range of options on this page, whereas other
datastores (ODF, Excel, HBase, MongoDB, etc) persist the Map in a column in the owner object
rather than using join-tables or foreign-keys since those concepts are RDBMS-only

142.2 1-N Map using Join Table
We have a class Account that contains a Map. With a Map we store values using keys. As a result
we have the following combinations of key and value, bearing in mind whether the key or value is
persistable.

142.2.1 Map[Simple, Entity

Here our key is a simple type (in this case a String) and the values are persistable. Like this

If you define the Meta-Data for these classes as follows

1 4 2 M a p s 866

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Account

{

 @OneToMany

 @JoinTable

 Map<String, Address> addresses;

 ...

}

@Entity

public class Address {...}

This will create 3 tables in the datastore, one for Account, one for Address and a join table also
containing the key.

You can configure the names of the key column(s) in the join table using the joinColumns attribute of
@CollectionTable, or the names of the value column(s) using @Column for the field/method.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the
key is not valid to be part of a primary key (with the RDBMS being used). If the column type of
your key is acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX"
column.

142.2.2 Map[Simple, Simple]

Here our keys and values are of simple types (in this case a String). Like this

If you define the Meta-Data for these classes as follows

1 4 2 M a p s 867

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Account

{

 @ElementCollection

 @CollectionTable

 Map<String, String> addresses;

 ...

}

This results in just 2 tables. The "join" table contains both the key AND the value.

You can configure the names of the key column(s) in the join table using the joinColumns attribute of
@CollectionTable, or the names of the value column(s) using @Column for the field/method.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the
key is not valid to be part of a primary key (with the RDBMS being used). If the column type of
your key is acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX"
column.

142.2.3 Map[Entity, Simple]

Here our key is an entity type and the value is a simple type (in this case a String). Please note that
JPA does NOT properly allow for this in its specification. Other implementations introduced
the following hack so we also provide it. Note that there is no OneToMany annotation here so
this is seemingly not a relation to JPA (hence our description of this as a hack). Anyway use it to
workaround JPA's lack of feature.

If you define the Meta-Data for these classes as follows

@Entity

public class Account

{

 @ElementCollection

 @JoinTable

 Map<Address, String> addressLookup;

 ...

}

@Entity

public class Address {...}

1 4 2 M a p s 868

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

This will create 3 tables in the datastore, one for Account, one for Address and a join table also
containing the value.

You can configure the names of the columns in the join table using the joinColumns attributes of the
various annotations.

142.3 1-N Map using Foreign-Key

142.3.1 1-N Foreign-Key Unidirectional (key stored in value)

In this case we have an object with a Map of objects and we're associating the objects using a foreign-
key in the table of the value. We're using a field (alias) in the Address class as the key of the map.

In this relationship, the Account class has a Map of Address objects, yet the Address knows nothing
about the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
MetaData like this

1 4 2 M a p s 869

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address">

 <map-key name="alias"/>

 <join-column name="ACCOUNT_ID_OID"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 <basic name="alias">

 <column name="KEY" length="20"/>

 </basic>

 </attributes>

 </entity>

</entity-mappings>

Again there will be 2 tables, one for Address, and one for Account. If you wish to specify the names
of the columns used in the schema for the foreign key in the Address table you should use the join-
column element within the field of the map.

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account map field since the Address knows nothing
about the Account. Also be aware that each Address object can have only one owner, since it has a
single foreign key to the Account.

1 4 2 M a p s 870

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

142.3.2 1-N Foreign-Key Bidirectional (key stored in value)

In this case we have an object with a Map of objects and we're associating the objects using a foreign-
key in the table of the value.

With these classes we want to store a foreign-key in the value table (ADDRESS), and we want to
use the "alias" field in the Address class as the key to the map. If you define the Meta-Data for these
classes as follows

<entity-mappings>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <one-to-many name="addresses" target-entity="com.mydomain.Address" mapped-by="account">

 <map-key name="alias"/>

 </one-to-many>

 </attributes>

 </entity>

 <entity class="Address">

 <table name="ADDRESS"/>

 <attributes>

 <id name="id">

 <column name="ADDRESS_ID"/>

 </id>

 ...

 <basic name="alias">

 <column name="KEY" length="20"/>

 </basic>

 <many-to-one name="account">

 <join-column name="ACCOUNT_ID_OID"/>

 </many-to-one>

 </attributes>

 </entity>

</entity-mappings>

This will create 2 tables in the datastore. One for Account, and one for Address. The table for
Address will contain the key field as well as an index to the Account record (notated by the mapped-
by tag).

1 4 2 M a p s 871

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

1 4 3 N - t o - 1 R e l a t i o n s 872

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

143 N-to-1 Relations
...

143.1 JPA : N-1 Relationships
You have a N-to-1 relationship when an object of a class has an associated object of another class
(only one associated object) and several of this type of object can be linked to the same associated
object. From the other end of the relationship it is effectively a 1-N, but from the point of view of the
object in question, it is N-1. You can create the relationship in 2 ways depending on whether the 2
classes know about each other (bidirectional), or whether only the "N" side knows about the other
class (unidirectional). These are described below.

For RDBMS an N-1 relation is stored as a foreign-key column(s), possibly in a join table. For
non-RDBMS it is stored as a String "column" storing the 'id' (possibly with the class-name
included in the string) of the related object.

143.1.1 Unidirectional with ForeignKey

For this case you could have 2 classes, User and Account, as below.

so the Account class ("N" side) knows about the User class ("1" side), but not vice-versa. A particular
user could be related to several accounts. If you define the Meta-Data for these classes as follows

1 4 3 N - t o - 1 R e l a t i o n s 873

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="User">

 <table name="USER"/>

 <attributes>

 <id name="id">

 <column name="USER_ID"/>

 </id>

 ...

 </attributes>

 </entity>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <many-to-one name="user"/>

 </attributes>

 </entity>

</entity-mappings>

alternatively using annotations

public class Account

{

 ...

 @ManyToOne

 User user;

}

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT), and a foreign-key in the ACCOUNT table, just like for the case of a OneToOne
relation.
Note that in the case of non-RDBMS datastores there is simply a "column" in the ACCOUNT
"table", storing the "id" of the related object

143.1.2 Unidirectional with JoinTable

For this case you could have 2 classes, User and Account, as below.

1 4 3 N - t o - 1 R e l a t i o n s 874

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

so the Account class ("N" side) knows about the User class ("1" side), but not vice-versa, and are
using a join table. A particular user could be related to several accounts. If you define the Meta-Data
for these classes as follows

<entity-mappings>

 <entity class="User">

 <table name="USER"/>

 <attributes>

 <id name="id">

 <column name="USER_ID"/>

 </id>

 ...

 </attributes>

 </entity>

 <entity class="Account">

 <table name="ACCOUNT"/>

 <attributes>

 <id name="id">

 <column name="ACCOUNT_ID"/>

 </id>

 ...

 <many-to-one name="user">

 <join-table name="ACCOUNT_USER"/>

 </many-to-one>

 </attributes>

 </entity>

</entity-mappings>

alternatively using annotations

public class Account

{

 ...

 @ManyToOne

 @JoinTable(name="ACCOUNT_USER")

 User user;

}

This will create 3 tables in the database, one for User (with name USER), one for Account (with
name ACCOUNT), and a join table (with name ACCOUNT_USER), as shown below.

1 4 3 N - t o - 1 R e l a t i o n s 875

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Note that in the case of non-RDBMS datastores there is no join-table, simply a "column" in the
ACCOUNT "table", storing the "id" of the related object

143.1.3 Bidirectional

This relationship is described in the guide for 1-N relationships. In particular there are 2 ways to
define the relationship for RDBMS : the first uses a Join Table to hold the relationship, whilst the
second uses a Foreign Key in the "N" object to hold the relationship. For non-RDBMS datastores each
side will have a "column" (or equivalent) in the "table" of the N side storing the "id" of the related
(owning) object. Please refer to the 1-N relationships bidirectional relations since they show this exact
relationship.

1 4 4 M - t o - N R e l a t i o n s 876

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

144 M-to-N Relations
...

144.1 JPA : M-N Relationships
You have a M-to-N (or Many-to-Many) relationship if an object of a class A has associated objects of
class B, and class B has associated objects of class A. This relationship may be achieved through Java
Collection, Set, List or subclasses of these, although the only one that supports a true M-N is Set.

With DataNucleus this can be set up as described in this section, using what is called a Join Table
relationship. Let's take the following example and describe how to model it with the different types of
collection classes. We have 2 classes, Product and Supplier as below.

Here the Product class knows about the Supplier class. In addition the Supplier knows about the
Product class, however with these relationships are really independent.

Please note when adding objects to an M-N relation, you MUST add to the owner side as a
minimum, and optionally also add to the non-owner side. Just adding to the non-owner side will
not add the relation.

The various possible relationships are described below.

• M-N Set relation
• M-N Ordered List relation

144.1.1 equals() and hashCode()

Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to determine
equality and whether an element is contained in the Collection. Note also that the hashCode() should
be consistent throughout the lifetime of a persistable object. By that we mean that it should not
use some basis before persistence and then use some other basis (such as the object identity) after
persistence in the equals/hashCode methods.

144.2 Using Set

If you define the Meta-Data for these classes as follows

1 4 4 M - t o - N R e l a t i o n s 877

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="mydomain.Product">

 <table name="PRODUCT"/>

 <attributes>

 <id name="id">

 <column name="PRODUCT_ID"/>

 </id>

 ...

 <many-to-many name="suppliers" mapped-by="products">

 <join-table name="PRODUCTS_SUPPLIERS">

 <join-column name="PRODUCT_ID"/>

 <inverse-join-column name="SUPPLIER_ID"/>

 </join-table>

 </many-to-many>

 </attributes>

 </entity>

 <entity class="mydomain.Supplier">

 <table name="SUPPLIER"/>

 <attributes>

 <id name="id">

 <column name="SUPPLIER_ID"/>

 </id>

 ...

 <many-to-many name="products"/>

 </attributes>

 </entity>

</entity-mappings>

or alternatively using annotations

public class Product

{

 ...

 @ManyToMany(mappedBy="products")

 @JoinTable(name="PRODUCTS_SUPPLIERS",

 joinColumns={@JoinColumn(name="PRODUCT_ID")},

 inverseJoinColumns={@JoinColumn(name="SUPPLIER_ID")})

 Collection<Supplier> suppliers

}

public class Supplier

{

 ...

 @ManyToMany

 Collection<Product> products;

 ...

}

1 4 4 M - t o - N R e l a t i o n s 878

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Note how we have specified the information only once regarding join table name, and join column
names as well as the <join-table>. This is the JPA standard way of specification, and results in a
single join table. The "mapped-by" ties the two fields together.

144.3 Using Ordered Lists

If you define the Meta-Data for these classes as follows

<entity-mappings>

 <entity class="mydomain.Product">

 <table name="PRODUCT"/>

 <attributes>

 <id name="id">

 <column name="PRODUCT_ID"/>

 </id>

 ...

 <many-to-many name="suppliers" mapped-by="products">

 <order-by>name</order-by>

 <join-table name="PRODUCTS_SUPPLIERS">

 <join-column name="PRODUCT_ID"/>

 <inverse-join-column name="SUPPLIER_ID"/>

 </join-table>

 </many-to-many>

 </attributes>

 </entity>

 <entity class="mydomain.Supplier">

 <table name="SUPPLIER"/>

 <attributes>

 <id name="id">

 <column name="SUPPLIER_ID"/>

 </id>

 ...

 <many-to-many name="products">

 <order-by>name</order-by>

 </many-to-many>

 </attributes>

 </entity>

</entity-mappings>

or using annotations

1 4 4 M - t o - N R e l a t i o n s 879

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class Product

{

 ...

 @ManyToMany

 @JoinTable(name="PRODUCTS_SUPPLIERS",

 joinColumns={@JoinColumn(name="PRODUCT_ID")},

 inverseJoinColumns={@JoinColumn(name="SUPPLIER_ID")})

 @OrderBy("id")

 List<Supplier> suppliers

}

public class Supplier

{

 ...

 @ManyToMany

 @OrderBy("id")

 List<Product> products

}

There will be 3 tables, one for Product, one for Supplier, and the join table. The difference from the
Set example is that we now have <order-by> at both sides of the relation. This has no effect in the
datastore schema but when the Lists are retrieved they are ordered using the specified order-by.

Note that you cannot have a many-to-many relation using indexed lists since both sides would
need its own index.

144.4 Relationship Behaviour
Please be aware of the following.

• To add an object to an M-N relationship you need to set it at both ends of the relation since
the relation is bidirectional and without such information the JPA implementation won't
know which end of the relation is correct.

• If you want to delete an object from one end of a M-N relationship you will have to remove
it first from the other objects relationship. If you don't you will get an error message that
the object to be deleted has links to other objects and so cannot be deleted.

1 4 5 C a s c a d i n g 880

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

145 Cascading
...

145.1 JPA : Cascading Fields
When defining your objects to be persisted and the relationships between them, it is often required
to define dependencies between these related objects. When persisting an object should we also
persist any related objects? What should happen to a related object when an object is deleted ? Can
the related object exist in its own right beyond the lifecycle of the other object, or should it be deleted
along with the other object ? This behaviour can be defined with JPA and with DataNucleus. Lets take
an example

@Entity

public class Owner

{

 @OneToOne

 private DrivingLicense license;

 @OneToMany(mappedBy="owner")

 private Collection cars;

 ...

}

@Entity

public class DrivingLicense

{

 private String serialNumber;

 ...

}

@Entity

public class Car

{

 private String registrationNumber;

 @ManyToOne

 private Owner owner;

 ...

}

So we have an Owner of a collection of vintage Car's, and the Owner has a DrivingLicense. We
want to define lifecycle dependencies to match the relationships that we have between these objects.
So in our example what we are going to do is

• When an object is persisted/updated its related objects are also persisted/updated.
• When an Owner object is deleted, its DrivingLicense is deleted too (since it can't exist without

the person!
• When an Owner object is deleted, the Cars continue to exist (since someone will buy them)
• When a Car object is deleted, the Owner continues to exist (unless he/she dies in the Car, but

that will be handled by a different mechanism in our application).

1 4 5 C a s c a d i n g 881

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we update our class to reflect this

@Entity

public class Owner

{

 @OneToOne(cascade=CascadeType.ALL)

 private DrivingLicense license;

 @OneToMany(mappedBy="owner", cascade={CascadeType.PERSIST, CascadeType.MERGE})

 private Collection cars;

 ...

}

@Entity

public class DrivingLicense

{

 private String serialNumber;

 ...

}

@Entity

public class Car

{

 private String registrationNumber;

 @ManyToOne(cascade={CascadeType.PERSIST, CascadeType.MERGE})

 private Owner owner;

 ...

}

So we make use of the cascade attribute of the relation annotations. We could express this similarly in
XML

1 4 5 C a s c a d i n g 882

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity-mappings>

 <entity class="mydomain.Owner">

 <attributes>

 <one-to-many name="cars">

 <cascade>

 <cascade-persist/>

 <cascade-merge/>

 </cascade>

 </one-to-many>

 <one-to-one name="license">

 <cascade>

 <cascade-all/>

 </cascade>

 </one-to-one>

 ...

 </attributes>

 </entity>

 <entity class="mydomain.DrivingLicense">

 ...

 </entity>

 <entity class="mydomain.Car">

 <attributes>

 <many-to-one name="owner">

 <cascade>

 <cascade-persist/>

 <cascade-merge/>

 </cascade>

 </many-to-one>

 ...

 </attributes>

 </entity>

</entity-mappings>

145.1.1 Orphans

When an element is removed from a collection, or when a 1-1 relation is nulled, sometimes it is
desirable to delete the other object. JPA2 defines a facility of removing "orphans" by specifying
metadata for a 1-1 or 1-N relation. Let's take an example. In the above relation between Owner and
DrivingLicense if we set the owners license field to null, this should mean that the license is deleted.
So we could change it to be

1 4 5 C a s c a d i n g 883

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Owner

{

 @OneToOne(cascade={CascadeType.PERSIST, CascadeType.MERGE}, orphanRemoval=true)

 private DrivingLicense license;

 ...

}

@Entity

public class DrivingLicense

{

 private String serialNumber;

 ...

}

So from now on, if we delete the Owner we delete the DrivingLicense, and if we set the license field
of DrivingLicense to null then we also delete the DrivingLicense.

1 4 6 M e t a D a t a R e f e r e n c e 884

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

146 MetaData Reference
...

146.1 JPA : Metadata Overview
JPA requires the persistence of classes to be defined via Metadata. This Metadata can be provided in
the following forms

• XML : the traditional mechanism, with XML files containing information for each class to be
persisted.

• Annotations : using JDK1.5+ annotations in the classes to be persisted

We recommend that you use either XML or annotations for the basic persistence information, but always use
XML for ORM information. This is because it is liable to change at deployment time and hence is accessible
when in XML form whereas in annotations you add an extra compile cycle (and also you may need to deploy to
some other datastore at some point, hence needing a different deployment).

146.1.1 Metadata priority

JPA defines the priority order for metadata as being

• JPA XML Metadata
• Annotations

If a class has annotations and JPA XML Metadata then the XML Metadata will take precedence over
the annotations (or rather be merged on top of the annotations).

146.1.2 XML Metadata validation

By default any XML Metadata will be validated for accuracy when loading it. Obviously XML is
defined by a DTD or XSD schema and so should follow that. You can turn off such validations by
setting the persistence property datanucleus.metadata.xml.validate to false when creating your
PMF. Note that this only turns off the XML strictness validation, and not the checks on inconsistency
of specification of relations etc.

1 4 7 X M L 885

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

147 XML
...

147.1 JPA : XML Metadata Reference
JPA XML MetaData allows you to define mapping information but in a separate file (orm.xml)
separating persistence mapping from your model. What follows provides a reference guide to
MetaData elements. Here is an example header for orm.xml files with XSD specification

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings xmlns="http://xmlns.jcp.org/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence/orm

 http://xmlns.jcp.org/xml/ns/persistence/orm_2_1.xsd" version="2.1">

 ...

</entity-mappings>

If using any of the DataNucleus extensions, then the XSD is defined here, in which case you would
define your header as :-

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings xmlns="http://www.datanucleus.org/xsd/jpa/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.datanucleus.org/xsd/jpa/orm

 http://www.datanucleus.org/xsd/jpa/orm_2_1.xsd" version="2.1">

 ...

</entity-mappings>

• entity-mappings

• description
• persistence-unit-metadata

• xml-mapping-metadata-complete
• package
• schema
• catalog
• access
• sequence-generator
• table-generator
• named-query

• query
• named-native-query

• query
• sql-result-set-mapping

• entity-result

• field-result

http://xmlns.jcp.org/xml/ns/persistence/orm_2_1.xsd
http://www.datanucleus.org/xsd/jpa/orm_2_1.xsd

1 4 7 X M L 886

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• column-result
• mapped-superclass

• description
• id-class
• datastore-id

• column
• generated-value

• surrogate-version

• column
• exclude-default-listeners
• exclude-superclass-listeners
• entity-listeners

• entity-listener

• pre-persist
• post-persist
• pre-remove
• post-remove
• pre-update
• post-update
• post-load

• pre-persist
• post-persist
• pre-remove
• post-remove
• pre-update
• post-update
• post-load
• attributes

• Same elements as under <entity>-><attributes>
• entity

• description
• table

• unique-constraint

• column-name
• index

• secondary-table

• primary-key-join-column
• primary-key-foreign-key

1 4 7 X M L 887

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• unique-constraint

• column-name
• index

• primary-key-join-column
• primary-key-foreign-key
• id-class
• datastore-id

• column
• generated-value

• surrogate-version

• column
• inheritance
• discriminator-value
• discriminator-column
• sequence-generator
• table-generator

• index
• named-query

• query
• named-native-query

• query
• sql-result-set-mapping

• entity-result

• field-result
• column-result

• named-entity-graph

• named-attribute-node
• subgraph

• named-attribute-node
• subclass-subgraph

• named-attribute-node
• exclude-default-listeners
• exclude-superclass-listeners
• entity-listeners

• entity-listener

• pre-persist
• post-persist

1 4 7 X M L 888

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• pre-remove
• post-remove
• pre-update
• post-update
• post-load

• pre-persist
• post-persist
• pre-remove
• post-remove
• pre-update
• post-update
• post-load
• attribute-override

• column
• association-override

• join-column
• attributes

• id

• column
• generated-value
• sequence-generator
• table-generator

• embedded-id
• basic

• column
• lob
• temporal
• enumerated
• convert

• version

• column
• many-to-one

• join-column
• join-table

• join-column
• inverse-join-column
• unique-constraint

• column-name
• cascade

1 4 7 X M L 889

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• cascade-all
• cascade-persist
• cascade-merge
• cascade-remove
• cascade-refresh

• element-collection

• collection-table

• join-column
• index
• foreign-key

• order-by
• order-column
• map-key
• map-key-temporal
• map-key-enumerated
• join-table

• join-column
• foreign-key
• inverse-join-column
• inverse-foreign-key
• unique-constraint

• column-name
• join-column

• one-to-many

• order-by
• order-column
• map-key
• map-key-temporal
• map-key-enumerated
• join-table

• join-column
• inverse-join-column
• unique-constraint

• column-name
• join-column
• cascade

• cascade-all
• cascade-persist
• cascade-merge

1 4 7 X M L 890

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• cascade-remove
• cascade-refresh

• one-to-one

• join-column
• foreign-key
• join-table

• join-column
• inverse-join-column
• unique-constraint

• column-name
• cascade

• cascade-all
• cascade-persist
• cascade-merge
• cascade-remove
• cascade-refresh

• many-to-many

• order-by
• order-column
• map-key
• map-key-temporal
• map-key-enumerated
• join-table

• join-column
• inverse-join-column
• unique-constraint

• column-name
• cascade

• cascade-all
• cascade-persist
• cascade-merge
• cascade-remove
• cascade-refresh

• embedded

• attribute-override
• transient

• embeddable

• embeddable-attributes

1 4 7 X M L 891

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• basic
• transient

147.1.1 Metadata for description tag

The <description> element (<entity-mappings>) contains the text describing all classes (and hence
entities) defined in this file. It serves no useful purpose other than descriptive.

147.1.2 Metadata for xml-mapping-metadata-complete tag

The <xml-mapping-metadata-complete> element (under <persistence-unit-metadata>) when
specified defines that the classes in this file are fully specified with just their metadata and that any
annotations should be ignored.

147.1.3 Metadata for package tag

The <package> element (under <entity-mappings>) contains the text defining the package into which
all classes in this file belong.

147.1.4 Metadata for schema tag

The <schema> element (under <entity-mappings>) contains the default schema for all classes in this
file.

147.1.5 Metadata for catalog tag

The <catalog> element (under <entity-mappings>) contains the default catalog for all classes in this
file.

147.1.6 Metadata for access tag

The <access> element (under <entity-mappings>) contains the setting for how to access the persistent
fields/properties. This can be set to either "FIELD" or "PROPERTY".

147.1.7 Metadata for sequence-generator tag

The <sequence-generator> element (under <entity-mappings>, or <entity> or <id>) defines a
generator of sequence values, for use elsewhere in this persistence-unit.

Attribute Description Values

name Name of the generator (required)

1 4 7 X M L 892

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

sequence-name Name of the sequence

initial-value Initial value for the sequence 1

allocation-size Number of values that the
sequence allocates when needed

50

147.1.8 Metadata for table-generator tag

The <table-generator> element (under <entity-mappings>, or <entity> or <id>) defines a generator
of sequence values using a datastore table, for use elsewhere in this persistence-unit.

Attribute Description Values

name Name of the generator (required)

table name of the table to use for
sequences

SEQUENCE_TABLE

catalog Catalog to store the sequence table

schema Schema to store the sequence
table

pk-column-name Name of the primary-key column in
the table

SEQUENCE_NAME

value-column-name Name of the value column in the
table

NEXT_VAL

pk-column-value Name of the value to use in the
primary key column (for this row)

{name of the class}

initial-value Initial value to use in the table 0

allocation-size Number of values to allocate when
needed

50

147.1.9 Metadata for named-query tag

The <named-query> element (under <entity-mappings> or under <entity>) defines a JPQL query
that will be accessible at runtime via the name. The element itself will contain the text of the query. It
has the following attributes

Attribute Description Values

name Name of the query

147.1.10 Metadata for named-native-query tag

The <named-native-query> element (under <entity-mappings> or under <entity>) defines an SQL
query that will be accessible at runtime via the name. The element itself will contain the text of the
query. It has the following attributes

1 4 7 X M L 893

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Attribute Description Values

name Name of the query

147.1.11 Metadata for sql-result-set-mapping tag

The <sql-result-set-mapping> element (under <entity-mappings> or under <entity>) defines how the
results of the SQL query are output to the user per row of the result set. It will contain sub-elements. It
has the following attributes

Attribute Description Values

name Name of the SQL result-set
mapping (referenced by native
queries)

147.1.12 Metadata for named-entity-graph tag

The <named-entity-graph> element (under <entity>) defines an entity graph with root as that entity,
accessible at runtime via the name. It has the following attributes

Attribute Description Values

name Name of the entity graph

147.1.13 Metadata for named-attribute-node tag

The <named-attribute-node> element (under <named-entity-graph>) defines a node in the entity
graph. It has the following attributes

Attribute Description Values

name Name of the node (field/property)

subgraph Name of a subgraph that maps this
attribute fully (optional)

147.1.14 Metadata for subgraph/subclass-subgraph tag

The <subgraph>/ subclass-subgraph element (under <named-entity-graph>) defines a subgraph in
the entity graph. It has the following attributes

Attribute Description Values

1 4 7 X M L 894

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

name Name of the subgraph (referenced
in the named-attribute-node)

class Type of the subgraph attribute

147.1.15 Metadata for entity-result tag

The <entity-result> element (under <sql-result-set-mapping>) defines an entity that is output from
an SQL query per row of the result set. It can contain sub-elements of type <field-result>. It has the
following attributes

Attribute Description Values

entity-class Class of the entity

discriminator-column Column containing any
discriminator (so subclasses of the
entity type can be distinguished)

147.1.16 Metadata for field-result tag

The <field-result> element (under <entity-result>) defines a field of an entity and the column
representing it in an SQL query. It has the following attributes

Attribute Description Values

name Name of the entity field

column Name of the SQL column

147.1.17 Metadata for column-result tag

The <column-result> element (under <sql-result-set-mapping>) defines a column that is output
directly from an SQL query per row of the result set. It has the following attributes

Attribute Description Values

name Name of the SQL column

147.1.18 Metadata for mapped-superclass tag

These are attributes within the <mapped-superclass> tag (under <entity-mappings>). This is used to
define the persistence definition for a class that has no table but is mapped.

Attribute Description Values

class Name of the class (required)

1 4 7 X M L 895

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

metadata-complete Whether the definition of
persistence of this class is
complete with this MetaData
definition. That is, should any
annotations be ignored.

true | false

147.1.19 Metadata for entity tag

These are attributes within the <entity> tag (under <entity-mappings>). This is used to define the
persistence definition for this class.

Attribute Description Values

class Name of the class (required)

name Name of the entity. Used by JPQL
queries

metadata-complete Whether the definition of
persistence of this class is
complete with this MetaData
definition. That is, should any
annotations be ignored.

true | false

cacheable Whether instances of this class
should be cached in the L2 cache.
New in JPA2

true | false

147.1.20 Metadata for description tag

The <description> element (under <entity>) contains the text describing the class being persisted. It
serves no useful purpose other than descriptive.

147.1.21 Metadata for table tag

These are attributes within the <table> tag (under <entity>). This is used to define the table where this
class will be persisted.

Attribute Description Values

name Name of the table

catalog Catalog where the table is stored

schema Schema where the table is stored

147.1.22 Metadata for secondary-table tag

These are attributes within the <secondary-table> tag (under <entity>). This is used to define the join
of a secondary table back to the primary table where this class will be persisted.

1 4 7 X M L 896

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Attribute Description Values

name Name of the table

catalog Catalog where the table is stored

schema Schema where the table is stored

147.1.23 Metadata for join-table tag

These are attributes within the <join-table> tag (under <one-to-one>, <one-to-many>, <many-to-
many>). This is used to define the join table where a collection/maps relationship will be persisted.

Attribute Description Values

name Name of the join table

catalog Catalog where the join table is
stored

schema Schema where the join table is
stored

orphan-removal Whether to remove orphans when
either removng the owner or nulling
the relation

false

147.1.24 Metadata for collection-table tag

These are attributes within the <collection-table> tag (under <element-collection>). This is used to
define the join table where a collections relationship will be persisted.

Attribute Description Values

name Name of the join table

catalog Catalog where the join table is
stored

schema Schema where the join table is
stored

147.1.25 Metadata for unique-constraint tag

This element is specified under the <table>, <secondary-table> or <join-table> tags. This is used to
define a unique constraint on the table. No attributes are provided, just sub-element(s) "column-name"

1 4 7 X M L 897

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

147.1.26 Metadata for column tag

These are attributes within the <column> tag (under <basic>). This is used to define the column
where the data will be stored.

Attribute Description Values

name Name of the column

unique Whether the column is unique true | false

nullable Whether the column is nullable true | false

insertable Whether the column is insertable true | false

updatable Whether the column is updatable true | false

column-definition Some vague JPA term that you put
anything in and get any unexpected
results from

table Table for the column ?

length Length for the column (when string
type)

255

precision Precision for the column (when
numeric type)

0

scale Scale for the column (when
numeric type)

0

jdbc-type The JDBC Type to use for this
column (DataNucleus extension)

position The position to use for this column
(first=0) (DataNucleus extension)

147.1.27 Metadata for primary-key-join-column tag

These are attributes within the <primary-join-key-column> tag (under <secondary-table> or
<entity>). This is used to define the join of PK columns between secondary and primary tables, or
between table of subclass and table of base class.

Attribute Description Values

name Name of the column

referenced-column-name Name of column in primary table

147.1.28 Metadata for join-column tag

These are attributes within the <join-column> tag (under <join-table>). This is used to define the join
column.

Attribute Description Values

name Name of the column

1 4 7 X M L 898

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

referenced-column-name Name of the column at the other
side of the relation that this is a FK
to

unique Whether the column is unique true | false

nullable Whether the column is nullable true | false

insertable Whether the column is insertable true | false

updatable Whether the column is updatable true | false

column-definition Some vague JPA term that you put
anything in and get any unexpected
results from. Not supported by
DataNucleus.

table Table for the column ?

147.1.29 Metadata for inverse-join-column tag

These are attributes within the <inverse-join-column> tag (under <join-table>). This is used to define
the join column to the element.

Attribute Description Values

name Name of the column

referenced-column-name Name of the column at the other
side of the relation that this is a FK
to

unique Whether the column is unique true | false

nullable Whether the column is nullable true | false

insertable Whether the column is insertable true | false

updatable Whether the column is updatable true | false

column-definition Some vague JPA term that you put
anything in and get any unexpected
results from. Not supported by
DataNucleus.

table Table for the column ?

147.1.30 Metadata for id-class tag

These are attributes within the <id-class> tag (under <entity>). This defines a identity class to be used
for this entity.

Attribute Description Values

class Name of the identity class
(required)

1 4 7 X M L 899

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

147.1.31 Metadata for inheritance tag

These are attributes within the <inheritance> tag (under <entity>). This defines the inheritance of the
class.

Attribute Description Values

strategy Strategy for inheritance in terms of
storing this class

SINGLE_TABLE | JOINED |
TABLE_PER_CLASS

147.1.32 Metadata for discriminator-value tag

These are attributes within the <discriminator-value> tag (under <entity>). This defines the value
used in a discriminator. The value is contained in the element. Specification of the value will result
in a "value-map" discriminator strategy being adopted. If no discriminator-value is present, but
discriminator-column is then "class-name" discriminator strategy is used.

147.1.33 Metadata for discriminator-column tag

These are attributes within the <discriminator-column> tag (under <entity>). This defines the
column used for a discriminator.

Attribute Description Values

name Name of the discriminator column DTYPE

discriminator-type Type of data stored in the
discriminator column

STRING | CHAR | INTEGER

length Length of the discriminator column

147.1.34 Metadata for id tag

These are attributes within the <id> tag (under <attributes>). This is used to define the field used to be
the identity of the class.

Attribute Description Values

name Name of the field (required)

147.1.35 Metadata for generated-value tag

These are attributes within the <generated-value> tag (under <id>). This is used to define how to
generate the value for the identity field.

Attribute Description Values

1 4 7 X M L 900

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

strategy Generation strategy. Please refer to
the Identity Generation Guide

auto | identity | sequence | table

generator Name of the generator to use if
wanting to override the default
DataNucleus generator for the
specified strategy. Please refer to
the <sequence-generator> and
<table-generator>

147.1.36 Metadata for datastore-id tag

These are attributes within the <datastore-id> tag (under <entity>). This is used to define the entity is
using datastore identity (DataNucleus extension).

Attribute Description Values

column Name of the surrogate column to
add for the datastore identity.

generated-value Details of the generated value
strategy and generator. Please
refer to the <generated-value>

147.1.37 Metadata for surrogate-version tag

These are attributes within the <surrogate-version> tag (under <entity>). This is used to define the
entity has a surrogate version column (DataNucleus extension).

Attribute Description Values

column Name of the surrogate column to
add for the version.

indexed Whether the surrogate version
column should be indexed.

true | false

147.1.38 Metadata for embedded-id tag

These are attributes within the <embedded-id> tag (under <attributes>). This is used to define the
field used to be the (embedded) identity of the class. Note that this is not yet fully supported -
specify the fields in the class

Attribute Description Values

name Name of the field (required)

1 4 7 X M L 901

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

147.1.39 Metadata for version tag

These are attributes within the <version> tag (under <attributes>). This is used to define the field
used to be hold the version of the class.

Attribute Description Values

name Name of the field (required)

147.1.40 Metadata for basic tag

These are attributes within the <basic> tag (under <attributes>). This is used to define the persistence
information for the field.

Attribute Description Values

name Name of the field (required)

fetch Fetch type for this field LAZY | EAGER

optional Whether this field may be null and
may be used in schema generation

true | false

147.1.41 Metadata for temporal tag

These are attributes within the <temporal> tag (under <basic>). This is used to define the details
of persistence as a temporal type. The contents of the element can be one of DATE, TIME,
TIMESTAMP.

147.1.42 Metadata for enumerated tag

These are attributes within the <enumerated> tag (under <basic>). This is used to define the details
of persistence as an enum type. The contents of the element can be one of ORDINAL or STRING to
represent whether the enum is persisted as an integer-based or the actual string.

147.1.43 Metadata for one-to-one tag

These are attributes within the <one-to-one> tag (under <attributes>). This is used to define that the
field is part of a 1-1 relation.

Attribute Description Values

name Name of the field (required)

target-entity Class name of the related entity

fetch Whether the field should be fetched
immediately

EAGER | LAZY

optional Whether the field can store nulls. true | false

1 4 7 X M L 902

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

mapped-by Name of the field that owns the
relation (specified on the inverse
side)

147.1.44 Metadata for many-to-one tag

These are attributes within the <many-to-one> tag (under <attributes>). This is used to define that the
field is part of a N-1 relation.

Attribute Description Values

name Name of the field (required)

target-entity Class name of the related entity

fetch Whether the field should be fetched
immediately

EAGER | LAZY

optional Whether the field can store nulls. true | false

147.1.45 Metadata for element-collection tag

These are attributes within the <element-collection> tag (under <attributes>). This is used to define
that the field is part of a 1-N non-PC relation.

Attribute Description Values

name Name of the field (required)

target-class Class name of the related object

fetch Whether the field should be fetched
immediately

EAGER | LAZY

147.1.46 Metadata for one-to-many tag

These are attributes within the <one-to-many> tag (under <attributes>). This is used to define that the
field is part of a 1-N relation.

Attribute Description Values

name Name of the field (required)

target-entity Class name of the related entity

fetch Whether the field should be fetched
immediately

EAGER | LAZY

mapped-by Name of the field that owns the
relation (specified on the inverse
side)

1 4 7 X M L 903

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

orphan-removal Whether to remove orphans when
either removng the owner or
removing the element

false

147.1.47 Metadata for many-to-many tag

These are attributes within the <many-to-many> tag (under <attributes>). This is used to define that
the field is part of a M-N relation.

Attribute Description Values

name Name of the field (required)

target-entity Class name of the related entity

fetch Whether the field should be fetched
immediately

EAGER | LAZY

mapped-by Name of the field on the non-
owning side that completes the
relation. Specified on the owner
side

147.1.48 Metadata for embedded tag

These are attributes within the <embedded> tag (under <attributes>). This is used to define that the
field is part of an embedded relation.

Attribute Description Values

name Name of the field (required)

147.1.49 Metadata for order-by tag

This element is specified under <one-to-many> or <many-to-many>. It is used to define the field(s)
of the element class that is used for ordering the elements when they are retrieved from the datastore.
It has no attributes and the ordering is specified within the element itself. It should be a comma-
separated list of field names (of the element) with optional "ASC" or "DESC" to signify ascending or
descending

147.1.50 Metadata for order-column tag

This element is specified under <one-to-many> or <many-to-many>. It is used to define that the List
will be ordered with the ordering stored in a surrogate column in the other table.

Attribute Description Values

name Name of the column {fieldName}_ORDER

1 4 7 X M L 904

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

nullable Whether the column is nullable true | false

insertable Whether the column is insertable true | false

updatable Whether the column is updatable true | false

column-definition Some vague JPA term that you put
anything in and get any unexpected
results from

base Origin of the ordering (value for the
first element)

0

147.1.51 Metadata for map-key tag

These are attributes within the <map-key> tag (under <one-to-many> or <many-to-many>). This is
used to define the field of the value class that is the key of a Map.

Attribute Description Values

name Name of the field (required)

147.1.52 Metadata for map-key-temporal tag

Within the <map-key-temporal> tag (under <element-collection>, <one-to-many> or <many-to-
many>) you put the TemporalType value.

147.1.53 Metadata for map-key-enumerated tag

Within the <map-key-enumerated> tag (under <element-collection>, <one-to-many> or <many-to-
many>) you put the EnumType value.

147.1.54 Metadata for transient tag

These are attributes within the <transient> tag (under <attributes>). This is used to define that the
field is not to be persisted.

Attribute Description Values

name Name of the field (required)

147.1.55 Metadata for index tag

These are attributes within the <index> element. This is used to define the details of an index when
overriding the provider default.

1 4 7 X M L 905

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Attribute Description Values

name Name of the index

unique Whether the index is unique

column-list List of columns (including any
ASC, DESC specifications for each
column)

147.1.56 Metadata for foreign-key tag

These are attributes within the <foreign-key> element. This is used to define the details of a foreign-
key when overriding the provider default.

Attribute Description Values

name Name of the foreign-key

value Constraint mode

foreignKeyDefinition The DDL for the foreign key

147.1.57 Metadata for convert tag

These are attributes within the <convert> element, under <basic>. This is used to define the use of
type conversion on this field.

Attribute Description Values

converter Class name of the converter

attribute-name Name of the embedded field
to convert (optional). Not yet
supported

disable-conversion Whether to disable any auto-apply
converters for this field

true | false

147.1.58 Metadata for exclude-default-listeners tag

This element is specified under <mapped-superclass> or <entity> and is used to denote that any
default listeners defined in this file will be ignored.

147.1.59 Metadata for exclude-superclass-listeners tag

This element is specified under <mapped-superclass> or <entity> and is used to denote that any
listeners of superclasses will be ignored.

1 4 7 X M L 906

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

147.1.60 Metadata for entity-listener tag

These are attributes within the <entity-listener> tag (under <entity-listeners>). This is used to an
EntityListener class and the methods it uses

Attribute Description Values

class Name of the EntityListener class
that receives the callbacks for this
Entity

147.1.61 Metadata for pre-persist tag

These are attributes within the <pre-persist> tag (under <entity>). This is used to define any
"PrePersist" method callback.

Attribute Description Values

method-name Name of the method (required)

147.1.62 Metadata for post-persist tag

These are attributes within the <post-persist> tag (under <entity>). This is used to define any
"PostPersist" method callback.

Attribute Description Values

method-name Name of the method (required)

147.1.63 Metadata for pre-remove tag

These are attributes within the <pre-remove> tag (under <entity>). This is used to define any
"PreRemove" method callback.

Attribute Description Values

method-name Name of the method (required)

147.1.64 Metadata for post-remove tag

These are attributes within the <post-remove> tag (under <entity>). This is used to define any
"PostRemove" method callback.

Attribute Description Values

1 4 7 X M L 907

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

method-name Name of the method (required)

147.1.65 Metadata for pre-update tag

These are attributes within the <pre-remove> tag (under <entity>). This is used to define any
"PreUpdate" method callback.

Attribute Description Values

method-name Name of the method (required)

147.1.66 Metadata for post-update tag

These are attributes within the <post-update> tag (under <entity>). This is used to define any
"PostUpdate" method callback.

Attribute Description Values

method-name Name of the method (required)

147.1.67 Metadata for post-load tag

These are attributes within the <post-load> tag (under <entity>). This is used to define any
"PostLoad" method callback.

Attribute Description Values

method-name Name of the method (required)

147.1.68 Metadata for attribute-override tag

These are attributes within the <attribute-override> tag (under <entity>). This is used to override the
columns for any fields in superclasses

Attribute Description Values

name Name of the field/property
(required)

147.1.69 Metadata for association-override tag

These are attributes within the <association-override> tag (under <entity>). This is used to override
the columns for any N-1/1-1 fields in superclasses

1 4 7 X M L 908

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Attribute Description Values

name Name of the field/property
(required)

1 4 8 A n n o t a t i o n s 909

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148 Annotations
...

148.1 JPA : Annotations
Java provides the ability to use annotations, and DataNucleus supports both JPA and JDO
annotations. In this section we will document some of the more important JPA annotations. When
selecting to use annotations please bear in mind the following :-

• You must have the datanucleus-api-jpa jar available in your CLASSPATH.
• You must have the persistence-api (or javax.persistence) jar in your CLASSPATH since this

provides the annotations
• Annotations should really only be used for attributes of persistence that you won't be changing

at deployment. Things such as table and column names shouldn't really be specified using
annotations although it is permitted. Instead it would be better to put such information in an
ORM file.

• Annotations can be added in two places - for the class as a whole, or for a field in particular.
• You can annotate fields or getters with field-level information. It doesn't matter which.
• Annotations are prefixed by the @ symbol and can take properties (in brackets after the name,

comma-separated)
• JPA doesn't provide for some key JDO concepts and DataNucleus provides its own annotations

for these cases.
• You have to import "javax.persistence.XXX" where XXX is the annotation name of a JPA

annotation
• You have to import "org.datanucleus.api.jpa.annotations.XXX" where XXX is the annotation

name of a DataNucleus value-added annotation
Annotations supported by DataNucleus are shown below. Not all have their documentation written
yet. The annotations/attributes coloured in brighter green are ORM and really should be placed
in XML rather than directly in the class using annotations. The annotations coloured in blue are
DataNucleus extensions and should be used only where you don't mind losing implementation-
independence.

Annotation Class/Field Description

@Entity Class Specifies that the class is persistent

@MappedSuperclass Class Specifies that this class contains
persistent information to be
mapped

@Embeddable Class Specifies that the class is persistent
embedded in another persistent
class

@PersistenceAware Class Specifies that the class is not
persistent but needs to be able to
access fields of persistent classes
(DataNucleus extension).

@IdClass Class Defines the primary key class for
this class

@Cacheable Class Specifies that instances of this
class can be cached in the L2
cache

1 4 8 A n n o t a t i o n s 910

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@DatastoreId Class Defines a class as using datastore-
identity (DataNucleus extension).

@EntityListeners Class Specifies class(es) that are
listeners for events from instances
of this class

@NamedQueries Class Defines a series of named JPQL
queries for use in the current
persistence unit

@NamedQuery Class Defines a named JPQL query for
use in the current persistence unit

@NamedNativeQuery Class Defines a named SQL query for
use in the current persistence unit

@NamedNativeQueries Class Defines a series of named SQL
queries for use in the current
persistence unit

@NamedStoredProcedureQuery Class Defines a named stored procedure
query for use in the current
persistence unit

@NamedStoredProcedureQueries Class Defines a series of named stored
procedure queries for use in the
current persistence unit

@SqlResultSetMapping Class Defines a result mapping for an
SQL query for use in the current
persistence unit

@SqlResultSetMappings Class Defines a series of mappings for
SQL queries for use in the current
persistence unit

@NamedEntityGraph Class Defines a named entity graph with
root of the class it is specifed on

@NamedEntityGraphs Class Defines named entity graphs with
root of the class it is specifed on

@Converter Class Defines a java type converter for a
field type

@Inheritance Class Specifies the inheritance model for
persisting this class

@Table Class Defines the table where this class
will be stored

@SecondaryTable Class Defines a secondary table where
some fields of this class will be
stored

@DiscriminatorColumn Class Defines the column where any
discriminator will be stored

@DiscriminatorValue Class Defines the value to be used in
the discriminator for objects of this
class

@PrimaryKeyJoinColumns Class Defines the names of the PK
columns when this class has a
superclass

1 4 8 A n n o t a t i o n s 911

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@PrimaryKeyJoinColumn Class Defines the name of the PK column
when this class has a superclass

@AttributeOverride Class Defines a field in a superclass that
will have its column overridden

@AttributeOverrides Class Defines the field(s) of superclasses
that will have their columns
overridden

@AssociationOverride Class Defines a N-1/1-1 field in a
superclass that will have its column
overridden

@AssociationOverrides Class Defines the N-1/1-1 field(s) of
superclasses that will have their
columns overridden

@SequenceGenerator Class/Field/Method Defines a generator of values using
sequences in the datastore for use
with persistent entities

@TableGenerator Class/Field/Method Defines a generator of sequences
using a table in the datastore for
use with persistent entities

@Embedded Field/Method Defines this field as being
embedded

@Id Field/Method Defines this field as being (part of)
the identity for the class

@EmbeddedId Field/Method Defines this field as being (part of)
the identity for the class, and being
embedded into this class.

@Version Field/Method Defines this field as storing the
version for the class

@Basic Field/Method Defines this field as being
persistent

@Transient Field/Method Defines this field as being transient
(not persisted)

@OneToOne Field/Method Defines this field as being a 1-1
relation with another persistent
entity

@OneToMany Field/Method Defines this field as being a 1-
N relation with other persistent
entities

@ManyToMany Field/Method Defines this field as being a M-
N relation with other persistent
entities

@ManyToOne Field/Method Defines this field as being a N-1
relation with another persistent
entity

@ElementCollection Field/Method Defines this field as being a 1-
N relation of Objects that are not
Entities.

@Index Field/Method Specifies an index on this field/
property (DataNucleus extension).

1 4 8 A n n o t a t i o n s 912

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@JdbcType Field/Method Specifies the JDBC Type to use
on this field/property (DataNucleus
extension).

@ColumnPosition Field/Method Specifies the column position
to use on this field/property
(DataNucleus extension).

@ValueGenerator Field/Method Specifies a non-JPA-standard
value generator to use on this field/
property (DataNucleus extension).

@GeneratedValue Field/Method Defines that this field has its value
generated using a generator

@MapKey Field/Method Defines that this field is the key to a
map

@MapKeyEnumerated Field/Method Defines the datastore type for the
map key when it is an enum

@MapKeyTemporal Field/Method Defines the datastore type for the
map key when it is a temporal type

@MapKeyColumn Field/Method Defines the column details for the
map key when stored in a join table

@OrderBy Field/Method Defines the field(s) used for
ordering the elements in this
collection

@OrderColumn Field/Method Defines that ordering should be
attributed by the implementation
using a surrogate column.

@PrePersist Field/Method Defines this method as being a
callback for pre-persist events

@PostPersist Field/Method Defines this method as being a
callback for post-persist events

@PreRemove Field/Method Defines this method as being a
callback for pre-remove events

@PostRemove Field/Method Defines this method as being a
callback for post-remove events

@PreUpdate Field/Method Defines this method as being a
callback for pre-update events

@PostUpdate Field/Method Defines this method as being a
callback for post-update events

@PostLoad Field/Method Defines this method as being a
callback for post-load events

@JoinTable Field/Method Defines this field as being stored
using a join table

@CollectionTable Field/Method Defines this field as being stored
using a join table when containing
non-entity objects.

@Lob Field/Method Defines this field as being stored as
a large object

@Temporal Field/Method Defines this field as storing
temporal data

1 4 8 A n n o t a t i o n s 913

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Enumerated Field/Method Defines this field as storing
enumerated data

@Convert Field/Method Defines a converter for this field/
property

@Column Field/Method Defines the column where this field
is stored

@JoinColumn Field/Method Defines a column for joining to
either a join table or foreign key
relation

@JoinColumns Field/Method Defines the columns for joining to
either a join table or foreign key
relation (1-1, 1-N, N-1)

@Index - Defines the details of an index
when overriding the provider
default.

@ForeignKey - Defines the details of a foreign
key when overriding the provider
default.

@Extensions Class/Field/Method Defines a series of DataNucleus
extensions (DataNucleus
extension).

@Extension Class/Field/Method Defines a DataNucleus extension
(DataNucleus extension).

148.1.1 @Entity

This annotation is used when you want to mark a class as persistent. Specified on the class.

Attribute Type Description Default

name String Name of the entity (used
in JPQL to refer to the
class)

@Entity

public class MyClass

{

 ...

}

See the documentation for Class Mapping

148.1.2 @MappedSuperclass

This annotation is used when you want to mark a class as persistent but without a table of its own and
being the superclass of the class that has a table, meaning that all of its fields are persisted into the
table of its subclass. Specified on the class.

1 4 8 A n n o t a t i o n s 914

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@MappedSuperclass

public class MyClass

{

 ...

}

See the documentation for Inheritance

148.1.3 @PersistenceAware

This annotation is used when you want to mark a class as knowing about persistence but not persistent
itself. That is, it manipulates the fields of a persistent class directly rather than using accessors. This is
a DataNucleus extension. Specified on the class.

@PersistenceAware

public class MyClass

{

 ...

}

See the documentation for Class Mapping

148.1.4 @Embeddable

This annotation is used when you want to mark a class as persistent and only storable embedded in
another object. Specified on the class.

@Embeddable

public class MyClass

{

 ...

}

148.1.5 @Cacheable

This annotation is used when you want to mark a class so that instance of that class can be cached.
Specified on the class.

@Cacheable

public class MyClass

{

 ...

}

See the documentation for L2 Cache

1 4 8 A n n o t a t i o n s 915

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148.1.6 @Inheritance

This annotation is used to define the inheritance persistence for this class. Specified on the class.

Attribute Type Description Default

strategy InheritanceType Inheritance strategy SINGLE_TABLE
| JOINED |
TABLE_PER_CLASS

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

public class MyClass

{

 ...

}

See the documentation for Inheritance

148.1.7 @Table

This annotation is used to define the table where objects of a class will be stored. Specified on the
class.

Attribute Type Description Default

name String Name of the table

catalog String Name of the catalog

schema String Name of the schema

uniqueConstraints UniqueConstraint[] Any unique constraints to
apply to the table

indexes Index[] Details of indexes if
wanting to override
provider default

@Entity

@Table(name="MYTABLE", schema="PUBLIC")

public class MyClass

{

 ...

}

1 4 8 A n n o t a t i o n s 916

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148.1.8 @SecondaryTable

This annotation is used to define a secondary table where some fields of this class are stored in
another table. Specified on the class.

Attribute Type Description Default

name String Name of the table

catalog String Name of the catalog

schema String Name of the schema

pkJoinColumns PrimaryKeyJoinColumns[] Join columns for the PK of
the secondary table back
to the primary table

uniqueConstraints UniqueConstraint[] Any unique constraints to
apply to the table

indexes Index[] Details of indexes if
wanting to override
provider default

foreignKey ForeignKey Foreign key details if
wanting to override
provider default

@Entity

@Table(name="MYTABLE", schema="PUBLIC")

@SecondaryTable(name="MYOTHERTABLE", schema="PUBLIC", columns={@PrimaryKeyJoinColumn(name="MYCLASS_ID")})

public class MyClass

{

 ...

}

See the documentation for Secondary Tables

148.1.9 @IdClass

This annotation is used to define a primary-key class for the identity of this class. Specified on the
class.

Attribute Type Description Default

value Class Identity class

@Entity

@IdClass(org.datanucleus.samples.MyIdentity.class)

public class MyClass

{

 ...

}

1 4 8 A n n o t a t i o n s 917

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

See the documentation for Primary Keys

148.1.10 @DatastoreId

This DataNucleus-extension annotation is used to define that the class uses datastore-identity.
Specified on the class.

Attribute Type Description Default

generationType GenerationType Strategy to use when
generating the values for
this field. Has possible
values of GenerationType
TABLE, SEQUENCE,
IDENTITY, AUTO.

AUTO | TABLE |
SEQUENCE

generator String Name of the
generator to use. See
@TableGenerator and
@SequenceGenerator

column String Name of the column for
persisting the datastore
identity value

@Entity

@DatastoreId(column="MY_ID")

public class MyClass

{

 ...

}

148.1.11 @EntityListeners

This annotation is used to define a class or classes that are listeners for events from instances of this
class. Specified on the class.

Attribute Type Description Default

value Class[] Entity listener class(es)

@Entity

@EntityListeners(org.datanucleus.MyListener.class)

public class MyClass

{

 ...

}

See the documentation for Lifecycle Callbacks

1 4 8 A n n o t a t i o n s 918

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148.1.12 @NamedQueries

This annotation is used to define a series of named (JPQL) queries that can be used in this persistence
unit. Specified on the class.

Attribute Type Description Default

value NamedQuery[] The named queries

@Entity

@NamedQueries({

 @NamedQuery(name="AllPeople",

 query="SELECT p FROM Person p"),

 @NamedQuery(name="PeopleCalledJones",

 query="SELECT p FROM Person p WHERE p.surname = 'Jones'")})

public class Person

{

 ...

}

Note that with DataNucleus you can also specify @NamedQueries on non-persistable classes
See the documentation for Named Queries

148.1.13 @NamedQuery

This annotation is used to define a named (JPQL) query that can be used in this persistence unit.
Specified on the class.

Attribute Type Description Default

name String Symbolic name for the
query. The query will be
referred to under this
name

query String The JPQL query

@Entity

@NamedQuery(name="AllPeople", query="SELECT p FROM Person p")

public class Person

{

 ...

}

Note that with DataNucleus you can also specify @NamedQuery on non-persistable classes
See the documentation for Named Queries

1 4 8 A n n o t a t i o n s 919

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148.1.14 @NamedNativeQueries

This annotation is used to define a series of named native (SQL) queries that can be used in this
persistence unit. Specified on the class.

Attribute Type Description Default

value NamedNativeQuery[] The named native queries

@Entity

@NamedNativeQueries({

 @NamedNativeQuery(name="AllPeople",

 query="SELECT * FROM PERSON WHERE SURNAME = 'Smith'"),

 @NamedNativeQuery(name="PeopleCalledJones",

 query="SELECT * FROM PERSON WHERE SURNAME = 'Jones')})

public class Person

{

 ...

}

Note that with DataNucleus you can also specify @NamedNativeQueries on non-persistable
classes
See the documentation for Named Native Queries

148.1.15 @NamedNativeQuery

This annotation is used to define a named (SQL) query that can be used in this persistence unit.
Specified on the class.

Attribute Type Description Default

name String Symbolic name for the
query. The query will be
referred to under this
name

query String The SQL query

resultClass Class Class into which the result
rows will be placed

void.class

@Entity

@NamedNativeQuery(name="PeopleCalledSmith", query="SELECT * FROM PERSON WHERE SURNAME = 'Smith'")

public class Person

{

 ...

}

1 4 8 A n n o t a t i o n s 920

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Note that with DataNucleus you can also specify @NamedNativeQuery on non-persistable
classes
See the documentation for Named Native Queries

148.1.16 @NamedStoredProcedureQueries

This annotation is used to define a series of named native stored procedure queries that can be used in
this persistence unit. Specified on the class.

Attribute Type Description Default

value NamedStoredProcedureQuery[]The named stored
procedure queries

@Entity

@NamedStoredProcedureQueries({

 @NamedStoredProcedureQuery(name="MyProc", procedureName="MY_PROC_SP1",

 parameters={@StoredProcedureParameter(name="PARAM1", mode=ParameterMode.IN, type=String.class)}),

 @NamedStoredProcedureQuery(name="MyProc2", procedureName="MY_PROC_SP2",

 parameters={@StoredProcedureParameter(name="PARAM1", mode=ParameterMode.IN, type=Long.class)})})

public class Person

{

 ...

}

Note that with DataNucleus you can also specify @NamedStoredProcedureQueries on non-
persistable classes
See the documentation for Named Stored procedures

148.1.17 @NamedStoredProcedureQuery

This annotation is used to define a named stored procedure query that can be used in this persistence
unit. Specified on the class.

Attribute Type Description Default

name String Symbolic name for the
query. The query will be
referred to under this
name

procedureName String Name of the stored
procedure in the datastore

parameters StoredProcedureParameter[]Any parameter definitions
for this stored procedure

resultClasses Class[] Any result class(es) for
this stored procedure (one
per result set)

1 4 8 A n n o t a t i o n s 921

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

resultSetMappings Class[] Any result set mapping(s)
for this stored procedure
(one per result set)

hints QueryHint[] Any query hints for this
stored procedure

@Entity

@NamedStoredProcedureQuery(name="MyProc", procedureName="MY_PROC_SP1",

 parameters={@StoredProcedureParameter(name="PARAM1", mode=ParameterMode.IN, type=String.class)})

public class Person

{

 ...

}

Note that with DataNucleus you can also specify @NamedStoredProcedureQuery on non-
persistable classes
See the documentation for Named StoredProcedures

148.1.18 @SqlResultSetMappings

This annotation is used to define a series of result mappings for SQL queries that can be used in this
persistence unit. Specified on the class.

Attribute Type Description Default

value SqlResultSetMapping[] The SQL result mappings

@Entity

@SqlResultSetMappings({

 @SqlResultSetMapping(name="PEOPLE_PLUS_AGE",

 entities={@EntityResult(entityClass=Person.class)}, columns={@ColumnResult(name="AGE")}),

 @SqlResultSetMapping(name="FIRST_LAST_NAMES",

 columns={@ColumnResult(name="FIRSTNAME"), @ColumnResult(name="LASTNAME")})

 })

public class Person

{

 ...

}

148.1.19 @SqlResultSetMapping

This annotation is used to define a mapping for the results of an SQL query and can be used in this
persistence unit. Specified on the class.

Attribute Type Description Default

1 4 8 A n n o t a t i o n s 922

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

name String Symbolic name for the
mapping. The mapping
will be referenced under
this name

entities EntityResult[] Set of entities extracted
from the SQL query

columns ColumnResult[] Set of columns extracted
directly from the SQL
query

@Entity

@SqlResultSetMapping(name="PEOPLE_PLUS_AGE",

 entities={@EntityResult(entityClass=Person.class)}, columns={@ColumnResult(name="AGE")})

public class Person

{

 ...

}

148.1.20 @NamedEntityGraphs

This annotation is used to define a series of named EntityGraphs that can be used in this persistence
unit. Specified on the class.

Attribute Type Description Default

value NamedEntityGraph[] The named EntityGraphs

@Entity

@NamedEntityGraph({

 @NamedEntityGraph(name="PERSON_FULL",

 attributeNodes={@NamedAttributeNode(name="friends"), @NamedAttributeNode(name="parents")}),

 @NamedEntityGraph(name="PERSON_BASIC",

 attributeNodes={@NamedAttributeNode(name="parents")})

 })

public class Person

{

 ...

}

148.1.21 @NamedEntityGraph

This annotation is used to define a named EntityGraph and can be used in this persistence unit.
Specified on the class.

Attribute Type Description Default

1 4 8 A n n o t a t i o n s 923

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

name String name for the Entity
Graph.

attributeNodes AttributeNode[] Set of nodes in this
EntityGraph

@Entity

@NamedEntityGraph(name="PERSON_FULL",

 attributeNodes={@NamedAttributeNode(name="friends"), @NamedAttributeNode(name="parents")})

public class Person

{

 ...

}

148.1.22 @PrePersist

This annotation is used to define a method that is a callback for pre-persist events. Specified on the
method. It has no attributes.

@Entity

public class MyClass

{

 ...

 @PrePersist

 void registerObject()

 {

 ...

 }

}

See the documentation for Lifecycle Callbacks

148.1.23 @PostPersist

This annotation is used to define a method that is a callback for post-persist events. Specified on the
method. It has no attributes.

1 4 8 A n n o t a t i o n s 924

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class MyClass

{

 ...

 @PostPersist

 void doSomething()

 {

 ...

 }

}

See the documentation for Lifecycle Callbacks

148.1.24 @PreRemove

This annotation is used to define a method that is a callback for pre-remove events. Specified on the
method. It has no attributes.

@Entity

public class MyClass

{

 ...

 @PreRemove

 void registerObject()

 {

 ...

 }

}

See the documentation for Lifecycle Callbacks

148.1.25 @PostRemove

This annotation is used to define a method that is a callback for post-remove events. Specified on the
method. It has no attributes.

1 4 8 A n n o t a t i o n s 925

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class MyClass

{

 ...

 @PostRemove

 void doSomething()

 {

 ...

 }

}

See the documentation for Lifecycle Callbacks

148.1.26 @PreUpdate

This annotation is used to define a method that is a callback for pre-update events. Specified on the
method. It has no attributes.

@Entity

public class MyClass

{

 ...

 @PreUpdate

 void registerObject()

 {

 ...

 }

}

See the documentation for Lifecycle Callbacks

148.1.27 @PostUpdate

This annotation is used to define a method that is a callback for post-update events. Specified on the
method. It has no attributes.

1 4 8 A n n o t a t i o n s 926

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class MyClass

{

 ...

 @PostUpdate

 void doSomething()

 {

 ...

 }

}

See the documentation for Lifecycle Callbacks

148.1.28 @PostLoad

This annotation is used to define a method that is a callback for post-load events. Specified on the
method. It has no attributes.

@Entity

public class MyClass

{

 ...

 @PostLoad

 void registerObject()

 {

 ...

 }

}

See the documentation for Lifecycle Callbacks

148.1.29 @SequenceGenerator

This annotation is used to define a generator using sequences in the datastore. It is scoped to the
persistence unit. Specified on the class/field/method.

Attribute Type Description Default

name String Name for the generator
(required)

sequenceName String Name of the underlying
sequence that will be
used

initialValue int Initial value for the
sequence (optional)

1

1 4 8 A n n o t a t i o n s 927

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

allocationSize int Number of values to
be allocated each time
(optional)

50

@Entity

@SequenceGenerator(name="MySeq", sequenceName="SEQ_2")

public class MyClass

{

 ...

}

148.1.30 @TableGenerator

This annotation is used to define a generator using a table in the datastore for storing the values. It is
scoped to the persistence unit. Specified on the class/field/method.

Attribute Type Description Default

name String Name for the generator
(required)

table String Name of the table to use SEQUENCE_TABLE

catalog String Catalog of the table to use

schema String Schema of the table to
use

pkColumnName String Name of the primary key
column for the table

SEQUENCE_NAME

valueColumnName String Name of the value column
for the table

NEXT_VAL

pkColumnValue String Value to store in the PK
column for the row used
by this generator

{name of the class}

initialValue int Initial value for the table
row (optional)

0

allocationSize int Number of values to
be allocated each time
(optional)

50

indexes Index[] Index(es) if wanting to
override the provider
default

1 4 8 A n n o t a t i o n s 928

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

@TableGenerator(name="MySeq", table="MYAPP_IDENTITIES", pkColumnValue="MyClass")

public class MyClass

{

 ...

}

148.1.31 @DiscriminatorColumn

This annotation is used to define the discriminator column for a class. Specified on the class.

Attribute Type Description Default

name String Name of the discriminator
column

DTYPE

discriminatorType DiscriminatorType Type of the discriminator
column

STRING | CHAR |
INTEGER

length String Length of the
discriminator column

31

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(name="OBJECT_TYPE", discriminatorType=DiscriminatorType.STRING)

public class MyClass

{

 ...

}

See the documentation for Inheritance

148.1.32 @DiscriminatorValue

This annotation is used to define the value to be stored in the discriminator column for a class (when
used). Specified on the class.

Attribute Type Description Default

value String Value for the discriminator
column

1 4 8 A n n o t a t i o n s 929

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(name="OBJECT_TYPE", discriminatorType=DiscriminatorType.STRING)

@DiscriminatorValue("MyClass")

public class MyClass

{

 ...

}

See the documentation for Inheritance

148.1.33 @PrimaryKeyJoinColumns

This annotation is used to define the names of the primary key columns when this class has a
superclass. Specified on the class.

Attribute Type Description Default

value PrimaryKeyJoinColumn[] Array of column
definitions for the primary
key

foreignKey ForeignKey Foreign key details if
wanting to override
provider default

@Entity

@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)

@PrimaryKeyJoinColumns({@PrimaryKeyJoinColumn(name="PK_FIELD_1", referredColumnName="BASE_1_ID"),

 @PrimaryKeyJoinColumn(name="PK_FIELD_2", referredColumnName="BASE_2_ID")})

public class MyClass

{

 ...

}

148.1.34 @PrimaryKeyJoinColumn

This annotation is used to define the name of the primary key column when this class has a superclass.
Specified on the class.

Attribute Type Description Default

name String Name of the column

referencedColumnName String Name of the associated
PK column in the
superclass

1 4 8 A n n o t a t i o n s 930

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

columnDefinition String DDL to use for the column
(everything except the
column name). This must
include the SQL type of
the column

foreignKey ForeignKey Foreign key details if
wanting to override
provider default

@Entity

@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)

@PrimaryKeyJoinColumn(name="PK_FIELD_1")

public class MyClass

{

 ...

}

148.1.35 @AttributeOverride

This annotation is used to define a field of a superclass that has its column overridden. Specified on
the class.

Attribute Type Description Default

name String Name of the field

column Column Column information

@Entity

@AttributeOverride(name="attr", column=@Column(name="NEW_NAME"))

public class MyClass extends MySuperClass

{

 ...

}

148.1.36 @AttributeOverrides

This annotation is used to define fields of a superclass that have their columns overridden. Specified
on the class.

Attribute Type Description Default

value AttributeOverride[] The overrides

1 4 8 A n n o t a t i o n s 931

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

@AttributeOverrides({@AttributeOverride(name="attr1", column=@Column(name="NEW_NAME_1")),

 @AttributeOverride(name="attr2", column=@Column(name="NEW_NAME_2"))})

public class MyClass extends MySuperClass

{

 ...

}

148.1.37 @AssociationOverride

This annotation is used to define a 1-1/N-1 field of a superclass that has its column overridden.
Specified on the class.

Attribute Type Description Default

name String Name of the field

joinColumn JoinColumn Column information for
the FK column

@Entity

@AssociationOverride(name="friend", joinColumn=@JoinColumn(name="FRIEND_ID"))

public class Employee extends Person

{

 ...

}

148.1.38 @AssociationOverrides

This annotation is used to define 1-1/N-1 fields of a superclass that have their columns overridden.
Specified on the class.

Attribute Type Description Default

value AssociationOverride[] The overrides

@Entity

@AssociationOverrides({@AssociationOverride(name="friend", joinColumn=@JoinColumn(name="FRIEND_ID")),

 @AssociationOverride(name="teacher", joinColumn=@JoinColumn(name="TEACHER_ID"))})

public class Employee extends Person

{

 ...

}

1 4 8 A n n o t a t i o n s 932

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148.1.39 @Id

This annotation is used to define a field to use for the identity of the class. Specified on the field/
method.

@Entity

public class MyClass

{

 @Id

 long id;

 ...

}

148.1.40 @Embedded

This annotation is used to define a field as being embedded. Specified on the field/method.

@Entity

public class MyClass

{

 @Embedded

 Object myField;

 ...

}

148.1.41 @EmbeddedId

This annotation is used to define a field to use for the identity of the class when embedded. Specified
on the field/method.

@Entity

public class MyClass

{

 @EmbeddedId

 MyPrimaryKey pk;

 ...

}

148.1.42 @Version

This annotation is used to define a field as holding the version for the class. Specified on the field/
method.

1 4 8 A n n o t a t i o n s 933

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class MyClass

{

 @Id

 long id;

 @Version

 int ver;

 ...

}

148.1.43 @Basic

This annotation is used to define a field of the class as persistent. Specified on the field/method.

Attribute Type Description Default

fetch FetchType Type of fetching for this
field

LAZY | EAGER

optional boolean Whether this field having
a value is optional (can it
have nulls)

true | false

@Entity

public class Person

{

 @Id

 long id;

 @Basic(optional=false)

 String forename;

 ...

}

See the documentation for Fields/Properties

148.1.44 @Transient

This annotation is used to define a field of the class as not persistent. Specified on the field/method.

1 4 8 A n n o t a t i o n s 934

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Person

{

 @Id

 long id;

 @Transient

 String personalInformation;

 ...

}

See the documentation for Fields/Properties

148.1.45 @JoinTable

This annotation is used to define that a collection/map is stored using a join table. Specified on the
field/method.

Attribute Type Description Default

name String Name of the table

catalog String Name of the catalog

schema String Name of the schema

joinColumns JoinColumn[] Columns back to the
owning object (with the
collection/map)

inverseJoinColumns JoinColumn[] Columns to the element
object (stored in the
collection/map)

uniqueConstraints UniqueConstraint[] Any unique constraints to
apply to the table

indexes Index[] Details of indexes if
wanting to override
provider default

foreignKey ForeignKey Foreign key details if
wanting to override
provider default for the
join columns

inverseForeignKey ForeignKey Foreign key details if
wanting to override
provider default for the
inverse join columns

1 4 8 A n n o t a t i o n s 935

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Person

{

 @OneToMany

 @JoinTable(name="PEOPLES_FRIENDS")

 Collection friends;

 ...

}

148.1.46 @CollectionTable

This annotation is used to define that a collection/map of non-entities is stored using a join table.
Specified on the field/method.

Attribute Type Description Default

name String Name of the table

catalog String Name of the catalog

schema String Name of the schema

joinColumns JoinColumn[] Columns back to the
owning object (with the
collection/map)

uniqueConstraints UniqueConstraint[] Any unique constraints to
apply to the table

indexes Index[] Details of indexes if
wanting to override
provider default

foreignKey ForeignKey Details of foreign key
if wanting to override
provider default

@Entity

public class Person

{

 @ElementCollection

 @CollectionTable(name="PEOPLES_FRIENDS")

 Collection<String> values;

 ...

}

148.1.47 @Lob

This annotation is used to define that a field will be stored using a large object in the datastore.
Specified on the field/method.

1 4 8 A n n o t a t i o n s 936

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Person

{

 @Lob

 byte[] photo;

 ...

}

148.1.48 @Temporal

This annotation is used to define that a field is stored as a temporal type. It specifies the JDBC type
to use for storage of this type, so whether it stores the date, the time, or both. Specified on the field/
method.

Attribute Type Description Default

value TemporalType Type for storage DATE | TIME |
TIMESTAMP

@Entity

public class Person

{

 @Temporal(TemporalType.TIMESTAMP)

 java.util.Date dateOfBirth;

 ...

}

148.1.49 @Enumerated

This annotation is used to define that a field is stored enumerated (not that it wasnt obvious from the
type!). Specified on the field/method.

Attribute Type Description Default

value EnumType Type for storage ORDINAL | STRING

enum Gender {MALE, FEMALE};

@Entity

public class Person

{

 @Enumerated

 Gender gender;

 ...

}

1 4 8 A n n o t a t i o n s 937

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148.1.50 @OneToOne

This annotation is used to define that a field represents a 1-1 relation. Specified on the field/method.

Attribute Type Description Default

targetEntity Class Class at the other side of
the relation

fetch FetchType Whether the field should
be fetched immediately

EAGER | LAZY

optional boolean Whether the field can
store nulls.

true | false

mappedBy String Name of the field
that owns the relation
(specified on the inverse
side)

cascade CascadeType[] Whether persist, update,
delete, refresh operations
are cascaded

orphanRemoval boolean Whether to remove
orphans when either
removing this side of the
relation or when nulling
the relation

true | false

@Entity

public class Person

{

 @OneToOne

 Person bestFriend;

 ...

}

See the documentation for 1-1 Relations

148.1.51 @OneToMany

This annotation is used to define that a field represents a 1-N relation. Specified on the field/method.

Attribute Type Description Default

targetEntity Class Class at the other side of
the relation

fetch FetchType Whether the field should
be fetched immediately

EAGER | LAZY

1 4 8 A n n o t a t i o n s 938

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

mappedBy String Name of the field
that owns the relation
(specified on the inverse
side)

cascade CascadeType[] Whether persist, update,
delete, refresh operations
are cascaded

orphanRemoval boolean Whether to remove
orphans when either
removing this side of the
relation or when nulling
the relationremoving an
element

true | false

@Entity

public class Person

{

 @OneToMany

 Collection<Person> friends;

 ...

}

See the documentation for 1-N Relations

148.1.52 @ManyToMany

This annotation is used to define that a field represents a M-N relation. Specified on the field/method.

Attribute Type Description Default

targetEntity Class Class at the other side of
the relation

fetch FetchType Whether the field should
be fetched immediately

EAGER | LAZY

mappedBy String Name of the field on the
non-owning side that
completes the relation.
Specified on the owner
side.

cascade CascadeType[] Whether persist, update,
delete, refresh operations
are cascaded

1 4 8 A n n o t a t i o n s 939

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Customer

{

 @ManyToMany(mappedBy="customers")

 Collection<Supplier> suppliers;

 ...

}

@Entity

public class Supplier

{

 @ManyToMany

 Collection<Customer> customers;

 ...

}

See the documentation for M-N Relations

148.1.53 @ManyToOne

This annotation is used to define that a field represents a N-1 relation. Specified on the field/method.

Attribute Type Description Default

targetEntity Class Class at the other side of
the relation

fetch FetchType Whether the field should
be fetched immediately

EAGER | LAZY

optional boolean Whether the field can
store nulls.

true | false

cascade CascadeType[] Whether persist, update,
delete, refresh operations
are cascaded

1 4 8 A n n o t a t i o n s 940

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class House

{

 @OneToMany(mappedBy="house")

 Collection<Window> windows;

 ...

}

@Entity

public class Window

{

 @ManyToOne

 House house;

 ...

}

See the documentation for N-1 Relations

148.1.54 @ElementCollection

This annotation is used to define that a field represents a 1-N relation to non-entity objects. Specified
on the field/method.

Attribute Type Description Default

targetClass Class Class at the other side of
the relation

fetch FetchType Whether the field should
be fetched immediately

EAGER | LAZY

@Entity

public class Person

{

 @ElementCollection

 Collection<String> values;

 ...

}

148.1.55 @Index (field/method - extension)

This DataNucleus-extension annotation is used to define an index for this field/property. Specified on
the field/property.

Attribute Type Description Default

name String Name of the index

1 4 8 A n n o t a t i o n s 941

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

unique boolean Whether the index is
unique

false

@Entity

public class MyClass

{

 @Index(name="ENABLED_IDX")

 boolean enabled;

 ...

}

148.1.56 @JdbcType

This DataNucleus-extension annotation is used to define the jdbc-type to use for this field/property.
Specified on the field/property.

Attribute Type Description Default

value String JDBC Type (VARCHAR,
INTEGER, BLOB, etc)

@Entity

public class MyClass

{

 @JdbcType("CHAR")

 boolean enabled;

 ...

}

148.1.57 @ColumnPosition

This DataNucleus-extension annotation is used to define the column position to use for this field/
property. Specified on the field/property.

Attribute Type Description Default

value Integer position of the column
(first is "0", increasing)

1 4 8 A n n o t a t i o n s 942

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class MyClass

{

 @ColumnPosition(0)

 boolean enabled;

 ...

}

148.1.58 @ValueGenerator

This DataNucleus-extension annotation is used to allow use of non-JPA-standard value generators on
a field/property. Specified on the field/property.

Attribute Type Description Default

strategy String Name of the strategy e.g
"uuid"

@Entity

public class MyClass

{

 @ValueGenerator(strategy="uuid")

 String id;

 ...

}

148.1.59 @GeneratedValue

This annotation is used to define the generation of a value for a (PK) field. Specified on the field/
method.

Attribute Type Description Default

strategy GenerationType Strategy to use when
generating the values for
this field. Has possible
values of GenerationType
TABLE, SEQUENCE,
IDENTITY, AUTO.

GenerationType.AUTO

generator String Name of the
generator to use. See
@TableGenerator and
@SequenceGenerator

1 4 8 A n n o t a t i o n s 943

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Person

{

 @Id

 @GeneratedValue(strategy=GenerationType.TABLE)

 long id;

 ...

}

148.1.60 @MapKey

This annotation is used to define the field in the value class that represents the key in a Map. Specified
on the field/method.

Attribute Type Description Default

name String Name of the field in the
value class to use for
the key. If no value is
supplied and the field is
a Map then it is assumed
that the key will be the
primary key of the value
class. DataNucleus only
supports this null value
treatment if the primary
key of the value has a
single field.

@Entity

public class Person

{

 @OneToMany

 @MapKey(name="nickname")

 Map<String, Person> friends;

 ...

}

148.1.61 @MapKeyTemporal

This annotation is used to define the datastore type used for the key of a map when it is a temporal
type. Specified on the field/method.

1 4 8 A n n o t a t i o n s 944

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Person

{

 @ElementCollection

 @MapKeyTemporal(TemporalType.DATE)

 Map<Date, String> dateMap;

 ...

}

148.1.62 @MapKeyEnumerated

This annotation is used to define the datastore type used for the key of a map when it is an enum.
Specified on the field/method.

@Entity

public class Person

{

 @ElementCollection

 @MapKeyEnumerated(EnumType.STRING)

 Map<MyEnum, String> dateMap;

 ...

}

148.1.63 @MapKeyColumn

This annotation is used to define the column details for a key of a Map when stored in a join table.
Specified on the field/method.

Attribute Type Description Default

name String Name of the column for
the key

@Entity

public class Person

{

 @OneToMany

 @MapKeyColumn(name="FRIEND_NAME")

 Map<String, Person> friends;

 ...

}

1 4 8 A n n o t a t i o n s 945

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148.1.64 @OrderBy

This annotation is used to define a field in the element class that is used for ordering the elements of
the List when it is retrieved. Specified on the field/method.

Attribute Type Description Default

value String Name of the field(s)
in the element class
to use for ordering the
elements of the List when
retrieving them from the
datastore. This is used
by JPA "ordered lists" as
opposed to JDO "indexed
lists" (which always
return the elements in the
same order as they were
persisted. The value will
be a comma separated
list of fields and optionally
have ASC/DESC to
signify ascending or
descending

@Entity

public class Person

{

 @OneToMany

 @OrderBy(value="nickname")

 List<Person> friends;

 ...

}

148.1.65 @OrderColumn

This annotation is used to definethat the JPA implementation will handle the ordering of the List
elements using a surrogate column. Specified on the field/method.

Attribute Type Description Default

name String Name of the column to
use.

{fieldName}_ORDER

nullable boolean Whether the column is
nullable

true | false

insertable boolean Whether the column is
insertable

true | false

updatable boolean Whether the column is
updatable

true | false

1 4 8 A n n o t a t i o n s 946

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

base int Base for ordering (not
currently supported)

0

@Entity

public class Person

{

 @OneToMany

 @OrderColumn

 List<Person> friends;

 ...

}

148.1.66 @Convert

This annotation is used to define a converter for the field/property. Specified on the field/method.

Attribute Type Description Default

converter Class Converter class

attributeName String Name of the embedded
field to be converted
(NOT YET SUPPORTED)

disableConversion boolean Whether we should
disable any use of
@Converter set to auto-
apply

@Entity

public class Person

{

 @Basic

 @Convert(converter=MyURLConverter.class)

 URL website;

 ...

}

148.1.67 @Converter

This annotation is used to mark a class as being an attribute converter. Note that DataNucleus doesn't
require this specifying against a converter class except if you want to set the "autoApply". Specified
on the field/method.

Attribute Type Description Default

1 4 8 A n n o t a t i o n s 947

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

autoApply boolean Whether this converter
should always be used
when storing this java
type

false

@Converter

public class MyConverter

{

 ...

}

148.1.68 @Column

This annotation is used to define the column where a field is stored. Specified on the field/method.

Attribute Type Description Default

name String Name for the column

unique boolean Whether the field is
unique

true | false

nullable boolean Whether the field is
nullable

true | false

insertable boolean Whether the field is
insertable

true | false

updatable boolean Whether the field is
updatable

true | false

table String Name of the table

length int Length for the column 255

precision int Decimal precision for the
column

0

scale int Decimal scale for the
column

0

columnDefinition String DDL to use for the column
(everything except the
column name). This must
include the SQL type of
the column

1 4 8 A n n o t a t i o n s 948

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class Person

{

 @Basic

 @Column(name="SURNAME", length=100, nullable=false)

 String surname;

 ...

}

148.1.69 @JoinColumn

This annotation is used to define the FK column for joining to another table. This is part of a 1-1, 1-N,
or N-1 relation. Specified on the field/method.

Attribute Type Description Default

name String Name for the column

referencedColumnName String Name of the column in the
other table that this is the
FK for

unique boolean Whether the field is
unique

true | false

nullable boolean Whether the field is
nullable

true | false

insertable boolean Whether the field is
insertable

true | false

updatable boolean Whether the field is
updatable

true | false

columnDefinition String DDL to use for the column
(everything except the
column name). This must
include the SQL type of
the column

foreignKey ForeignKey Foreign key details if
wanting to override
provider default

@Entity

public class Person

{

 @OneToOne

 @JoinColumn(name="PET_ID", nullable=true)

 Animal pet;

 ...

}

1 4 8 A n n o t a t i o n s 949

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148.1.70 @JoinColumns

This annotation is used to define the FK columns for joining to another table. This is part of a 1-1, 1-
N, or N-1 relation. Specified on the field/method.

Attribute Type Description Default

value JoinColumn[] Details of the columns

foreignKey ForeignKey Foreign key details if
wanting to override
provider default

@Entity

public class Person

{

 @OneToOne

 @JoinColumns({@JoinColumn(name="PET1_ID"), @JoinColumn(name="PET2_ID")})

 Animal pet; // composite PK

 ...

}

148.1.71 @UniqueConstraint

This annotation is used to define a unique constraint to apply to a table. It is specified as part of
@Table, @JoinTable or @SecondaryTable.

Attribute Type Description Default

columnNames String[] Names of the column(s)

@Entity

@Table(name="PERSON", uniqueConstraints={@UniqueConstraint(columnNames={"firstName","lastName"})})

public class Person

{

 @Basic

 String firstName;

 @Basic

 String lastName;

 ...

}

See the documentation for Schema Constraints

1 4 8 A n n o t a t i o n s 950

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

148.1.72 @Index

This annotation is used to define the details for an Index. It is specified as part of @Table,
@JoinTable, @CollectionTable or @SecondaryTable.

Attribute Type Description Default

name String Name of the index

columnList String Columns to be included
in this index of the form
colName1, colName2

unique boolean Whether the index is
unique

false

See the documentation for Schema Constraints

148.1.73 @ForeignKey

This annotation is used to define the details for a ForeignKey. It is specified as part of @JoinColumn,
@JoinTable, @CollectionTable or @SecondaryTable.

Attribute Type Description Default

name String Name of the foreign key

value ConstraintMode Constraint mode ConstraintMode.CONSTRAINT

foreignKeyDefinition String DDL for the FOREIGN
KEY statement of the
form FOREIGN KEY
(colExpr1 {, colExpr2}...)
REFERENCES
tblIdentifier
[(otherColExpr1 {,
otherColExpr2}...)]
[ON UPDATE
updateAction] [ON
DELETE deleteAction]

See the documentation for Schema Constraints

148.1.74 @Extensions

DataNucleus Extension Annotation used to define a set of extensions specific to DataNucleus.
Specified on the class or field.

Attribute Type Description Default

value Extension[] Array of extensions - see
@Extension annotation

1 4 8 A n n o t a t i o n s 951

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

@Extensions({@Extension(key="firstExtension", value="myValue"),

 @Extension(key="secondExtension", value="myValue")})

public class Person

{

 ...

}

148.1.75 @Extension

DataNucleus Extension Annotation used to define an extension specific to DataNucleus. Specified on
the class or field.

Attribute Type Description Default

vendorName String Name of the vendor datanucleus

key String Key for the extension

value String Value of the extension

@Entity

@Extension(key="RunFast", value="true")

public class Person

{

 ...

}

1 4 9 S c h e m a M a p p i n g 952

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

149 Schema Mapping
...

149.1 JPA : Schema Mapping
You saw in our basic class mapping guide how you define a classes basic persistence, notating
which fields are persisted. The next step is to define how it maps to the schema of the datastore (in
this case RDBMS). The simplest way of mapping is to map each class to its own table. This is the
default model in JDO persistence (with the exception of inheritance). If you don't specify the table
and column names, then DataNucleus will generate table and column names for you. You should
specify your table and column names if you have an existing schema. Failure to do so will mean
that DataNucleus uses its own names and these will almost certainly not match what you have in the
datastore.

149.1.1 Tables and Column names

The main thing that developers want to do when they set up the persistence of their data is to control
the names of the tables and columns used for storing the classes and fields. This is an essential step
when mapping to an existing schema, because it is necessary to map the classes onto the existing
database entities. Let's take an example

public class Hotel

{

 private String name;

 private String address;

 private String telephoneNumber;

 private int numberOfRooms;

 ...

}

In our case we want to map this class to a table called ESTABLISHMENT, and has columns NAME,
DIRECTION, PHONE and NUMBER_OF_ROOMS (amongst other things). So we define our Meta-
Data like this

<entity class="Hotel">

 <table name="ESTABLISHMENT"/>

 <attributes>

 <basic name="name">

 <column name="NAME"/>

 </basic>

 <basic name="address">

 <column name="DIRECTION"/>

 </basic>

 <basic name="telephoneNumber">

 <column name="PHONE"/>

 </basic>

 <basic name="numberOfRooms">

 <column name="NUMBER_OF_ROOMS"/>

 </basic>

 </attributes>

</entity>

1 4 9 S c h e m a M a p p i n g 953

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have defined the table and the column names. It should be mentioned that if you don't specify
the table and column names then DataNucleus will generate names for the datastore identifiers
consistent with the JPA specification. The table name will be based on the class name, and the column
names will be based on the field names and the role of the field (if part of a relationship).

See also :-

• Identifier Guide - defining the identifiers to use for table/column names
• MetaData reference for <column> element

149.1.2 Column nullability and default values

So we've seen how to specify the basic structure of a table, naming the table and its columns, and how
to control the types of the columns. We can extend this further to control whether the columns are
allowed to contain nulls. Let's take a related class for our hotel. Here we have a class to model the
payments made to the hotel.

public class Payment

{

 Customer customer;

 String bankTransferReference;

 String currency;

 double amount;

}

In this class we can model payments from a customer of an amount. Where the customer pays by bank
transfer we can save the reference number. Since the bank transfer reference is optional we want that
column to be nullable. So let's specify the MetaData for the class.

<entity class="Payment">

 <attributes>

 <one-to-one name="customer">

 <primary-key-join-column name="CUSTOMER_ID"/>

 </one-to-one>

 <basic name="bankTransferReference">

 <column name="TRANSFER_REF" nullable="true"/>

 </basic>

 <basic name="currency">

 <column name="CURRENCY" default-value="GBP"/>

 </basic>

 <basic name="amount">

 <column name="AMOUNT"/>

 </basic>

 </attributes>

</entity>

So we make use of the nullable attribute. The table, when created by DataNucleus, will then provide
the nullability that we require. Unfortunately with JPA there is no way to specify a default value for a
field when it hasnt been set (unlike JDO where you can do that).

See also :-

• MetaData reference for <column> element

1 4 9 S c h e m a M a p p i n g 954

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

149.1.3 Column types

DataNucleus will provide a default type for any columns that it creates, but it will allow users to
override this default. The default that DataNucleus chooses is always based on the Java type for
the field being mapped. For example a Java field of type "int" will be mapped to a column type of
INTEGER in RDBMS datastores. Similarly String will be mapped to VARCHAR. JPA does NOT
allow detailed control over the JDBC type as such, with the exception of distinguishing BLOB/
CLOB/TIME/TIMESTAMP types. Fortunately DataNucleus (from v3.0.2) provides an extension to
overcome this flaw in the JPA spec. Here we make use of a DataNucleus annotation @JdbcType

public class Payment

{

 @JdbcType("CHAR")

 String currency;

 ...

}

So we defined the JDBC type that this field will use (rather than the default of VARCHAR).

JPA does allow permit control over the length/precision/scale of columns. So we define this as
follows

<entity name="Payment">

 <attributes>

 <one-to-one name="customer">

 <primary-key-join-column name="CUSTOMER_ID"/>

 </one-to-one>

 <basic name="bankTransferReference">

 <column name="TRANSFER_REF" nullable="true" length="255"/>

 </basic>

 <basic name="currency">

 <column name="CURRENCY" default-value="GBP" length="3"/>

 </basic>

 <basic name="amount">

 <column name="AMOUNT" precision="10" scale="2"/>

 </basic>

 </attributes>

</entity>

So we have defined TRANSFER_REF to use VARCHAR(255) column type, CURRENCY to use
(VAR)CHAR(3) column type, and AMOUNT to use DECIMAL(10,2) column type.

See also :-

• Types Guide - defining mapping of Java types
• RDBMS Types Guide - defining mapping of Java types to JDBC/SQL types
• MetaData reference for <column> element

1 4 9 S c h e m a M a p p i n g 955

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

149.1.4 columnposition

With some datastores it is desirable to be able to specify the relative position of a column in the
table schema. The default (for DataNucleus) is just to put them in ascending alphabetical order.
DataNucleus allows an extension to JPA providing definition of this using the position of a column.
See fields/properties column positioning docs for details.

1 5 0 M u l t i t e n a n c y 956

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

150 Multitenancy
...

150.1 JPA : Multitenancy
On occasion you need to share a data model with other user-groups or other applications and where
the model is persisted to the same structure of datastore. There are three ways of handling this with
DataNucleus.

• Separate Database per Tenant - have a different database per user-group/application.
• Separate Schema per Tenant - as the first option, except use different schemas.
• Same Database/Schema but with a Discriminator - this is described below.

150.1.1 Multitenancy via Discriminator

If you specify the persistence property datanucleus.tenantId as an identifier for your user-group/
application then DataNucleus will know that it needs to provide a tenancy discriminator to all primary
tables of persisted classes. This discriminator is then used to separate the data of the different user-
groups.

By default this will add a column TENANT_ID to each primary table, of String-based type. You can
control this by specifying extension metadata for each persistable class

<class name="MyClass">

 <extension vendor-name="datanucleus" key="multitenancy-column-name" value="TENANT"/>

 <extension vendor-name="datanucleus" key="multitenancy-column-length" value="24"/>

 ...

</class>

In all subsequent use of DataNucleus, any "insert" to the primary "table"(s) will also include the
TENANT column value. Additionally any query will apply a WHERE clause restricting to a
particular value of TENANT column.

If you want to disable multitenancy on a class, just specify the following metadata

<class name="MyClass">

 <extension vendor-name="datanucleus" key="multitenancy-disable" value="true"/>

 ...

</class>

1 5 1 D a t a s t o r e I d e n t i f i e r s 957

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

151 Datastore Identifiers
...

151.1 JPA : Datastore Identifiers
A datastore identifier is a simple name of a database object, such as a column, table, index, or view,
and is composed of a sequence of letters, digits, and underscores (_) that represents it's name.
DataNucleus allows users to specify the names of tables, columns, indexes etc but if the user doesn't
specify these DataNucleus will generate names.

With RDBMS the generation of identifier names is controlled by an IdentifierFactory, and
DataNucleus provides a default implementation for JPA. You can provide your own RDBMS
IdentifierFactory plugin to give your own preferred naming if so desired. For RDBMS you set the
RDBMS IdentifierFactory by setting the persistence property datanucleus.identifierFactory. Set it to
the symbolic name of the factory you want to use.

• jpa RDBMS IdentifierFactory (default for JPA persistence for RDBMS)
With non-RDBMS the generation of identifier names is controlled by a NamingFactory and again
a default implementation for JPA. You can provide your own NamingFactory plugin to give your
own preferred naming if so desired. You set the NamingFactory by setting the persistence property
datanucleus.identifier.namingFactory. to give your own preferred naming if so desired. Set it to the
symbolic name of the factory you want to use.

• jpa NamingFactory (default for JPA persistence for non-RDBMS)
In describing the different possible naming conventions available out of the box with DataNucleus
we'll use the following example

class MyClass

{

 String myField1;

 Collection<MyElement> elements1; // Using join table

 Collection<MyElement> elements2; // Using foreign-key

}

class MyElement

{

 String myElementField;

 MyClass myClass2;

}

151.1.1 NamingFactory 'jpa'

The NamingFactory "jpa" aims at providing a naming policy consistent with the "JPA" specification.

Using the same example above, the rules in this NamingFactory mean that, assuming that the user
doesn't specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS
• When using datastore identity MYCLASS will have a column called MYCLASS_ID
• MyClass.myField1 will be persisted into a column called MYFIELD1

1 5 1 D a t a s t o r e I d e n t i f i e r s 958

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• MyElement will be persisted into a table named MYELEMENT
• MyClass.elements1 will be persisted into a join table called MYCLASS_MYELEMENT
• MYCLASS_ELEMENTS1 will have columns called MYCLASS_MYCLASS_ID (FK to

owner table) and ELEMENTS1_ELEMENT_ID (FK to element table)
• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID (FK to

owner) table
• Any discriminator column will be called DTYPE
• Any index column in a List for field MyClass.myField1 will be called MYFIELD1_ORDER
• Any adapter column added to a join table to form part of the primary key will be called IDX
• Any version column for a table will be called VERSION

151.1.2 RDBMS IdentifierFactory 'jpa'

The RDBMS IdentifierFactory "jpa" aims at providing a naming policy consistent with the JPA
specification.

Using the same example above, the rules in this IdentifierFactory mean that, assuming that the user
doesnt specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS
• When using datastore identity MYCLASS will have a column called MYCLASS_ID
• MyClass.myField1 will be persisted into a column called MYFIELD1
• MyElement will be persisted into a table named MYELEMENT
• MyClass.elements1 will be persisted into a join table called MYCLASS_MYELEMENT
• MYCLASS_ELEMENTS1 will have columns called MYCLASS_MYCLASS_ID (FK to

owner table) and ELEMENTS1_ELEMENT_ID (FK to element table)
• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID (FK to

owner) table
• Any discriminator column will be called DTYPE
• Any index column in a List for field MyClass.myField1 will be called MYFIELD1_ORDER
• Any adapter column added to a join table to form part of the primary key will be called IDX
• Any version column for a table will be called VERSION

151.1.3 Controlling the Case

The underlying datastore will define what case of identifiers are accepted. By default, DataNucleus
will capitalise names (assuming that the datastore supports it). You can however influence the case
used for identifiers. This is specifiable with the persistence property datanucleus.identifier.case,
having the following values

• UpperCase: identifiers are in upper case
• LowerCase: identifiers are in lower case
• MixedCase: No case changes are made to the name of the identifier provided by the user (class

name or metadata).
Please be aware that some datastores only support UPPERCASE or lowercase identifiers and
so setting this parameter may have no effect if your database doesn't support that option. Please
note also that this case control only applies to DataNucleus-generated identifiers. If you provide
your own identifiers for things like schema/catalog etc then you need to specify those using the
case you wish to use in the datastore (including quoting as necessary)

1 5 2 S e c o n d a r y T a b l e s 959

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

152 Secondary Tables
...

152.1 JPA : Secondary Tables

Applicable to RDBMS

The standard JPA persistence strategy is to persist an object of a class into its own table. In some
situations you may wish to map the class to a primary table as well as one or more secondary tables.
For example when you have a Java class that could have been split up into 2 separate classes yet, for
whatever reason, has been written as a single class, however you have a legacy datastore and you need
to map objects of this class into 2 tables. JPA allows persistence of fields of a class into secondary
tables.

The process for managing this situation is best demonstrated with an example. Let's suppose we have
a class that represents a Printer. The Printer class contains within it various attributes of the toner
cartridge. So we have

package com.mydomain.samples.secondarytable;

public class Printer

{

 long id;

 String make;

 String model;

 String tonerModel;

 int tonerLifetime;

 /**

 * Constructor.

 * @param make Make of printer (e.g Hewlett-Packard)

 * @param model Model of Printer (e.g LaserJet 1200L)

 * @param tonerModel Model of toner cartridge

 * @param tonerLifetime lifetime of toner (number of prints)

 */

 public Printer(String make, String model, String tonerModel, int tonerLifetime)

 {

 this.make = make;

 this.model = model;

 this.tonerModel = tonerModel;

 this.tonerLifetime = tonerLifetime;

 }

}

Now we have a database schema that has 2 tables (PRINTER and PRINTER_TONER) in which to
store objects of this class. So we need to tell DataNucleus to perform this mapping. So we define the
MetaData for the Printer class like this

1 5 2 S e c o n d a r y T a b l e s 960

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity class="Printer">

 <table name="PRINTER"/>

 <secondary-table name="PRINTER_TONER">

 <primary-key-join-column name="PRINTER_REFID"/>

 </secondary-table>

 <attributes>

 <id name="id">

 <column name="PRINTER_ID"/>

 </id>

 <basic name="make">

 <column name="MAKE" length="40"/>

 </basic>

 <basic name="model">

 <column name="MODEL" length="100"/>

 </basic>

 <basic name="tonerModel">

 <column name="MODEL" table="PRINTER_TONER"/>

 </basic>

 <basic name="tonerLifetime">

 <column name="LIFETIME" table="PRINTER_TONER"/>

 </basic>

 </attributes>

</entity>

So here we have defined that objects of the Printer class will be stored in the primary table
PRINTER. In addition we have defined that some fields are stored in the table PRINTER_TONER.

• We declare the "secondary-table"(s) that we will be using at the start of the definition.
• We define tonerModel and tonerLifetime to use columns in the table PRINTER_TONER. This

uses the "table" attribute of <column>
• Whilst defining the secondary table(s) we will be using, we also define the join column to be

called "PRINTER_REFID".
This results in the following database tables :-

So we now have our primary and secondary database tables. The primary key of the
PRINTER_TONER table serves as a foreign key to the primary class. Whenever we persist a Printer
object a row will be inserted into both of these tables.

See also :-

• MetaData reference for <secondary-table> element
• MetaData reference for <column> element
• Annotations reference for @SecondaryTable
• Annotations reference for @Column

1 5 3 C o n s t r a i n t s 961

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

153 Constraints
...

153.1 JPA : Constraints
A datastore often provides ways of constraining the storage of data to maintain relationships and
improve performance. These are known as constraints and they come in various forms. These are :-

• Indexes - these are used to mark fields that are referenced often as indexes so that when they are
used the performance is optimised.

• Unique constraints - these are placed on fields that should have a unique value. That is, only one
object will have a particular value.

• Foreign-Keys - these are used to interrelate objects, and allow the datastore to keep the integrity
of the data in the datastore.

• Primary-Keys - allow the PK to be set, and also to have a name.

153.1.1 Indexes

Applicable to RDBMS, NeoDatis, MongoDB

Many datastores provide the ability to have indexes defined to give performance benefits. With
RDBMS the indexes are specified on the table and the indexes to the rows are stored separately. In
the same way an ODBMS typically allows indexes to be specified on the fields of the class, and these
are managed by the datastore. JPA 2.1 allows you to define the indexes on a table-by-table basis by
metadata as in the following example (note that you cannot specify indexes on a field basis like in
JDO)

import javax.persistence.Index;

@Entity

@Table(indexes={@Index(name="SOME_VAL_IDX", columnList="SOME_VALUE")})

public class MyClass

{

 @Column(name="SOME_VALUE")

 long someValue;

 ...

}

The JPA @Index annotation is only applicable at a class level. DataNucleus provides its own @Index
annotation that you can specify on a field/method to signify that the column(s) for this field/method
will be indexed. Like this

1 5 3 C o n s t r a i n t s 962

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class MyClass

{

 @org.datanucleus.api.jpa.annotations.Index(name="VAL_IDX")

 long someValue;

 ...

}

153.1.2 Unique constraints

Applicable to RDBMS, NeoDatis, MongoDB

Some datastores provide the ability to have unique constraints defined on tables to give extra control
over data integrity. JPA1 provides a mechanism for defining such unique constraints. Let's take an
example class, and show how to specify this

public class Person

{

 String forename;

 String surname;

 String nickname;

 ...

}

and here we want to impose uniqueness on the "nickname" field, so there is only one Person known as
"DataNucleus Guru" for example !

<entity class="Person">

 <table name="PEOPLE"/>

 <attributes>

 ...

 <basic name="nickname">

 <column name="SURNAME" unique="true"/>

 </basic>

 ...

 </attributes>

</entity>

The second use of unique constraints is where we want to impose uniqueness across composite
columns. So we reuse the class above, and this time we want to impose a constraint that there is only
one Person with a particular "forename+surname".

1 5 3 C o n s t r a i n t s 963

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<entity class="Person">

 <table name="PEOPLE">

 <unique-constraint>

 <column-name>FORENAME</column-name>

 <column-name>SURNAME</column-name>

 </unique-constraint>

 </table>

 <attributes>

 ...

 <basic name="forename">

 <column name="FORENAME"/>

 </basic>

 <basic name="surname">

 <column name="SURNAME"/>

 </basic>

 ...

 </attributes>

</entity>

In the same way we can also impose unique constraints on <join-table> and <secondary-table>

See also :-

• MetaData reference for <column> element
• MetaData reference for <unique-constraint> element
• Annotations reference for @Column
• Annotations reference for @UniqueConstraint

153.1.3 Foreign Keys

Applicable to RDBMS

When objects have relationships with one object containing, for example, a Collection of another
object, it is common to store a foreign key in the datastore representation to link the two associated
tables. Moreover, it is common to define behaviour about what happens to the dependent object when
the owning object is deleted. Should the deletion of the owner cause the deletion of the dependent
object maybe ? JPA 2.1 adds support for defining the foreign key for relation fields as per the
following example

public class MyClass

{

 ...

 @OneToOne

 @JoinColumn(name="OTHER_ID", foreignKey=@ForeignKey(name="OTHER_FK",

 foreignKeyDefinition="FOREIGN KEY (OTHER_ID) REFERENCES MY_OTHER_TBL (MY_OTHER_ID)]"))

 MyOtherClass other;

}

1 5 3 C o n s t r a i n t s 964

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Note that when you don't specify any foreign key the JPA provider is free to add the foreign keys that
it considers are necessary.

153.1.4 Primary Keys

Applicable to RDBMS

In RDBMS datastores, it is accepted as good practice to have a primary key on all tables. You specify
in other parts of the MetaData which fields are part of the primary key (if using application identity).
Unfortunately JPA1 doesnt allow specification of the name of the primary key constraint, nor of
whether join tables are given a primary key constraint at all.

1 5 4 E n h a n c e r 965

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

154 Enhancer
...

154.1 DataNucleus Enhancer
As is described in the Class Enhancement guide below, DataNucleus utilises the common technique
of byte-code manipulation to make your normal Java classes "persistable". The mechanism provided
by DataNucleus is to use an "enhancer" process to perform this manipulation before you use your
classes at runtime. The process is very quick and easy.

How to use the DataNucleus Enhancer depends on what environment you are using. Below are some
typical examples.

• Post-compilation

• Using Maven via the DataNucleus Maven plugin
• Using Ant
• Manual invocation at the command line
• Using the Eclipse DataNucleus plugin

• At runtime

• Runtime Enhancement
• Programmatically via an API

154.1.1 Maven

Maven operates from a series of plugins. There is a DataNucleus plugin for Maven that allows
enhancement of classes. Go to the Download section of the website and download this. Once you
have the Maven plugin, you then need to set any properties for the plugin in your pom.xml file. Some
properties that you may need to change are below

Property Default Description

persistenceUnitName Name of the persistence-unit to
enhance. Mandatory

metadataDirectory ${project.build.outputDirectory} Directory to use for enhancement
files (classes/mappings) For
example, you could set this to
${project.build.testOutputDirectory}
when enhancing Maven test
classes

metadataIncludes **/*.jdo, **/*.class Fileset to include for enhancement
(if not using persistence-unit)

metadataExcludes Fileset to exclude for enhancement
(if not using persistence-unit)

log4jConfiguration Config file location for Log4J (if
using it)

jdkLogConfiguration Config file location for JDK1.4
logging (if using it)

api JDO API to enhance to (JDO, JPA).
Mandatory : Set this to JPA

1 5 4 E n h a n c e r 966

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

verbose false Verbose output?

quiet false No output?

targetDirectory Where the enhanced classes are
written (default is to overwrite them)

fork true Whether to fork the enhancer
process (e.g if you get a command
line too long with Windows).

generatePK true Generate a PK class (of name
{MyClass}_PK) for cases where
there are multiple PK fields yet no
PK class is defined.

generateConstructor true Generate a default constructor
if not defined for the class being
enhanced.

detachListener false Whether to enhance classes to
make use of a detach listener for
attempts to access an undetached
field.

ignoreMetaDataForMissingClasses false Whether to ignore classes that
have metadata but are not found

You will need to add (org.datanucleus) datanucleus-api-jpa into the CLASSPATH (of the plugin, or
your project) for the enhancer to operate. Similarly persistence-api (but then you almost certainly will
have that in your project CLASSPATH anyway).

You then run the Maven DataNucleus plugin, as follows

mvn datanucleus:enhance

This will enhance all classes for the specified persistence-unit. If you want to check the current status
of enhancement you can also type

mvn datanucleus:enhance-check

Or alternatively, you could add the following to your POM

1 5 4 E n h a n c e r 967

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

 <build>

 ...

 <plugins>

 <plugin>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-maven-plugin</artifactId>

 <version>4.0.0-release</version>

 <configuration>

 <api>JPA</api>

 <persistenceUnitName>MyUnit</persistenceUnitName>

 <log4jConfiguration>${basedir}/log4j.properties</log4jConfiguration>

 <verbose>true</verbose>

 </configuration>

 <executions>

 <execution>

 <phase>process-classes</phase>

 <goals>

 <goal>enhance</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 ...

 </build>

So you then get auto-enhancement after each compile. Please refer to the Maven JPA guide for more
details.

154.1.2 Ant

Ant provides a powerful framework for performing tasks. DataNucleus provides an Ant task to
enhance classes. DataNucleus provides an Enhancer in datanucleus-core.jar. You need to make sure
that the datanucleus-core.jar, datanucleus-api-jpa.jar, log4j.jar (optional), and persistence-api.jar are
in your CLASSPATH. In the DataNucleus Enhancer Ant task, the following parameters are available

Parameter Description values

destination Optional. Defining a directory
where enhanced classes will be
written. If omitted, the original
classes are updated.

ignoreMetaDataForMissingClasses Optional. Whether to ignore classes
that have metadata but aren't found

api Defines the API to be used when
enhancing

Set this to JPA

persistenceUnit Defines the "persistence-unit" to
enhance.

1 5 4 E n h a n c e r 968

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

checkonly Whether to just check the
classes for enhancement status.
Will respond for each class
with "ENHANCED" or "NOT
ENHANCED". This will disable
the enhancement process and
just perform these checks.

true, false

verbose Whether to have verbose output. true, false

quiet Whether to have no output. true, false

generatePK Whether to generate PK classes as
required.

true, false

generateConstructor Whether to generate a default
constructor as required.

true, false

if Optional. The name of a property
that must be set in order to the
Enhancer Ant Task to execute.

The enhancer task extends the Apache Ant Java task, thus all parameters available to the Java task are
also available to the enhancer task.

So you could define something like the following, setting up the parameter enhancer.classpath, and
log4j.config.file to suit your situation.

<target name="enhance" description="DataNucleus enhancement">

 <taskdef name="datanucleusenhancer" classpathref="enhancer.classpath"

 classname="org.datanucleus.enhancer.EnhancerTask" />

 <datanucleusenhancer

 persistenceUnit="MyUnit" failonerror="true" verbose="true">

 <jvmarg line="-Dlog4j.configuration=${log4j.config.file}"/>

 <classpath>

 <path refid="enhancer.classpath"/>

 </classpath>

 </datanucleusenhancer>

</target>

154.1.3 Manually

DataNucleus provides an Enhancer in datanucleus-core.jar. If you are building your application
manually and want to enhance your classes you follow the instructions in this section. You invoke the
enhancer as follows

http://ant.apache.org/manual/CoreTasks/java.html

1 5 4 E n h a n c e r 969

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

java -cp classpath org.datanucleus.enhancer.DataNucleusEnhancer [options]

 where options can be

 -pu {persistence-unit-name} : Name of a "persistence-unit" to enhance the classes for

 -d {target-dir-name} : Write the enhanced classes to the specified directory

 -api {api-name} : Name of the API we are enhancing for (JDO, JPA). Set this to JPA

 -checkonly : Just check the classes for enhancement status

 -v : verbose output

 -q : quiet mode (no output, overrides verbose flag too)

 -ignoreMetaDataForMissingClasses : ignore classes that have metadata but aren't found

 -generatePK {flag} : generate any PK classes where needed

 ({flag} should be true or false - default=true)

 -generateConstructor {flag} : generate default constructor where needed

 ({flag} should be true or false - default=true)

 where "mapping-files" and "class-files" are provided when not enhancing a persistence-unit,

 and give the paths to the mapping files and class-files that define the classes being enhanced.

 where classpath must contain the following

 datanucleus-core.jar

 datanucleus-api-jpa.jar

 persistence-api.jar

 log4j.jar (optional)

 your classes

 your meta-data files

The input to the enhancer should be the name of the "persistence-unit" to enhance. To give an
example of how you would invoke the enhancer

Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jpa.jar:lib/persistence-api.jar:lib/log4j.jar

 -Dlog4j.configuration=file:log4j.properties

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu MyUnit

Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jpa.jar;lib\persistence-api.jar;lib\log4j.jar

 -Dlog4j.configuration=file:log4j.properties

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu MyUnit

[should all be on same line. Shown like this for clarity]

So you pass in the persistence-unit name as the final argument(s) in the list, and include the respective
JAR's in the classpath (-cp). The enhancer responds as follows

1 5 4 E n h a n c e r 970

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

DataNucleus Enhancer (version 4.0.0.release) for API "JPA"

DataNucleus Enhancer : Classpath

>> /home/andy/work/myproject//target/classes

>> /home/andy/work/myproject/lib/log4j.jar

>> /home/andy/work/myproject/lib/persistence-api.jar

>> /home/andy/work/myproject/lib/datanucleus-core.jar

>> /home/andy/work/myproject/lib/datanucleus-api-jpa.jar

ENHANCED (persistable): org.mydomain.mypackage1.Pack

ENHANCED (persistable): org.mydomain.mypackage1.Card

DataNucleus Enhancer completed with success for 2 classes. Timings : input=422 ms, enhance=490 ms, total=912 ms.

 ... Consult the log for full details

If you have errors here relating to "Log4J" then you must fix these first. If you receive no output about
which class was ENHANCED then you should look in the DataNucleus enhancer log for errors. The
enhancer performs much error checking on the validity of the passed MetaData and the majority of
errors are caught at this point. You can also use the DataNucleus Enhancer to check whether classes
are enhanced. To invoke the enhancer in this mode you specify the checkonly flag. This will return
a list of the classes, stating whether each class is enhanced for persistence under JDO or not. The
classes need to be in the CLASSPATH (Please note that a CLASSPATH should contain a set of
JAR's, and a set of directories. It should NOT explictly include class files, and should NOT include
parts of the package names. If in doubt please consult a Java book).

154.1.4 Runtime Enhancement

Enhancement of persistent classes at runtime is possible when using JRE 1.5 or superior versions.
Runtime Enhancement requires the datanucleus-core jar be in the CLASSPATH but then you'd have
that if using DataNucleus.

When operating in a JavaEE environment (JBoss, WebSphere, etc) instead set the persistence property
datanucleus.jpa.addClassTransformer to true. Note that this is only for a real JavaEE server that
implements the JavaEE parts of the JPA spec.

To enable runtime enhancement in other environments, the javaagent option must be set in the java
command line. For example,

java -javaagent:datanucleus-core.jar=-api=JPA Main

The statement above will mean that all classes, when being loaded, will be processed by the
ClassFileTransformer (except class in packages "java.*", "javax.*", "org.datanucleus.*"). This means
that it can be slow since the MetaData search algorithm will be utilised for each. To speed this up
you can specify an argument to that command specifying the names of package(s) that should be
processed (and all others will be ignored). Like this

java -javaagent:datanucleus-core.jar=-api=JPA,mydomain.mypackage1,mydomain.mypackage2 Main

so in this case only classes being loaded that are in mydomain.mypackage1 and
mydomain.mypackage2 will be attempted to be enhanced.

Please take care over the following when using runtime enhancement

1 5 4 E n h a n c e r 971

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• When you have a class with a field of another persistable type make sure that you mark that field
as "persistent" (@Persistent, or in XML) since with runtime enhancement at that point the related
class is likely not yet enhanced so will likely not be marked as persistent otherwise. Be explicit

• If the agent jar is not found make sure it is specified with an absolute path.

154.1.5 Programmatic API

You could alternatively programmatively enhance classes from within your application. This is done
as follows.

import org.datanucleus.enhancer.DataNucleusEnhancer;

DataNucleusEnhancer enhancer = new DataNucleusEnhancer("JPA", null);

enhancer.setVerbose(true);

enhancer.addPersistenceUnit("MyPersistenceUnit");

enhancer.enhance();

This will look in META-INF/persistence.xml and enhance all classes defined by that unit. Please note
that you will need to load the enhanced version of the class into a different ClassLoader after
performing this operation to use them. See this guide

154.2 Class enhancement

DataNucleus requires that all classes that are persisted implement Persistable. Why should we do
this, Hibernate/TopLink dont need it ?. Well that's a simple question really

• DataNucleus uses this Persistable interface, and adds it using bytecode enhancement techniques
so that you never need to actually change your classes. This means that you get transparent
persistence, and your classes always remain your classes. ORM tools that use a mix of reflection
and/or proxies are not totally transparent.

• DataNucleus' use of Persistable provides transparent change tracking. When any change is
made to an object the change creates a notification to DataNucleus allowing it to be optimally
persisted. ORM tools that dont have access to such change tracking have to use reflection to
detect changes. The performance of this process will break down as soon as you read a large
number of objects, but modify just a handful, with these tools having to compare all object states
for modification at transaction commit time.

Why not also read this comparison of bytecode enhancement, and proxies. It gives a clear enough
comparison of the relative benefits.

In the DataNucleus bytecode enhancement contract there are 3 categories of classes. These are Entity,
PersistenceAware and normal classes. The Meta-Data defines which classes fit into these categories.
To give an example, we have 3 classes. The class A is to be persisted in the datastore. The class B
directly updates the fields of class A but doesn't need persisting. The class C is not involved in the
persistence process. We would define these classes as follows

http://www.datanucleus.org/documentation/development/dynamic_class_metadata_enhance_runtime.html
http://www.datanucleus.org/javadocs/core/4.0/org/datanucleus/enhancer/Persistable.html
http://blog.bolkey.com/2009/05/hibernate-datanucleus-r1/

1 5 4 E n h a n c e r 972

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Entity

public class A

{

 String myField;

 ...

}

@org.datanucleus.api.jpa.annotations.PersistenceAware

public class B

{

 ...

}

So our MetaData is mainly for those classes that are Entity (or MappedSuperclass/Embeddable)
and are to be persisted to the datastore. For PersistenceAware classes we simply notate that the
class knows about persistence. We don't define MetaData for any class that has no knowledge of
persistence.

JPA allows implementations to bytecode enhance persistable classes to implement some interface
to provide them with change tracking etc. Users could manually make their classes implement
this Persistable interface but this would impose work on them. JPA permits the use of a byte-code
enhancer that converts the users normal classes to implement this interface. DataNucleus provides its
own byte-code enhancer (in the datanucleus-core.jar). This section describes how to use this enhancer
with DataNucleus.

The example above doesn't show all Persistable methods, but demonstrates that all added methods
and fields are prefixed with "dn" to distinguish them from the users own methods and fields. Also
each persistent field of the class will be given a dnGetXXX, dnSetXXX method so that accesses of
these fields are intercepted so that DataNucleus can manage their "dirty" state.

The MetaData defines which classes are required to be persisted, and also defines which
aspects of persistence each class requires. With JPA all classes are additionally detachable

1 5 4 E n h a n c e r 973

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

meaning they can be detached so the class will be enhanced to also implement Detachable

The main thing to know is that the detached state (object id of the datastore object, the version
of the datastore object when it was detached, and which fields were detached is stored in
"dnDetachedState") is stored in the object when it is detached, and available to be merged later on.

If the MetaData is changed in any way during development, the classes should always be
recompiled and re-enhanced afterwards.

154.2.1 Byte-Code Enhancement Myths

Some groups (e.g Hibernate) perpetuated arguments against "byte-code enhancement" saying that it
was somehow 'evil'. The most common were :-

• Slows down the code-test cycle. This is erroneous since you only need to enhance just before test
and the provided plugins for Ant, Eclipse and Maven all do the enhancement job automatically
and rapidly.

• Is less "lazy" than the proxy approach since you have to load the object as soon as you get a
pointer to it. In a 1-1 relation you have to load the object then since you would cause issues with
null pointers otherwise. With 1-N relations you load the elements of the collection/map only
when you access them and not the collection/map. Hardly an issue then is it!

• Fail to detect changes to public fields unless you enhance your client code. Firstly very few
people will be writing code with public fields since it is bad practice in an OO design, and
secondly, this is why we have "PersistenceAware" classes.

So as you can see, there are no valid reasons against byte-code enhancement, and the pluses are that
runtime detection of dirty events on objects is much quicker, hence your persistence layer operates
faster without any need for iterative reflection-based checks. The fact is that Hibernate itself also now
has a mode whereby you can do bytecode enhancement although not the default mode of Hibernate.
So maybe it wasn't so evil after all ?

http://www.datanucleus.org/javadocs/core/4.0/org/datanucleus/enhancer/Detachable.html
http://www.datanucleus.org/javadocs/core/4.0/org/datanucleus/enhancer/Detachable.html

1 5 4 E n h a n c e r 974

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

154.2.2 Decompilation

Many people will wonder what actually happens to a class upon bytecode enhancement. In simple
terms the necessary methods and fields are added so as to implement Persistable. If you want to check
this, just use a Java decompiler such as JD. It has a nice GUI allowing you to just select your class to
decompile and shows you the source.

http://jd.benow.ca/

1 5 5 D a t a s t o r e S c h e m a 975

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

155 Datastore Schema
...

155.1 JPA : Datastore Schema
Some datastores have a well-defined structure and when persisting/retrieving from these datastores
you have to have this schema in place. DataNucleus provides various controls for creation of any
necessary schema components. This creation can be performed as follows

• At runtime, as a one-off generate-schema step. This is the recommended option since it is
standard in JPA2.1

• One off task before running your application using SchemaTool
• At runtime, auto-generating tables as it requires them

The thing to remember when using DataNucleus is that the schema is under your control.
DataNucleus does not impose anything on you as such, and you have the power to turn on/off all
schema components. Some Java persistence tools add various types of information to the tables for
persisted classes, such as special columns, or meta information. DataNucleus is very unobtrusive as
far as the datastore schema is concerned. It minimises the addition of any implementation artifacts
to the datastore, and adds nothing (other than any datastore identities, and version columns where
requested) to any schema tables.

155.1.1 Schema Generation for persistence-unit

DataNucleus JPA allows you to generate the schema for your persistence-unit when creating an
EMF. You can create, drop or drop then create the schema either directly in the datastore, or in scripts
(DDL) as required. See the associated persistence properties (most of these only apply to RDBMS).

• javax.persistence.schema-generation.database.action which can be set to create, drop, drop-
and-create or none to control the generation of the schema in the database.

• javax.persistence.schema-generation.scripts.action which can be set to create, drop,
drop-and-create or none to control the generation of the schema as scripts (DDL). See also
javax.persistence.schema-generation.scripts.create.target and javax.persistence.schema-
generation.scripts.drop.target which will be generated using this mode of operation.

• javax.persistence.schema-generation.scripts.create.target - this should be set to the
name of a DDL script file that will be generated when using javax.persistence.schema-
generation.scripts.action

• javax.persistence.schema-generation.scripts.drop.target - this should be set to the
name of a DDL script file that will be generated when using javax.persistence.schema-
generation.scripts.action

• javax.persistence.schema-generation.scripts.create.source - set this to an SQL script of your
own that will create some tables (prior to any schema generation from the persistable objects)

• javax.persistence.schema-generation.scripts.drop.source - set this to an SQL script of your
own that will drop some tables (prior to any schema generation from the persistable objects)

• javax.persistence.sql-load-script-source - set this to an SQL script of your own that will insert
any data that you require to be available when your EMF is initialised

155.1.2 Schema Auto-Generation at runtime

1 5 5 D a t a s t o r e S c h e m a 976

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

If you want to create the schema ("tables"+"columns"+"constraints") during the persistence process,
the property datanucleus.schema.autoCreateAll provides a way of telling DataNucleus to do this.
It's a shortcut to setting the other 3 properties to true. Thereafter, during calls to DataNucleus to
persist classes or performs queries of persisted data, whenever it encounters a new class to persist that
it has no information about, it will use the MetaData to check the datastore for presence of the "table",
and if it doesn't exist, will create it. In addition it will validate the correctness of the table (compared
to the MetaData for the class), and any other constraints that it requires (to manage any relationships).
If any constraints are missing it will create them.

• If you wanted to only create the "tables" required, and none of the "constraints" the property
datanucleus.schema.autoCreateTables provides this, simply performing the tables part of the
above.

• If you want to create any missing "columns" that are required, the property
datanucleus.schema.autoCreateColumns provides this, validating and adding any missing
columns.

• If you wanted to only create the "constraints" required, and none of the "tables" the property
datanucleus.schema.autoCreateConstraints provides this, simply performing the "constraints"
part of the above.

• If you want to keep your schema fixed (i.e don't allow any modifications at runtime) then make
sure that the properties datanucleus.schema.autoCreate{XXX} are set to false

155.1.3 Schema Generation : Validation

DataNucleus can check any existing schema against what is implied by the MetaData.

The property datanucleus.schema.validateTables provides a way of telling DataNucleus to validate
any tables that it needs against their current definition in the datastore. If the user already has a
schema, and want to make sure that their tables match what DataNucleus requires (from the MetaData
definition) they would set this property to true. This can be useful for example where you are trying to
map to an existing schema and want to verify that you've got the correct MetaData definition.

The property datanucleus.schema.validateColumns provides a way of telling DataNucleus to
validate any columns of the tables that it needs against their current definition in the datastore. If the
user already has a schema, and want to make sure that their tables match what DataNucleus requires
(from the MetaData definition) they would set this property to true. This will validate the precise
column types and widths etc, including defaultability/nullability settings. Please be aware that many
JDBC drivers contain bugs that return incorrect column detail information and so having this
turned off is sometimes the only option (dependent on the JDBC driver quality).

The property datanucleus.schema.validateConstraints provides a way of telling DataNucleus
to validate any constraints (primary keys, foreign keys, indexes) that it needs against their current
definition in the datastore. If the user already has a schema, and want to make sure that their table
constraints match what DataNucleus requires (from the MetaData definition) they would set this
property to true.

155.1.4 Schema Generation : Naming Issues

Some datastores allow access to multiple "schemas" (such as with most RDBMS). DataNucleus will,
by default, use the "default" database schema for the Connection URL and user supplied. This may
cause issues where the user has been set up and in some databases (e.g Oracle) you want to write to
a different schema (which that user has access to). To achieve this in DataNucleus you would set the
persistence properties

1 5 5 D a t a s t o r e S c h e m a 977

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.mapping.Catalog={the_catalog_name}

datanucleus.mapping.Schema={the_schema_name}

This will mean that all RDBMS DDL and SQL statements will prefix table names with the necessary
catalog and schema names (specify which ones your datastore supports).

155.1.5 Schema Generation : Column Ordering

By default all tables are generated with columns in alphabetical order, starting with root class fields
followed by subclass fields (if present in the same table) etc. This is not part of JPA but DataNucleus
allows an extension to specify the relative position, such as

@ColumnPosition(3)

Note that the values of the position start at 0, and should be specified completely for all columns of all
fields.

155.1.6 Schema : Read-Only

If your datastore is read-only (you can't add/update/delete any data in it), obviously you could just
configure your application to not perform these operations. An alternative is to set the EMF as read-
only, by setting the persistence property datanucleus.ReadOnlyDatastore to true.

From now on, whenever you perform a persistence operation that implies a change in datastore data,
the operation will throw a PersistenceException.

DataNucleus provides an additional control over the behaviour when an attempt is made to change
a read-only datastore. The default behaviour is to throw an exception. You can change this using the
persistence property datanucleus.readOnlyDatastoreAction with values of "EXCEPTION" (default),
and "IGNORE". "IGNORE" has the effect of simply ignoring all attempted updates to readonly
objects.

You can take this read-only control further and specify it just on specific classes. Like this

@Extension(vendorName="datanucleus", key="read-only", value="true")

public class MyClass {...}

155.2 SchemaTool

DataNucleus SchemaTool currently works with RDBMS, HBase, Excel, OOXML, ODF, MongoDB,
Cassandra datastores and is very simple to operate. It has the following modes of operation :

• createSchema - create the specified schema if the datastore supports that operation.
• deleteSchema - delete the specified schema if the datastore supports that operation.
• create - create all database tables required for the classes defined by the input data.
• delete - delete all database tables required for the classes defined by the input data.
• deletecreate - delete all database tables required for the classes defined by the input data, then

create the tables.
• validate - validate all database tables required for the classes defined by the input data.

1 5 5 D a t a s t o r e S c h e m a 978

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• dbinfo - provide detailed information about the database, it's limits and datatypes support. Only
for RDBMS currently.

• schemainfo - provide detailed information about the database schema. Only for RDBMS
currently.

In addition for RDBMS, the create/ delete modes can be used by adding "-ddlFile {filename}" and
this will then not create/delete the schema, but instead output the DDL for the tables/constraints into
the specified file.

For the create, delete and validate modes DataNucleus SchemaTool accepts either of the following
types of input.

• A set of MetaData and class files. The MetaData files define the persistence of the classes they
contain. The class files are provided when the classes have annotations.

• The name of a persistence-unit. The persistence-unit name defines all classes, metadata
files, and jars that make up that unit. Consequently, running DataNucleus SchemaTool with a
persistence unit name will create the schema for all classes that are part of that unit. Important :
if using SchemaTool with a persistence-unit make sure you omit javax.persistence.schema-
generation properties from your persistence-unit.

Here we provide many different ways to invoke DataNucleus SchemaTool

• Invoke it using Maven, with the DataNucleus Maven plugin
• Invoke it using Ant, using the provided DataNucleus SchemaTool Ant task
• Invoke it manually from the command line
• Invoke it using the DataNucleus Eclipse plugin
• Invoke it programmatically from within an application

155.2.1 Maven

If you are using Maven to build your system, you will need the DataNucleus Maven plugin.
This provides 5 goals representing the different modes of DataNucleus SchemaTool. You can
use the goals datanucleus:schema-create, datanucleus:schema-delete, datanucleus:schema-
validate depending on whether you want to create, delete or validate the database tables. To use the
DataNucleus Maven plugin you will may need to set properties for the plugin (in your pom.xml). For
example

Property Default Description

api JDO API for the metadata being used
(JDO, JPA). Set this to JPA

schemaName Name of the schema (mandatory
when using createSchema or
deleteSchema options)

persistenceUnitName Name of the persistence-unit to
generate the schema for (defines
the classes and the properties
defining the datastore). Mandatory

log4jConfiguration Config file location for Log4J (if
using it)

jdkLogConfiguration Config file location for JDK1.4
logging (if using it)

verbose false Verbose output?

1 5 5 D a t a s t o r e S c h e m a 979

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

fork true Whether to fork the SchemaTool
process. Note that if you don't fork
the process, DataNucleus will likely
struggle to determine class names
from the input filenames, so you
need to use a persistence.xml file
defining the class names directly.

ddlFile Name of an output file to dump any
DDL to (for RDBMS)

completeDdl false Whether to generate DDL including
things that already exist? (for
RDBMS)

includeAutoStart false Whether to include auto-start
mechanisms in SchemaTool usage

So to give an example, I add the following to my pom.xml

 <build>

 ...

 <plugins>

 <plugin>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-maven-plugin</artifactId>

 <version>4.0.0-release</version>

 <configuration>

 <api>JPA</api>

 <persistenceUnitName>MyUnit</persistenceUnitName>

 <log4jConfiguration>${basedir}/log4j.properties</log4jConfiguration>

 <verbose>true</verbose>

 </configuration>

 </plugin>

 </plugins>

 ...

 </build>

So with these properties when I run SchemaTool it uses properties from the file
datanucleus.properties at the root of the Maven project. I am also specifying a log4j configuration file
defining the logging for the SchemaTool process. I then can invoke any of the Maven goals

mvn datanucleus:schema-createschema Create the Schema

mvn datanucleus:schema-deleteschema Delete the Schema

mvn datanucleus:schema-create Create the tables for the specified classes

mvn datanucleus:schema-delete Delete the tables for the specified classes

mvn datanucleus:schema-deletecreate Delete and create the tables for the specified classes

mvn datanucleus:schema-validate Validate the tables for the specified classes

mvn datanucleus:schema-info Output info for the Schema

mvn datanucleus:schema-dbinfo Output info for the datastore

1 5 5 D a t a s t o r e S c h e m a 980

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

155.2.2 Ant

An Ant task is provided for using DataNucleus SchemaTool. It has classname
org.datanucleus.store.schema.SchemaToolTask, and accepts the following parameters

Parameter Description values

api API that we are using in our use
of DataNucleus. Set this to JPA
typically

JDO | JPA

persistenceUnit Name of the persistence-unit that
we should manage the schema
for (defines the classes and the
properties defining the datastore).

mode Mode of operation. create, delete, validate, dbinfo,
schemainfo, createSchema,
deleteSchema

schemaName Schema name to use when used
in createSchema/ deleteSchema
modes

verbose Whether to give verbose output. true, false

ddlFile The filename where SchemaTool
should output the DDL (for
RDBMS).

completeDdl Whether to output complete DDL
(instead of just missing tables).
Only used with ddlFile

true, false

includeAutoStart Whether to include any auto-start
mechanism in SchemaTool usage

true, false

The SchemaTool task extends the Apache Ant Java task, thus all parameters available to the Java task
are also available to the SchemaTool task.

In addition to the parameters that the Ant task accepts, you will need to set up your CLASSPATH
to include the classes and MetaData files, and to define the following system properties via the
sysproperty parameter (not required when specifying the persistence props via the properties file, or
when providing the persistence-unit)

Parameter Description Optional

datanucleus.ConnectionDriverName Name of JDBC driver class Mandatory

datanucleus.ConnectionURL URL for the database Mandatory

datanucleus.ConnectionUserName User name for the database Mandatory

datanucleus.ConnectionPassword Password for the database Mandatory

datanucleus.Mapping ORM Mapping name Optional

log4j.configuration Log4J configuration file, for
SchemaTool's Log

Optional

So you could define something like the following, setting up the parameters
schematool.classpath, datanucleus.ConnectionDriverName, datanucleus.ConnectionURL,
datanucleus.ConnectionUserName, and datanucleus.ConnectionPassword to suit your situation.

http://ant.apache.org/manual/Tasks/java.html

1 5 5 D a t a s t o r e S c h e m a 981

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

You define the jdo files to create the tables using fileset.

<taskdef name="schematool" classname="org.datanucleus.store.schema.SchemaToolTask" />

<schematool failonerror="true" verbose="true" mode="create">

 <classpath>

 <path refid="schematool.classpath"/>

 </classpath>

 <fileset dir="${classes.dir}">

 <include name="**/*.jdo"/>

 </fileset>

 <sysproperty key="datanucleus.ConnectionURL" value="${datanucleus.ConnectionURL}"/>

 <sysproperty key="datanucleus.ConnectionDriverName" value="${datanucleus.ConnectionDriverName}"/>

 <sysproperty key="datanucleus.ConnectionUserName" value="${datanucleus.ConnectionUserName}"/>

 <sysproperty key="datanucleus.ConnectionPassword" value="${datanucleus.ConnectionPassword}"/>

</schematool>

155.2.3 Manual Usage

If you wish to call DataNucleus SchemaTool manually, it can be called as follows

java [-cp classpath] [system_props] org.datanucleus.store.schema.SchemaTool [modes] [options]

 where system_props (when specified) should include

 -Ddatanucleus.ConnectionURL=db_url

 -Ddatanucleus.ConnectionDriverName=db_driver_name

 -Ddatanucleus.ConnectionUserName=db_username

 -Ddatanucleus.ConnectionPassword=db_password

 -Dlog4j.configuration=file:{log4j.properties} (optional)

 where modes can be

 -createSchema {schemaName} : create the specified schema (if supported)

 -deleteSchema {schemaName} : delete the specified schema (if supported)

 -create : Create the tables specified by the mapping-files/class-files

 -delete : Delete the tables specified by the mapping-files/class-files

 -deletecreate : Delete the tables specified by the mapping-files/class-files and then create them

 -validate : Validate the tables specified by the mapping-files/class-files

 -dbinfo : Detailed information about the database

 -schemainfo : Detailed information about the database schema

 where options can be

 -api : The API that is being used (default is JDO, but set this to JPA)

 -pu {persistence-unit-name} : Name of the persistence unit to manage the schema for

 -ddlFile {filename} : RDBMS - only for use with "create"/"delete" mode to dump the DDL to the specified file

 -completeDdl : RDBMS - when using "ddlFile" in "create" mode to get all DDL output and not just missing tables/constraints

 -includeAutoStart : whether to include any auto-start mechanism in SchemaTool usage

 -v : verbose output

All classes, MetaData files, "persistence.xml" files must be present in the CLASSPATH. In
terms of the schema to use, you either specify the "props" file (recommended), or you specify the
System properties defining the database connection, or the properties in the "persistence-unit". You

1 5 5 D a t a s t o r e S c h e m a 982

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

should only specify one of the [modes] above. Let's make a specific example and see the output from
SchemaTool. So we have the following files in our application

src/java/... (source files and MetaData files)

target/classes/... (enhanced classes, and MetaData files)

lib/log4j.jar (optional, for Log4J logging)

lib/datanucleus-core.jar

lib/datanucleus-api-jpa.jar

lib/datanucleus-rdbms.jar, lib/datanucleus-hbase.jar, etc

lib/persistence-api.jar

lib/mysql-connector-java.jar (driver for our database)

log4j.properties

So we want to create the schema for our persistent classes. So let's invoke DataNucleus SchemaTool
to do this, from the top level of our project. In this example we're using Linux (change the
CLASSPATH definition to suit for Windows)

java -cp target/classes:lib/log4j.jar:lib/datanucleus-core.jar:lib/datanucleus-{datastore}.jar:lib/mysql-connector-java.jar

 -Dlog4j.configuration=file:log4j.properties

 org.datanucleus.store.schema.SchemaTool -create

 -api JPA -pu MyUnit

DataNucleus SchemaTool (version 4.0.0.m2) : Creation of the schema

DataNucleus SchemaTool : Classpath

>> /home/andy/work/DataNucleus/samples/packofcards/target/classes

>> /home/andy/work/DataNucleus/samples/packofcards/lib/log4j.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/datanucleus-core.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/datanucleus-api-jpa.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/datanucleus-rdbms.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/persistence-api.jar

>> /home/andy/work/DataNucleus/samples/packofcards/lib/mysql-connector-java.jar

DataNucleus SchemaTool : Persistence-Unit="MyUnit"

SchemaTool completed successfully

So as you see, DataNucleus SchemaTool prints out our input, the properties used, and finally
a success message. If an error occurs, then something will be printed to the screen, and more
information will be written to the log.

155.2.4 SchemaTool API

DataNucleus SchemaTool can also be called programmatically from an application. You need to get
hold of the StoreManager and cast it to SchemaAwareStoreManager. The API is shown below.

1 5 5 D a t a s t o r e S c h e m a 983

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.store.schema;

public interface SchemaAwareStoreManager

{

 void createSchema(String schemaName, Properties props);

 void createSchemaForClasses(Set<String> classNames, Properties props);

 void deleteSchema(String schemaName, Properties props);

 void deleteSchemaForClasses(Set<String> classNames, Properties props);

 void validateSchemaForClasses(Set<String> classNames, Properties props);

}

So for example to create the schema for classes mydomain.A and mydomain.B you would do
something like this

EntityManagerFactory emf = Persistence.createEntityManagerFactory("MyUnit");

NucleusContext nucCtx = emf.unwrap(NucleusContext.class);

...

List classNames = new ArrayList();

classNames.add("mydomain.A");

classNames.add("mydomain.B");

try

{

 Properties props = new Properties();

 // Set any properties for schema generation

 ((SchemaAwareStoreManager)nucCtx.getStoreManager()).createSchemaForClasses(classNames, props);

}

catch(Exception e)

{

 ...

}

1 5 6 B e a n V a l i d a t i o n 984

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

156 Bean Validation
...

156.1 JPA : Bean Validation
The Bean Validation API (JSR0303) can be hooked up with JPA so that you have validation of an
objects values prior to persistence, update and deletion. To do this

• Put the javax.validation "validation-api" jar in your CLASSPATH, along with the Bean
Validation implementation jar of your choice

• Set the persistence property javax.persistence.validation.mode to one of auto (default), none, or
callback

• Optionally set the persistence property(s) javax.persistence.validation.group.pre-persist,
javax.persistence.validation.group.pre-update, javax.persistence.validation.group.pre-remove to
fine tune the behaviour (the default is to run validation on pre-persist and pre-update if you don't
specify these).

• Use JPA as you normally would for persisting objects
To give a simple example of what you can do with the Bean Validation API

@Entity

public class Person

{

 @Id

 @NotNull

 private Long id;

 @NotNull

 @Size(min = 3, max = 80)

 private String name;

 ...

}

So we are validating that instances of the Person class will have an "id" that is not null and that the
"name" field is not null and between 3 and 80 characters. If it doesn't validate then at persist/update
an exception will be thrown. You can add bean validation annotations to classes marked as @Entity,
@MappedSuperclass or @Embeddable.

A further use of the Bean Validation annotations @Size(max=...) and @NotNull is that if you specify
these then you have no need to specify the equivalent JPA attributes since they equate to the same
thing.

1 5 7 E n t i t y M a n a g e r F a c t o r y 985

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

157 EntityManagerFactory
...

157.1 JPA : Entity Manager Factory
Any JPA-enabled application will require at least one EntityManagerFactory. Typically applications
create one per datastore being utilised. An EntityManagerFactory provides access to EntityManagers
which allow objects to be persisted, and retrieved. The EntityManagerFactory can be configured to
provide particular behaviour.

Important : an EntityManagerFactory is designed to be thread-safe. An EntityManager is not

157.1.1 Create an EMF in JavaSE

The simplest way of creating an EntityManagerFactory

in a JavaSE environment is as follows

import javax.persistence.EntityManagerFactory;

import javax.persistence.Persistence;

...

EntityManagerFactory emf = Persistence.createEntityManagerFactory("myPU");

So you simply provide the name of the persistence-unit which defines the properties, classes, meta-
data etc to be used. An alternative is to specify the properties to use along with the persistence-unit
name. In that case the passed properties will override any that are specified for the persistence unit
itself.

EntityManagerFactory emf = Persistence.createEntityManagerFactory("myPU", overridingProps);

157.1.2 Create an EMF in JavaEE

If you want an application-managed EMF then you create it by injection like this, providing the
name of the required persistence-unit

@PersistenceUnit(unitName="myPU")

EntityManagerFactory emf;

If you want a container-managed EM then you create it by injection like this, providing the name of
the required persistence-unit

@PersistenceContext(unitName="myPU")

EntityManager em;

http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManagerFactory.html
http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManagerFactory.html

1 5 7 E n t i t y M a n a g e r F a c t o r y 986

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Please refer to the docs for your JavaEE server for more details.

157.2 Persistence Unit

When designing an application you can usually nicely separate your persistable objects into
independent groupings that can be treated separately, perhaps within a different DAO object, if using
DAOs. JPA introduces the idea of a persistence-unit. A persistence-unit provides a convenient way
of specifying a set of metadata files, and classes, and jars that contain all classes to be persisted in a
grouping. The persistence-unit is named, and the name is used for identifying it. Consequently this
name can then be used when defining what classes are to be enhanced, for example.

To define a persistence-unit you first need to add a file persistence.xml to the META-INF/ directory
of your application jar. This file will be used to define your persistence-units. Let's show an example

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd" version="2.1">

 <!-- Online Store -->

 <persistence-unit name="OnlineStore">

 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>

 <class>org.datanucleus.samples.metadata.store.Product</class>

 <class>org.datanucleus.samples.metadata.store.Book</class>

 <class>org.datanucleus.samples.metadata.store.CompactDisc</class>

 <class>org.datanucleus.samples.metadata.store.Customer</class>

 <class>org.datanucleus.samples.metadata.store.Supplier</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="jdbc:h2:datanucleus"/>

 <property name="javax.persistence.jdbc.driver" value="org.h2.Driver"/>

 <property name="javax.persistence.jdbc.user" value="sa"/>

 <property name="javax.persistence.jdbc.password" value=""/>

 </properties>

 </persistence-unit>

 <!-- Accounting -->

 <persistence-unit name="Accounting">

 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>

 <mapping-file>com/datanucleus/samples/metadata/accounts/orm.xml</mapping-file>

 <properties>

 <property name="javax.persistence.jdbc.url" value="jdbc:h2:datanucleus"/>

 <property name="javax.persistence.jdbc.driver" value="org.h2.Driver"/>

 <property name="javax.persistence.jdbc.user" value="sa"/>

 <property name="javax.persistence.jdbc.password" value=""/>

 </properties>

 </persistence-unit>

</persistence>

1 5 7 E n t i t y M a n a g e r F a c t o r y 987

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

In this example we have defined 2 persistence-units. The first has the name "OnlineStore" and
contains 5 classes (annotated). The second has the name "Accounting" and contains a metadata file
called "orm.xml" in a particular package (which will define the classes being part of that unit). This
means that once we have defined this we can reference these persistence-units in our persistence
operations. You can find the XSD for persistence.xml here.

There are several sub-elements of this persistence.xml file

• provider - the JPA persistence provider to be used. The JPA persistence "provider" for
DataNucleus is org.datanucleus.api.jpa.PersistenceProviderImpl

• jta-data-source - JNDI name for JTA connections
• non-jta-data-source - JNDI name for non-JTA connections. Note that if using a JTA datasource

as the primary connection, you ought to provide a non-jta-data-source also since any schema
generation and/or sequence handling will need to use that.

• jar-file - name of a JAR file to scan for annotated classes to include in this persistence-unit.
• mapping-file - name of an XML "mapping" file containing persistence information to be

included in this persistence-unit.
• class - name of an annotated class to include in this persistence-unit
• properties - properties defining the persistence factory to be used. Please refer to Persistence

Properties Guide for details

157.2.1 Specifying the datastore properties

With a persistence-unit you have 2 ways of specifying the datastore to use

• Specify the connection URL/driverName/userName/password and it will internally create
a DataSource for this URL (with optional connection pooling). This is achieved by specifying
javax.persistence.jdbc.url, javax.persistence.jdbc.driver, javax.persistence.jdbc.user, and
javax.persistence.jdbc.password properties

• Specify the JNDI name of the connectionFactory This is achieved by specifying
javax.persistence.jtaDataSource, and javax.persistence.nonJtaDataSource (for secondary
operations) or by specifying the element(s) jta-data-source/ non-jta-data-source

157.2.2 Restricting to specific classes

If you want to just have specific classes in the persistence-unit you can specify them using the class
element, and then add exclude-unlisted-classes, like this

 <persistence-unit name="Store">

 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>

 <class>org.datanucleus.samples.metadata.store.Product</class>

 <class>org.datanucleus.samples.metadata.store.Book</class>

 <class>org.datanucleus.samples.metadata.store.CompactDisc</class>

 <exclude-unlisted-classes/>

 ...

 </persistence-unit>

If you don't include the exclude-unlisted-classes then DataNucleus will search for annotated classes
starting at the root of the persistence-unit (the root directory in the CLASSPATH that contains the
"META-INF/persistence.xml" file).

http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd

1 5 7 E n t i t y M a n a g e r F a c t o r y 988

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

157.2.3 Dynamically generated Persistence-Unit

DataNucleus allows an extension to JPA to dynamically create persistence-units at runtime. Use the
following code sample as a guide. Obviously any classes defined in the persistence-unit need to have
been enhanced.

import org.datanucleus.metadata.PersistenceUnitMetaData;

import org.datanucleus.api.jpa.JPAEntityManagerFactory;

PersistenceUnitMetaData pumd = new PersistenceUnitMetaData("dynamic-unit", "RESOURCE_LOCAL", null);

pumd.addClassName("org.datanucleus.test.A");

pumd.setExcludeUnlistedClasses();

pumd.addProperty("javax.persistence.jdbc.url", "jdbc:h2:mem:nucleus");

pumd.addProperty("javax.persistence.jdbc.driver", "org.h2.Driver");

pumd.addProperty("javax.persistence.jdbc.user", "sa");

pumd.addProperty("javax.persistence.jdbc.password", "");

pumd.addProperty("datanucleus.schema.autoCreateAll", "true");

EntityManagerFactory emf = new JPAEntityManagerFactory(pumd, null);

It should be noted that if you call pumd.toString(); then this returns the text that would have been
found in a persistence.xml file.

157.2.4 Standard JPA Properties

Parameter Values Description

javax.persistence.provider Class name of the provider
to use. DataNucleus
has a provider name of
org.datanucleus.api.jpa.PersistenceProviderImpl
If you only have 1 persistence
provider in the CLASSPATH then
this doesn't need specifying.

javax.persistence.transactionType RESOURCE_LOCAL | JTA Type of transactions to use.
In Java SE the default is
RESOURCE_LOCAL. In Java EE
the default is JTA. Note that if using
a JTA datasource as the primary
connection, you ought to provide
a non-jta-data-source also since
any schema generation and/or
sequence handling will need to use
that.

javax.persistence.jtaDataSource JNDI name of a (transactional)
JTA data source. Note that if using
a JTA datasource as the primary
connection, you ought to provide
a non-jta-data-source also since
any schema generation and/or
sequence handling will need to use
that.

1 5 7 E n t i t y M a n a g e r F a c t o r y 989

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

javax.persistence.nonJtaDataSource JNDI name of a (non-transactional)
data source.

javax.persistence.jdbc.url Alias for
datanucleus.ConnectionURL. Note
that this is (also) used to define
which type of datastore is being
used

javax.persistence.jdbc.driver Alias for
datanucleus.ConnectionDriverName

javax.persistence.jdbc.user Alias for
datanucleus.ConnectionUserName

javax.persistence.jdbc.password Alias for
datanucleus.ConnectionPassword

javax.persistence.query.timeout Alias for
datanucleus.query.timeout

javax.persistence.sharedCache.mode Alias for
datanucleus.cache.level2.mode

javax.persistence.validation.mode Alias for
datanucleus.validation.mode

javax.persistence.validation.group.pre-
persist

Alias for
datanucleus.validation.group.pre-
persist

javax.persistence.validation.group.pre-
update

Alias for
datanucleus.validation.group.pre-
update

javax.persistence.validation.group.pre-
remove

Alias for
datanucleus.validation.group.pre-
remove

javax.persistence.validation.factory Alias for
datanucleus.validation.factory

javax.persistence.schema-
generation.database.action

create | drop | drop-and-create |
none

Alias for
datanucleus.generateSchema.database.mode

javax.persistence.schema-
generation.scripts.action

create | drop | drop-and-create |
none

Alias for
datanucleus.generateSchema.scripts.mode

javax.persistence.schema-
generation.scripts.create-target

{filename} Alias for
datanucleus.generateSchema.scripts.create.target

javax.persistence.schema-
generation.scripts.drop-target

{filename} Alias for
datanucleus.generateSchema.scripts.drop.target

javax.persistence.schema-
generation.create-script-source

{filename} Alias for
datanucleus.generateSchema.scripts.create.source

javax.persistence.schema-
generation.drop-script-source

{filename} Alias for
datanucleus.generateSchema.scripts.drop.source

javax.persistence.sql-load-script-
source

{filename} Alias for
datanucleus.generateSchema.scripts.load.
Note that all versions up to
and including 4.0.0.m2 used
javax.persistence.sql.load-script-
source as the property name

1 5 7 E n t i t y M a n a g e r F a c t o r y 990

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

157.2.5 Extension DataNucleus Properties

DataNucleus provides many properties to extend the control that JPA gives you. These can be used
alongside the above standard JPA properties, but will only work with DataNucleus. Please consult the
Persistence Properties Guide for full details. In addition we have the following properties explicitly
for JPA.

datanucleus.jpa.addClassTransformer

Description When running with JPA in a JavaEE environment if
you wish to have your classes enhanced at runtime
you can enable this by setting this property to true.
The default is to bytecode enhance your classes
before deployment.

Range of Values false | true

datanucleus.jpa.persistenceContextType

Description JPA defines two lifecycle options. JavaEE usage
defaults to "transaction" where objects are detached
when a transaction is committed. JavaSE usage
defaults to "extended" where objects are detached
when the EntityManager is closed. This property
allows control

Range of Values transaction | extended

datanucleus.jpa.txnMarkForRollbackOnException

Description JPA requires that any persistence exception should
mark the current transaction for rollback. This
persistence property allows that inflexible behaviour
to be turned off leaving it to the user to decide when a
transaction is needing to be rolled back.

Range of Values true | false

1 5 8 L 2 C a c h e 991

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

158 L2 Cache
...

158.1 JPA : Caching
Caching is an essential mechanism in providing efficient usage of resources in many systems.
Caching allows objects to be retained and returned rapidly without having to make an extra call to the
datastore. JPA defines caching at 2 levels, with the second level as optional (some JPA providers don't
see the need to provide this out of the box, but DataNucleus does). The 2 levels of caching available
are

• Level 1 Cache - represents the caching of instances within an EntityManager
• Level 2 Cache - represents the caching of instances within an EntityManagerFactory (across

multiple EntityManager's)
You can think of a cache as a Map, with values referred to by keys. In the case of JPA, the key is the
object identity (identity is unique in JPA).

158.1.1 Level 2 Cache

By default the Level 2 Cache is enabled. The user can configure the Level 2 (L2) Cache if they so
wish; by use of the persistence property datanucleus.cache.level2.type. You set this to "type" of
cache required. With the L2 Cache you currently have the following options.

• none - turn OFF Level 2 caching.
• weak - use the internal (weak reference based) L2 cache. Provides support for the JPA2 interface

of being able to put objects into the cache, and evict them when required. This option does not
support distributed caching, solely running within the JVM of the client application. Weak
references are held to non pinned objects.

• soft - use the internal (soft reference based) L2 cache. Provides support for the JPA2 interface
of being able to put objects into the cache, and evict them when required. This option does
not support distributed caching, solely running within the JVM of the client application. Soft
references are held to non pinned objects.

• EHCache - a simple wrapper to EHCache's caching product. Provides basic support for adding
items to the cache and retrieval from the cache. Doesn't support pinning and unpinning.

• EHCacheClassBased - similar to the EHCache option but class-based.
• OSCache - a simple wrapper to OSCache's caching product. Provides basic support for adding

items to the cache and retrieval from the cache. Doesn't support pinning and unpinning.
• SwarmCache - a simple wrapper to SwarmCache's caching product. Provides basic support for

adding items to the cache and retrieval from the cache. Doesn't support pinning and unpinning.
• Oracle Coherence - a simple wrapper to Oracle's Coherence caching product. Provides basic

support for adding items to the cache and retrieval from the cache. Doesn't support pinning
and unpinning. Oracle's caches support distributed caching, so you could, in principle, use
DataNucleus in a distributed environment with this option.

• javax.cache - a simple wrapper to standard javax.cache's caching product. Provides basic
support for adding items to the cache and retrieval from the cache. Doesn't support pinning and
unpinning.

• JCache - a simple wrapper to an old version of javax.cache's caching product. Provides basic
support for adding items to the cache and retrieval from the cache. Doesn't support pinning and
unpinning.

1 5 8 L 2 C a c h e 992

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• spymemcached - a simple wrapper to Spymemcached java client for memcached caching
product. Provides basic support for adding items to the cache and retrieval from the cache.
Doesn't support pinning and unpinning.

• xmemcached - a simple wrapper to Xmemcached java client for memcached caching product.
Provides basic support for adding items to the cache and retrieval from the cache. Doesn't
support pinning and unpinning.

• cacheonix - a simple wrapper to the Cacheonix distributed caching software. Provides basic
support for adding items to the cache and retrieval from the cache. Doesn't support pinning and
unpinning.

The javax.cache cache is available in the datanucleus-core plugin. The EHCache, OSCache,
SwarmCache, Coherence, JCache, Cacheonix, and Memcache caches are available in the
datanucleus-cache plugin.

In addition you can control the mode of operation of the L2 cache. You do this using the persistence
property datanucleus.cache.level2.mode (or javax.persistence.sharedCache.mode. The default
is UNSPECIFIED which means that DataNucleus will cache all objects of entities unless the entity
is explicitly marked as not cacheable. The other options are NONE (don't cache ever), ALL (cache
all entities regardless of annotations), ENABLE_SELECTIVE (cache entities explicitly marked as
cacheable), or DISABLE_SELECTIVE (cache entities unless explicitly marked as not cacheable - i.e
same as our default).

Objects are placed in the L2 cache when you commit() the transaction of a EntityManager. This
means that you only have datastore-persisted objects in that cache. Also, if an object is deleted during
a transaction then at commit it will be removed from the L2 cache if it is present.

The Level 2 cache is a DataNucleus plugin point allowing you to provide your own cache where you
require it. Use the examples of the EHCache, Coherence caches etc as reference.

158.1.2 Controlling the Level 2 Cache

The majority of times when using a JPA-enabled system you will not have to take control over any
aspect of the caching other than specification of whether to use a Level 2 Cache or not. With JPA and
DataNucleus you have the ability to control which objects remain in the cache. This is available via a
method on the EntityManagerFactory.

EntityManagerFactory emf = Persistence.createEntityManagerFactory(persUnitName, props);

Cache cache = emf.getCache();

The Cache interface provides methods to control the retention of objects in the cache. You have 2
types of methods

• contains - check if an object of a type with a particular identity is in the cache
• evict - used to remove objects from the Level 2 Cache

You can also control which classes are put into a Level 2 cache. So with the following JPA2
annotation @Cacheable, no objects of type MyClass will be put in the L2 cache.

1 5 8 L 2 C a c h e 993

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@Cacheable(false)

@Entity

public class MyClass

{

 ...

}

If you want to control which fields of an object are put in the Level 2 cache you can do this using an
extension annotation on the field. This setting is only required for fields that are relationships to other
persistable objects. Like this

public class MyClass

{

 ...

 Collection values;

 @Extension(vendorName="datanucleus", key="cacheable", value="false")

 Collection elements;

}

So in this example we will cache "values" but not "elements". If a field is cacheable then

• If it is a persistable object, the "identity" of the related object will be stored in the Level 2 cache
for this field of this object

• If it is a Collection of persistable elements, the "identity" of the elements will be stored in the
Level 2 cache for this field of this object

• If it is a Map of persistable keys/values, the "identity" of the keys/values will be stored in the
Level 2 cache for this field of this object

When pulling an object in from the Level 2 cache and it has a reference to another object Access
Platform uses the "identity" to find that object in the Level 1 or Level 2 caches to re-relate the objects.

158.1.3 L2 Cache using javax.cache

DataNucleus provides a simple wrapper to javax.cache's caches. To enable this you should set the
persistence properties

datanucleus.cache.level2.type=javax.cache

datanucleus.cache.level2.cacheName={cache name}

datanucleus.cache.level2.timeout={expiration time in millis - optional}

158.1.4 L2 Cache using JCache

DataNucleus provides a simple wrapper to JCache's caches. This is an old version of what will
become javax.cache (separate option). To enable this you should set the persistence properties

http://jcp.org/en/jsr/detail?id=107
http://sourceforge.net/projects/jsr107cache/

1 5 8 L 2 C a c h e 994

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.cache.level2.type=jcache

datanucleus.cache.level2.cacheName={cache name}

datanucleus.cache.level2.timeout={expiration time in millis - optional}

158.1.5 L2 Cache using Oracle Coherence

DataNucleus provides a simple wrapper to Oracle's Coherence caches. This currently takes the
NamedCache interface in Coherence and instantiates a cache of a user provided name. To enabled this
you should set the following persistence properties

datanucleus.cache.level2.type=coherence

datanucleus.cache.level2.cacheName={coherence cache name}

The Coherence cache name is the name that you would normally put into a call to
CacheFactory.getCache(name). You have the benefits of Coherence's distributed/serialized caching.
If you require more control over the Coherence cache whilst using it with DataNucleus, you can just
access the cache directly via

DataStoreCache cache = pmf.getDataStoreCache();

NamedCache tangosolCache = ((TangosolLevel2Cache)cache).getTangosolCache();

158.1.6 L2 Cache using EHCache

DataNucleus provides a simple wrapper to EHCache's caches. To enable this you should set the
persistence properties

datanucleus.cache.level2.type=ehcache

datanucleus.cache.level2.cacheName={cache name}

datanucleus.cache.level2.configurationFile={EHCache configuration file (in classpath)}

The EHCache plugin also provides an alternative L2 Cache that is class-based. To use this you would
need to replace "ehcache" above with "ehcacheclassbased".

158.1.7 L2 Cache using OSCache

DataNucleus provides a simple wrapper to OSCache's caches. To enable this you should set the
persistence properties

datanucleus.cache.level2.type=oscache

datanucleus.cache.level2.cacheName={cache name}

http://www.oracle.com/technology/products/coherence/index.html
http://www.sf.net/projects/ehcache
http://www.opensymphony.com/oscache/

1 5 8 L 2 C a c h e 995

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

158.1.8 L2 Cache using SwarmCache

DataNucleus provides a simple wrapper to SwarmCache's caches. To enable this you should set the
persistence properties

datanucleus.cache.level2.type=swarmcache

datanucleus.cache.level2.cacheName={cache name}

158.1.9 L2 Cache using Spymemcached/Xmemcached

DataNucleus provides a simple wrapper to Spymemcached caches and Xmemcached caches. . To
enable this you should set the persistence properties

datanucleus.cache.level2.type=spymemcached [or "xmemcached"]

datanucleus.cache.level2.cacheName={prefix for keys, to avoid clashes with other memcached objects}

datanucleus.cache.level2.memcached.servers=...

datanucleus.cache.level2.memcached.expireSeconds=...

datanucleus.cache.level2.memcached.servers is a space separated list of memcached hosts/ports,
e.g. host:port host2:port. datanucleus.cache.level2.memcached.expireSeconds if not set or set to 0
then no expire

158.1.10 L2 Cache using Cacheonix

DataNucleus provides a simple wrapper to Cacheonix. To enable this you should set the persistence
properties

datanucleus.cache.level2.type=cacheonix

datanucleus.cache.level2.cacheName={cache name}

Note that you can optionally also specify

datanucleus.cache.level2.timeout={timeout-in-millis (default=60)}

datanucleus.cache.level2.configurationFile={Cacheonix configuration file (in classpath)}

and define a cacheonix-config.xml like

http://swarmcache.sourceforge.net/
http://code.google.com/p/spymemcached/
http://code.google.com/p/xmemcached/
http://www.cacheonix.com/

1 5 8 L 2 C a c h e 996

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0"?>

<cacheonix>

 <local>

 <!-- One cache per class being stored. -->

 <localCache name="mydomain.MyClass">

 <store>

 <lru maxElements="1000" maxBytes="1mb"/>

 <expiration timeToLive="60s"/>

 </store>

 </localCache>

 <!-- Fallback cache for classes indeterminable from their id. -->

 <localCache name="datanucleus">

 <store>

 <lru maxElements="1000" maxBytes="10mb"/>

 <expiration timeToLive="60s"/>

 </store>

 </localCache>

 <localCache name="default" template="true">

 <store>

 <lru maxElements="10" maxBytes="10mb"/>

 <overflowToDisk maxOverflowBytes="1mb"/>

 <expiration timeToLive="1s"/>

 </store>

 </localCache>

 </local>

</cacheonix>

1 5 9 E n t i t y M a n a g e r 997

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

159 Entity Manager
...

159.1 JPA : Entity Manager
As you read in the guide for EntityManagerFactory, to control the persistence of your objects you
will require at least one EntityManagerFactory. Once you have obtained this object you then use this
to obtain an EntityManager. An EntityManager provides access to the operations for persistence of
your objects. This short guide will demonstrate some of the more common operations.

Important : An EntityManagerFactory is designed to be thread-safe. An EntityManager is not

You obtain an EntityManager

from an EntityManagerFactory as follows

EntityManager em = emf.createEntityManager();

In the case of using container-managed JavaEE, you would instead obtain the EntityManager by
injection

@PersistenceContext(unitName="myPU")

EntityManager em;

In general you will be performing all operations on a EntityManager within a transaction, whether
your transactions are controlled by your JavaEE container, by a framework such as Spring, or by
locally defined transactions. In the examples below we will omit the transaction demarcation for
clarity.

159.1.1 Persisting an Object

The main thing that you will want to do with the data layer of a JPA-enabled application is persist
your objects into the datastore. As we mentioned earlier, a EntityManagerFactory represents the
datastore where the objects will be persisted. So you create a normal Java object in your application,
and you then persist this as follows

em.persist(obj);

This will result in the object being persisted into the datastore, though clearly it will not be persistent
until you commit the transaction. The LifecycleState of the object changes from Transient to
PersistentClean (after persist()), to Hollow (at commit).

159.1.2 Persisting multiple Objects in one call

When you want to persist multiple objects with standard JPA you have to call persist multiple times.
Fortunately DataNucleus extends this to take in a Collection or an array of entities, so you can do

em.persist(coll);

As above, the objects are persisted to the datastore. The LifecycleState of the objects change from
Transient to PersistentClean (after persist()), to Hollow (at commit).

http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html
http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html

1 5 9 E n t i t y M a n a g e r 998

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

159.1.3 Finding an object by its identity

Once you have persisted an object, it has an "identity". This is a unique way of identifying it. When
you specify the persistence for the class you specified an id class so you can create the identity from
that. So what ? Well the identity can be used to retrieve the object again at some other part in your
application. So you pass the identity into your application, and the user clicks on some button on a
web page and that button corresponds to a particular object identity. You can then go back to your
data layer and retrieve the object as follows

Object obj = em.find(cls, id);

where cls is the class of the object you want to find, and id is the identity. Note that the first argument
could be a base class and the real object could be an instance of a subclass of that. Note that the
second argument is either the value of the single primary-key field (when it has only one primary key
field), or is the value of the object-id-class (when it has multiple primary key fields).

159.1.4 Deleting an Object

When you need to delete an object that you had previous persisted, deleting it is simple. Firstly you
need to get the object itself, and then delete it as follows

Object obj = em.find(cls, id); // Retrieves the object to delete

em.remove(obj);

159.1.5 Deleting multiple Objects

When you want to delete multiple objects with standard JPA you have to call remove multiple times.
Fortunately DataNucleus extends this to take in a Collection or an array of entities, so you can do

Collection objsToRemove = new HashSet();

objsToRemove.add(obj1);

objsToRemove.add(obj2);

em.remove(objsToRemove);

159.1.6 Modifying a persisted Object

To modify a previously persisted object you take the object and update it in your code. When you are
ready to persist the changes you do the following

Object updatedObj = em.merge(obj)

159.1.7 Modifying multiple persisted Objects

1 5 9 E n t i t y M a n a g e r 999

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

When you want to attach multiple modified objects with standard JPA you have to call merge
multiple times. Fortunately DataNucleus extends this to take in a Collection or an array of entities, so
you can do

Object updatedObj = em.merge(coll)

159.1.8 Refreshing a persisted Object

When you think that the datastore has more up-to-date values than the current values in a retrieved
persisted object you can refresh the values in the object by doing the following

em.refresh(obj)

This will do the following

• Refresh all fields that are to be eagerly fetched from the datastore
• Unload all loaded fields that are to be lazily fetched.

If the object had any changes they will be thrown away by this step, and replaced by the latest
datastore values.

159.1.9 Getting EntityManager for an object

JPA doesn't provide a method for getting the EntityManager of an object as such. Fortunately
DataNucleus provides the following

EntityManager em = NucleusJPAHelper.getEntityManager(obj);

159.1.10 Level 1 Cache

Each EntityManager maintains a cache of the objects that it has encountered (or have been "enlisted")
during its lifetime. This is termed the Level 1 Cache. It is enabled by default and you should only
ever disable it if you really know what you are doing. There are inbuilt types for the Level 1 (L1)
Cache available for selection. DataNucleus supports the following types of L1 Cache :-

• weak - uses a weak reference backing map. If JVM garbage collection clears the reference, then
the object is removed from the cache.

• soft - uses a soft reference backing map. If the map entry value object is not being actively used,
then garbage collection may garbage collect the reference, in which case the object is removed
from the cache.

• strong - uses a normal HashMap backing. With this option all references are strong meaning that
objects stay in the cache until they are explicitly removed by calling remove() on the cache.

You can specify the type of L1 Cache by providing the persistence property
datanucleus.cache.level1.type. You set this to the value of the type required. If you want to remove
all objects from the L1 cache programmatically you should use em.clear() but bear in mind the other
things that this will impact on.

Objects are placed in the L1 Cache (and updated there) during the course of the transaction. This
provides rapid access to the objects in use in the users application and is used to guarantee that there

1 5 9 E n t i t y M a n a g e r 1000

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

is only one object with a particular identity at any one time for that EntityManager. When the EM is
closed the cache is cleared.

The L1 cache is a DataNucleus plugin point allowing you to provide your own cache where you
require it.

1 6 0 M a n a g i n g R e l a t i o n s h i p s 1001

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

160 Managing Relationships
...

160.1 JPA : Managing Relationships
The power of a Java persistence solution like DataNucleus is demonstrated when persisting
relationships between objects. There are many types of relationships.

• 1-1 relationships - this is where you have an object A relates to a second object B. The relation
can be unidirectional where A knows about B, but B doesnt know about A. The relation can be
bidirectional where A knows about B and B knows about A.

• 1-N relationships - this is where you have an object A that has a collection of other objects of
type B. The relation can be unidirectional where A knows about the objects B but the Bs dont
know about A. The relation can be bidirectional where A knows about the objects B and the Bs
know about A

• N-1 relationships - this is where you have an object B1 that relates to an object A, and an object
B2 that relates to A also etc. The relation can be unidirectional where the A doesnt know about
the Bs. The relation can be bidirectional where the A has a collection of the Bs. [i.e a 1-N
relationship but from the point of view of the element]

• M-N relationships - this is where you have objects of type A that have a collection of objects
of type B and the objects of type B also have a collection of objects of type A. The relation is
always bidirectional by definition

• Compound Identity relationships when you have a relation and part of the primary key of the
related object is the other persistent object.

160.1.1 Assigning Relationships

When the relation is unidirectional you simply set the related field to refer to the other object. For
example we have classes A and B and the class A has a field of type B. So we set it like this

A a = new A();

B b = new B();

a.setB(b); // "a" knows about "b"

When the relation is bidirectional you have to set both sides of the relation. For example, we have
classes A and B and the class A has a collection of elements of type B, and B has a field of type A. So
we set it like this

A a = new A();

B b1 = new B();

a.addElement(b1); // "a" knows about "b1"

b1.setA(a); // "b1" knows about "a"

So it is really simple, with only 1 real rule. With a bidirectional relation you must set both sides of
the relation

160.1.2 Persisting Relationships - Reachability

To persist an object with JPA you call the EntityManager method persist (or merge if wanting to
update a detached object). The object passed in will be persisted. By default all related objects will
not be persisted with that object. You can however change this by specifying the cascade PERSIST
(and/or MERGE) property for that field. With this the related object(s) would also be persisted (or

1 6 0 M a n a g i n g R e l a t i o n s h i p s 1002

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

updated with any new values if they are already persistent). This process is called persistence-by-
reachability. For example we have classes A and B and class A has a field of type B and this field
has the cascade property PERSIST set. To persist them we could do

A a = new A();

B b = new B();

a.setB(b);

em.persist(a); // "a" and "b" are provisionally persistent

A further example where you don't have the cascade PERSIST set, but still want to persist both ends
of a relation.

A a = new A();

B b = new B();

a.setB(b);

em.persist(a); // "a" is provisionally persistent

em.persist(b); // "b" is provisionally persistent

160.1.3 Managed Relationships

As we have mentioned above, it is for the user to set both sides of a bidirectional relation. If they
don't and object A knows about B, but B doesnt know about A then what is the persistence solution
to do ? It doesn't know which side of the relation is correct. JPA doesn't define the behaviour for this
situation. DataNucleus has two ways of handling this situation. If you have the persistence property
datanucleus.manageRelationships set to true then it will make sure that the other side of the relation
is set correctly, correcting obvious omissions, and giving exceptions for obvious errors. If you set that
persistence property to false then it will assume that your objects have their bidirectional relationships
consistent and will just persist what it finds.

When performing management of relations there are some checks implemented to spot typical errors in user
operations e.g add an element to a collection and then remove it (why?!). You can disable these checks using
datanucleus.manageRelationshipsChecks, set to false.

1 6 1 O b j e c t L i f e c y c l e 1003

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

161 Object Lifecycle
...

161.1 JPA : Object Lifecycle
During the persistence process an object goes through lifecycle changes. Below we demonstrate the
primary object lifecycle changes for JPA. With JPA these lifecycles are referred to as "persistence
contexts". There are two : transaction (default for JavaEE usage) and extended (default for JavaSE
usage). DataNucleus allows control over which to use by specification of the persistence property
datanucleus.jpa.persistenceContextType

161.1.1 Transaction

A newly created object is transient. You then persist it and it becomes persistent. You then commit
the transaction and it is detached for use elsewhere in the application, in detached state. You then
attach any changes back to persistence and it becomes persistent again. Finally when you delete the
object from persistence and commit that transaction it is in transient state.

161.1.2 Extended

So a newly created object is transient. You then persist it and it becomes persistent. You
then commit the transaction and it remains managed in persistent state. When you close the
EntityManager it becomes detached. Finally when you delete the object from persistence and commit
that transaction it is in transient state.

161.1.3 Detachment

When you detach an object (and its graph) either explicitly (using em.detach()) or implicitly via the
PersistenceContext above, you need to be careful about which fields are detached. If you detach
everything then you can end up with a huge graph that could impact on the performance of your

1 6 1 O b j e c t L i f e c y c l e 1004

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

application. On the other hand you need to ensure that you have all fields that you will be needing
access to whilst detached. Should you access a field that was not detached an IllegalAccessException
is thrown. All fields that are loaded will be detached so make sure you either load all required when
retrieving the object using Entity Graphs or you access fields whilst attached (which will load them).

Important : Please note that some people interpret the JPA spec as implying that an object which has
a primary key field set to a value as being detached. DataNucleus does not take this point of view,
since the only way you can have a detached object is to detach it from persistence (i.e it was once
managed/attached). To reinforce our view of things, what state is an object in which has a primitive
primary key field ? Using the logic above of these other people any object of such a class would be in
detached state (when not managed) since its PK is set. An object that has a PK field set is transient
unless it was detached from persistence. Note that you can merge a transient object by setting the
persistence property datanucleus.allowAttachOfTransient to true.

Note that DataNucleus does not use the "CascadeType.DETACH" flag explicitly, and instead
detaches the fields that are loaded (or marked for eager loading). In addition it allows the user to make
use of the FetchPlan extension for controlling the fine details of what is loaded (and hence detached).

161.1.4 Helper Methods

JPA provides nothing to determine the lifecycle state of an object. Fortunately DataNucleus does
consider this useful, so you can call the following

String state = NucleusJPAHelper.getObjectState(entity);

boolean detached = NucleusJPAHelper.isDetached(entity);

boolean persistent = NucleusJPAHelper.isPersistent(entity);

boolean deleted = NucleusJPAHelper.isDeleted(entity);

boolean transactional = NucleusJPAHelper.isTransactional(entity);

When an object is detached it is often useful to know which fields are loaded/dirty. You can do this
with the following helper methods

Object[] detachedState = NucleusJPAHelper.getDetachedStateForObject(entity);

// detachedState[0] is the identity, detachedState[1] is the version when detached

// detachedState[2] is a BitSet for loaded fields

// detachedState[3] is a BitSet for dirty fields

String[] dirtyFieldNames = NucleusJPAHelper.getDirtyFields(entity, em);

String[] loadedFieldNames = NucleusJPAHelper.getLoadedFields(entity, em);

1 6 2 L i f e c y c l e C a l l b a c k s 1005

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

162 Lifecycle Callbacks
...

162.1 JPA : Lifecycle Callbacks
JPA1 defines a mechanism whereby an Entity can be marked as a listener for lifecycle events.
Alternatively a separate entity listener class can be defined to receive these events. Thereafter when
entities of the particular class go through lifecycle changes events are passed to the provided methods.
Let's look at the two different mechanisms

162.1.1 Entity Callbacks

An Entity itself can have several methods defined to receive events when any instances of that class
pass through lifecycles changes. Let's take an example

@Entity

public class Account

{

 @Id

 Long accountId;

 Integer balance;

 boolean preferred;

 public Integer getBalance() { ... }

 @PrePersist

 protected void validateCreate()

 {

 if (getBalance() < MIN_REQUIRED_BALANCE)

 {

 throw new AccountException("Insufficient balance to open an account");

 }

 }

 @PostLoad

 protected void adjustPreferredStatus()

 {

 preferred = (getBalance() >= AccountManager.getPreferredStatusLevel());

 }

}

So in this example just before any "Account" object is persisted the validateCreate method
will be called. In the same way, just after the fields of any "Account" object are loaded the
adjustPreferredStatus method is called. Very simple.

You can register callbacks for the following lifecycle events

• PrePersist
• PostPersist
• PreRemove
• PostRemove
• PreUpdate

1 6 2 L i f e c y c l e C a l l b a c k s 1006

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• PostUpdate
• PostLoad

The only other rule is that any method marked to be a callback method has to take no arguments as
input, and have void return.

162.1.2 Entity Listener

As an alternative to having the actual callback methods in the Entity class itself you can define
a separate class as an EntityListener. So lets take the example shown before and do it for an
EntityListener.

@Entity

@EntityListeners(org.datanucleus.MyEntityListener.class)

public class Account

{

 @Id

 Long accountId;

 Integer balance;

 boolean preferred;

 public Integer getBalance() { ... }

}

public class MyEntityListener

{

 @PostPersist

 public void newAccountAlert(Account acct)

 {

 ... do something when we get a new Account

 }

}

So we define our "Account" entity as normal but mark it with an EntityListener, and then in the
EntityListener we define the callbacks we require. As before we can define any of the 7 callbacks as
we require. The only difference is that the callback method has to take an argument of type "Object"
that it will be called for, and have void return.

1 6 3 D a t a s t o r e C o n n e c t i o n 1007

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

163 Datastore Connection
...

163.1 JPA : Datastore Connections
DataNucleus utilises datastore connections as follows

• EMF : single connection at any one time for datastore-based value generation. Obtained just for
the operation, then released

• EMF : single connection at any one time for schema-generation. Obtained just for the operation,
then released

• EM : single connection at any one time. When in a transaction the connection is held from
the point of retrieval until the transaction commits or rolls back. The exact point at which the
connection is obtained is defined more fully below. When used for non-transactional operations
the connection is obtained just for the specific operation (unless configured to retain it).

If you have multiple threads using the same EntityManager then you can get "ConnectionInUse"
problems where another operation on another thread comes in and tries to perform something while
that first operation is still in use. This happens because the JPA spec requires an implementation to
use a single datastore connection at any one time. When this situation crops up the user ought to use
multiple EntityManagers.

Another important aspect is use of queries for Optimistic transactions, or for non-transactional
contexts. In these situations it isn't possible to keep the datastore connection open indefinitely and so
when the Query is executed the ResultSet is then read into core making the queried objects available
thereafter.

163.1.1 Transactional Context

For pessimistic/datastore transactions a connection will be obtained from the datastore when the
first persistence operation is initiated. This datastore connection will be held for the duration of the
transaction until such time as either commit() or rollback() are called.

For optimistic transactions the connection is only obtained when flush()/commit() is called. When
flush() is called, or the transaction committed a datastore connection is finally obtained and it is
held open until commit/rollback completes. when a datastore operation is required. The connection
is typically released after performing that operation. So datastore connections, in general, are held
for much smaller periods of time. This is complicated slightly by use of the persistence property
datanucleus.IgnoreCache. When this is set to false, the connection, once obtained, is not released
until the call to commit()/rollback().

Note that for Neo4j/MongoDB a single connection is used for the duration of the EM for all
transactional and nontransactional operations.

163.1.2 Nontransactional Context

When performing non-transactional operations, the default behaviour is to obtain a connection when
needed, and release it after use. With RDBMS you have the option of retaining this connection ready
for the next operation to save the time needed to obtain it; this is enabled by setting the persistence
property datanucleus.connection.nontx.releaseAfterUse to false.

Note that for Neo4j/MongoDB a single connection is used for the duration of the EM for all
transactional and nontransactional operations.

1 6 3 D a t a s t o r e C o n n e c t i o n 1008

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

163.1.3 User Connection

DataNucleus provides a mechanism for users to access the native connection to the datastore, so that
they can perform other operations as necessary. You obtain a connection as follows

// Obtain the connection from the JDO implementation

ExecutionContext ec = em.unwrap(ExecutionContext.class);

NucleusConnection conn = ec.getStoreManager().getNucleusConnection(ec);

try

{

 Object native = conn.getNativeConnection();

 // Cast "native" to the required type for the datastore, see below

 ... use the connection to perform some operations.

}

finally

{

 // Hand the connection back to JPA

 conn.close();

}

For the datastores supported by DataNucleus, the "native" object is of the following types
• RDBMS : java.sql.Connection
• Excel : org.apache.poi.hssf.usermodel.HSSFWorkbook
• OOXML : org.apache.poi.hssf.usermodel.XSSFWorkbook
• ODF : org.odftoolkit.odfdom.doc.OdfDocument
• LDAP : javax.naming.ldap.LdapContext
• MongoDB : com.mongodb.DB
• HBase : NOT SUPPORTED
• JSON : NOT SUPPORTED
• XML : org.w3c.dom.Document
• NeoDatis : org.neodatis.odb.ODB
• GAE Datastore : com.google.appengine.api.datastore.DatastoreService
• Neo4j : org.neo4j.graphdb.GraphDatabaseService
• Cassandra : com.datastax.driver.core.Session

Things to bear in mind with this connection
• You must return the connection back to the EntityManager before performing any

EntityManager operation. You do this by calling conn.close()
• If you don't return the connection and try to perform an EntityManager operation which requires

the connection then an Exception is thrown.

163.2 Connection Pooling

When you create an EntityManagerFactory using the connection URL, driver name and the
username/password to use, this doesn't necessarily pool the connections. For some of the supported
datastores DataNucleus allows you to utilise a connection pool to efficiently manage the connections
to the datastore. We currently provide support for the following

• RDBMS : Apache DBCP we allow use of externally-defined DBCP, but also provide a builtin
DBCP v1.4

1 6 3 D a t a s t o r e C o n n e c t i o n 1009

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• RDBMS : Apache DBCP v2+
• RDBMS : C3P0
• RDBMS : Proxool
• RDBMS : BoneCP
• RDBMS : HikariCP
• RDBMS : Tomcat
• RDBMS : Manually creating a DataSource for a 3rd party software package
• RDBMS : Custom Connection Pooling Plugins for RDBMS using the DataNucleus

ConnectionPoolFactory interface
• RDBMS : Using JNDI, and lookup a connection DataSource.
• LDAP : Using JNDI

You need to specify the persistence property datanucleus.connectionPoolingType to be whichever
of the external pooling libraries you wish to use (or "None" if you explicitly want no pooling).
DataNucleus provides two sets of connections to the datastore - one for transactional usage, and
one for non-transactional usage. If you want to define a different pooling for nontransactional usage
then you can also specify the persistence property datanucleus.connectionPoolingType.nontx to
whichever is required.

163.2.1 RDBMS : JDBC driver properties with connection pool

If using RDBMS and you have a JDBC driver that supports custom properties, you can still use
DataNucleus connection pooling and you need to specify the properties in with your normal
persistence properties, but add the prefix datanucleus.connectionPool.driver. to the property name
that the driver requires. For example if an Oracle JDBC driver accepts defaultRowPrefetch then you
would specify something like

datanucleus.connectionPool.driver.defaultRowPrefetch=50

and it will pass in defaultRowPrefetch as "50" into the driver used by the connection pool.

163.2.2 RDBMS : Apache DBCP

DataNucleus allows you to utilise a connection pool using Apache DBCP to efficiently manage the
connections to the datastore. DBCP is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType. To utilise
DBCP-based connection pooling we do this

// Specify our persistence properties used for creating our EMF

Properties props = new Properties();

properties.setProperty("javax.persistence.jdbc.driver","com.mysql.jdbc.Driver");

properties.setProperty("javax.persistence.jdbc.url","jdbc:mysql://localhost/myDB");

properties.setProperty("javax.persistence.jdbc.user","login");

properties.setProperty("javax.persistence.jdbc.password","password");

properties.setProperty("datanucleus.connectionPoolingType", "DBCP");

So the EMF will use connection pooling using DBCP. To do this you will need commons-dbcp,
commons-pool and commons-collections JARs to be in the CLASSPATH.

http://jakarta.apache.org/commons/dbcp/

1 6 3 D a t a s t o r e C o n n e c t i o n 1010

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

You can also specify persistence properties to control the actual pooling. The currently supported
properties for DBCP are shown below

Pooling of Connections

datanucleus.connectionPool.maxIdle=10

datanucleus.connectionPool.minIdle=3

datanucleus.connectionPool.maxActive=5

datanucleus.connectionPool.maxWait=60

Pooling of PreparedStatements

datanucleus.connectionPool.maxStatements=0

datanucleus.connectionPool.testSQL=SELECT 1

datanucleus.connectionPool.timeBetweenEvictionRunsMillis=2400000

datanucleus.connectionPool.minEvictableIdleTimeMillis=18000000

163.2.3 RDBMS : Apache DBCP v2+

DataNucleus allows you to utilise a connection pool using Apache DBCP version 2 to efficiently
manage the connections to the datastore. DBCP is a third-party library providing connection pooling.
This is accessed by specifying the persistence property datanucleus.connectionPoolingType. To
utilise DBCP-based connection pooling we do this

// Specify our persistence properties used for creating our EMF

Properties props = new Properties();

properties.setProperty("javax.persistence.jdbc.driver","com.mysql.jdbc.Driver");

properties.setProperty("javax.persistence.jdbc.url","jdbc:mysql://localhost/myDB");

properties.setProperty("javax.persistence.jdbc.user","login");

properties.setProperty("javax.persistence.jdbc.password","password");

properties.setProperty("datanucleus.connectionPoolingType", "dbcp2");

So the EMF will use connection pooling using DBCP version 2. To do this you will need commons-
dbcp2, commons-pool2 JARs to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for DBCP2 are shown below

Pooling of Connections

datanucleus.connectionPool.maxIdle=10

datanucleus.connectionPool.minIdle=3

datanucleus.connectionPool.maxActive=5

datanucleus.connectionPool.maxWait=60

datanucleus.connectionPool.testSQL=SELECT 1

datanucleus.connectionPool.timeBetweenEvictionRunsMillis=2400000

http://jakarta.apache.org/commons/dbcp/

1 6 3 D a t a s t o r e C o n n e c t i o n 1011

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

163.2.4 RDBMS : C3P0

DataNucleus allows you to utilise a connection pool using C3P0 to efficiently manage the connections
to the datastore. C3P0 is a third-party library providing connection pooling. This is accessed by
specifying the persistence property datanucleus.connectionPoolingType. To utilise C3P0-based
connection pooling we do this

// Specify our persistence properties used for creating our EMF

Properties props = new Properties();

properties.setProperty("javax.persistence.jdbc.driver","com.mysql.jdbc.Driver");

properties.setProperty("javax.persistence.jdbc.url","jdbc:mysql://localhost/myDB");

properties.setProperty("javax.persistence.jdbc.user","login");

properties.setProperty("javax.persistence.jdbc.password","password");

properties.setProperty("datanucleus.connectionPoolingType", "C3P0");

So the EMF will use connection pooling using C3P0. To do this you will need the C3P0 JAR to be in
the CLASSPATH. If you want to configure C3P0 further you can include a "c3p0.properties" in your
CLASSPATH - see the C3P0 documentation for details.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for C3P0 are shown below

Pooling of Connections

datanucleus.connectionPool.maxPoolSize=5

datanucleus.connectionPool.minPoolSize=3

datanucleus.connectionPool.initialPoolSize=3

Pooling of PreparedStatements

datanucleus.connectionPool.maxStatements=20

163.2.5 RDBMS : Proxool

DataNucleus allows you to utilise a connection pool using Proxool to efficiently manage the
connections to the datastore. Proxool is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType. To utilise
Proxool-based connection pooling we do this

// Specify our persistence properties used for creating our EMF

Properties props = new Properties();

properties.setProperty("javax.persistence.jdbc.driver","com.mysql.jdbc.Driver");

properties.setProperty("javax.persistence.jdbc.url","jdbc:mysql://localhost/myDB");

properties.setProperty("javax.persistence.jdbc.user","login");

properties.setProperty("javax.persistence.jdbc.password","password");

properties.setProperty("datanucleus.connectionPoolingType", "Proxool");

So the EMF will use connection pooling using Proxool. To do this you will need the proxool and
commons-logging JARs to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for Proxool are shown below

http://www.sf.net/projects/c3p0
http://proxool.sourceforge.net/

1 6 3 D a t a s t o r e C o n n e c t i o n 1012

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

datanucleus.connectionPool.maxConnections=10

datanucleus.connectionPool.testSQL=SELECT 1

163.2.6 RDBMS : BoneCP

DataNucleus allows you to utilise a connection pool using BoneCP to efficiently manage the
connections to the datastore. BoneCP is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType. To utilise
BoneCP-based connection pooling we do this

// Specify our persistence properties used for creating our EMF

Properties props = new Properties();

properties.setProperty("javax.persistence.jdbc.driver","com.mysql.jdbc.Driver");

properties.setProperty("javax.persistence.jdbc.url","jdbc:mysql://localhost/myDB");

properties.setProperty("javax.persistence.jdbc.user","login");

properties.setProperty("javax.persistence.jdbc.password","password");

properties.setProperty("datanucleus.connectionPoolingType", "BoneCP");

So the EMF will use connection pooling using BoneCP. To do this you will need the BoneCP JAR
(and SLF4J, google-collections) to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for BoneCP are shown below

Pooling of Connections

datanucleus.connectionPool.maxPoolSize=5

datanucleus.connectionPool.minPoolSize=3

Pooling of PreparedStatements

datanucleus.connectionPool.maxStatements=20

163.2.7 RDBMS : HikariCP

DataNucleus allows you to utilise a connection pool using HikariCP to efficiently manage the
connections to the datastore. HikariCP is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType. To utilise this
connection pooling we do this

// Specify our persistence properties used for creating our PMF

Properties props = new Properties();

properties.setProperty("datanucleus.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("datanucleus.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("datanucleus.ConnectionUserName","login");

properties.setProperty("datanucleus.ConnectionPassword","password");

properties.setProperty("datanucleus.connectionPoolingType", "HikariCP");

http://www.jolbox.com
https://github.com/brettwooldridge/HikariCP

1 6 3 D a t a s t o r e C o n n e c t i o n 1013

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So the EMF will use connection pooling using HikariCP. To do this you will need the HikariCP JAR
(and SLF4J, javassist as required) to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for HikariCP are shown below

Pooling of Connections

datanucleus.connectionPool.maxPoolSize=5

datanucleus.connectionPool.maxIdle=5

datanucleus.connectionPool.leakThreshold=1

datanucleus.connectionPool.maxLifetime=240

163.2.8 RDBMS : Tomcat

DataNucleus allows you to utilise a connection pool using Tomcat JDBC Pool to efficiently
manage the connections to the datastore. This is accessed by specifying the persistence property
datanucleus.connectionPoolingType. To utilise Tomcat-based connection pooling we do this

// Specify our persistence properties used for creating our EMF

Properties props = new Properties();

properties.setProperty("javax.persistence.jdbc.driver","com.mysql.jdbc.Driver");

properties.setProperty("javax.persistence.jdbc.url","jdbc:mysql://localhost/myDB");

properties.setProperty("javax.persistence.jdbc.user","login");

properties.setProperty("javax.persistence.jdbc.password","password");

properties.setProperty("datanucleus.connectionPoolingType", "tomcat");

So the EMF will use a DataSource with connection pooling using Tomcat. To do this you will need
the tomcat-jdbc JAR to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling, like with the other pools.

163.2.9 RDBMS : Manually create a DataSource ConnectionFactory

We could have used the built-in DBCP support which internally creates a DataSource
ConnectionFactory, alternatively the support for external DBCP, C3P0, Proxool, BoneCP etc,
however we can also do this manually if we so wish. Let's demonstrate how to do this with one of the
most used pools Apache Commons DBCP

With DBCP you need to generate a javax.sql.DataSource, which you will then pass to DataNucleus.
You do this as follows

http://commons.apache.org/dbcp

1 6 3 D a t a s t o r e C o n n e c t i o n 1014

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

// Load the JDBC driver

Class.forName(dbDriver);

// Create the actual pool of connections

ObjectPool connectionPool = new GenericObjectPool(null);

// Create the factory to be used by the pool to create the connections

ConnectionFactory connectionFactory = new DriverManagerConnectionFactory(dbURL, dbUser, dbPassword);

// Create a factory for caching the PreparedStatements

KeyedObjectPoolFactory kpf = new StackKeyedObjectPoolFactory(null, 20);

// Wrap the connections with pooled variants

PoolableConnectionFactory pcf =

 new PoolableConnectionFactory(connectionFactory, connectionPool, kpf, null, false, true);

// Create the datasource

DataSource ds = new PoolingDataSource(connectionPool);

// Create our EMF

Map properties = new HashMap();

properties.put("datanucleus.ConnectionFactory", ds);

EntityManagerFactory emf = Persistence.createEntityManagerFactory("myPersistenceUnit", properties);

Note that we haven't passed the dbUser and dbPassword to the EMF since we no longer need to
specify them - they are defined for the pool so we let it do the work. As you also see, we set the data
source for the EMF. Thereafter we can sit back and enjoy the performance benefits. Please refer to the
documentation for DBCP for details of its configurability (you will need commons-dbcp, commons-
pool, and commons-collections in your CLASSPATH to use this above example).

163.2.10 RDBMS : Lookup a DataSource using JNDI

DataNucleus allows you to use connection pools (java.sql.DataSource) bound to
a javax.naming.InitialContext with a JNDI name. You first need to create the
DataSource in the container (application server/web server), and secondly you define the
javax.persistence.jtaDataSource property with the DataSource JNDI name. Please read more about
this in RDBMS DataSources.

163.2.11 LDAP : JNDI

If using an LDAP datastore you can use the following persistence properties to enable connection
pooling

datanucleus.connectionPoolingType=JNDI

Once you have turned connection pooling on if you want more control over the pooling you can also
set the following persistence properties

• datanucleus.connectionPool.maxPoolSize : max size of pool
• datanucleus.connectionPool.initialPoolSize : initial size of pool

1 6 3 D a t a s t o r e C o n n e c t i o n 1015

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

163.3 RDBMS : Data Sources

DataNucleus allows use of a data source that represents the datastore in use. This is often just a URL
defining the location of the datastore, but there are in fact several ways of specifying this data source
depending on the environment in which you are running.

• Nonmanaged Context - Java Client
• Managed Context - Servlet
• Managed Context - JavaEE

163.3.1 Java Client Environment : Non-managed Context

DataNucleus permits you to take advantage of using database connection pooling that is available
on an application server. The application server could be a full JEE server (e.g WebLogic) or could
equally be a servlet engine (e.g Tomcat, Jetty). Here we are in a non-managed context, and we use the
following properties when creating our EntityManagerFactory, and refer to the JNDI data source of
the server.

If the data source is avaiable in WebLogic, the simplest way of using a data source outside the
application server is as follows.

Hashtable ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory");

ht.put(Context.PROVIDER_URL,"t3://localhost:7001");

Context ctx = new InitialContext(ht);

DataSource ds = (DataSource) ctx.lookup("jdbc/datanucleus");

Map properties = new HashMap();

properties.setProperty("datanucleus.ConnectionFactory",ds);

EntityManagerFactory emf = ...

If the data source is avaiable in Websphere, the simplest way of using a data source outside the
application server is as follows.

Hashtable ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,"com.ibm.websphere.naming.WsnInitialContextFactory");

ht.put(Context.PROVIDER_URL,"iiop://server:orb port");

Context ctx = new InitialContext(ht);

DataSource ds = (DataSource) ctx.lookup("jdbc/datanucleus");

Map properties = new HashMap();

properties.setProperty("datanucleus.ConnectionFactory",ds);

EntityManagerFactory emf = ...

1 6 3 D a t a s t o r e C o n n e c t i o n 1016

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

163.3.2 Servlet Environment : Managed Context

As an example of setting up such a JNDI data source for Tomcat 5.0, here we would add the
following file to $TOMCAT/conf/Catalina/localhost/ as "datanucleus.xml"

<?xml version='1.0' encoding='utf-8'?>

<Context docBase="/home/datanucleus/" path="/datanucleus">

 <Resource name="jdbc/datanucleus" type="javax.sql.DataSource"/>

 <ResourceParams name="jdbc/datanucleus">

 <parameter>

 <name>maxWait</name>

 <value>5000</value>

 </parameter>

 <parameter>

 <name>maxActive</name>

 <value>20</value>

 </parameter>

 <parameter>

 <name>maxIdle</name>

 <value>2</value>

 </parameter>

 <parameter>

 <name>url</name>

 <value>jdbc:mysql://127.0.0.1:3306/datanucleus?autoReconnect=true</value>

 </parameter>

 <parameter>

 <name>driverClassName</name>

 <value>com.mysql.jdbc.Driver</value>

 </parameter>

 <parameter>

 <name>username</name>

 <value>mysql</value>

 </parameter>

 <parameter>

 <name>password</name>

 <value></value>

 </parameter>

 </ResourceParams>

</Context>

With this Tomcat JNDI data source we would then specify the data source (name) as java:comp/env/
jdbc/datanucleus.

Properties properties = new Properties();

properties.setProperty("javax.persistence.jtaDataSource","java:comp/env/jdbc/datanucleus");

EntityManagerFactory emf = ...

1 6 3 D a t a s t o r e C o n n e c t i o n 1017

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

163.3.3 JEE Environment : Managed Context

As in the above example, we can also run in a managed context, in a JEE/Servlet environment, and
here we would make a minor change to the specification of the JNDI data source depending on the
application server or the scope of the jndi: global or component.

Using JNDI deployed in global environment:

Properties properties = new Properties();

properties.setProperty("javax.persistence.jtaDataSource","jdbc/datanucleus");

EntityManagerFactory emf = ...

Using JNDI deployed in component environment:

Properties properties = new Properties();

properties.setProperty("javax.persistence.jtaDataSource","java:comp/env/jdbc/datanucleus");

EntityManagerFactory emf = ...

1 6 4 T r a n s a c t i o n s 1018

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

164 Transactions
...

164.1 JPA : Transactions
A Transaction forms a unit of work. The Transaction manages what happens within that unit of work,
and when an error occurs the Transaction can roll back any changes performed. Transactions can be
managed by the users application, or can be managed by a framework (such as Spring), or can be
managed by a JEE container. These are described below.

• Local transactions : managed using the JPA Transaction API
• JTA transactions : managed using the JTA UserTransaction API
• Container-managed transactions : managed by a JEE environment
• Spring-managed transactions : managed by SpringFramework
• No transactions : "auto-commit" mode
• Flushing a Transaction
• Controlling transaction isolation level
• Read-Only transactions

164.1.1 Locally-Managed Transactions

If using DataNucleus JPA in a J2SE environment the normal type of transaction is
RESOURCE_LOCAL. With this type of transaction the user manages the transactions themselves,
starting, committing or rolling back the transaction. With these transactions with JPA

you would do something like

EntityManager em = emf.createEntityManager();

EntityTransaction tx = em.getTransaction();

try

{

 tx.begin();

 {users code to persist objects}

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

}

em.close();

In this case you will have defined your persistence-unit to be like this

http://docs.oracle.com/javaee/7/api/javax/persistence/EntityTransaction.html
http://docs.oracle.com/javaee/7/api/javax/persistence/EntityTransaction.html

1 6 4 T r a n s a c t i o n s 1019

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<persistence-unit name="MyUnit" transaction-type="RESOURCE_LOCAL">

 <properties>

 <property key="javax.persistence.jdbc.url" value="jdbc:mysql:..."/>

 ...

 </properties>

 ...

</persistence-unit>

or

<persistence-unit name="MyUnit" transaction-type="RESOURCE_LOCAL">

 <non-jta-data-source>java:comp/env/myDS</properties>

 ...

</persistence-unit>

The basic idea with Locally-Managed transactions is that you are managing the transaction start and
end.

164.1.2 JTA Transactions

The other type of transaction with JPA is using JTA. With this type, where you have a JTA
data source from which you have a UserTransaction. This UserTransaction can have resources
"joined" to it. In the case of JPA, you have two scenarios. The first scenario is where you have the
UserTransaction created before you create your EntityManager. The create of the EntityManager will
automatically join it to the current UserTransaction, like this

UserTransaction ut = (UserTransaction)new InitialContext().lookup("java:comp/UserTransaction");

ut.setTransactionTimeout(300);

EntityManager em = emf.createEntityManager();

try

{

 ut.begin();

 .. perform persistence/query operations

 ut.commit();

}

finally

{

 em.close();

}

so we control the transaction using the UserTransaction. The second scenario is where the
UserTransaction is started after you have the EntityManager. In this case we need to join our
EntityManager to the newly created UserTransaction, like this

1 6 4 T r a n s a c t i o n s 1020

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

EntityManager em = emf.createEntityManager();

try

{

 .. perform persistence, query operations

 UserTransaction ut = (UserTransaction)new InitialContext().lookup("java:comp/UserTransaction");

 ut.setTransactionTimeout(300);

 ut.begin();

 // Join the EntityManager operations to this UserTransaction

 em.joinTransaction();

 // Commit the persistence/query operations performed above

 ut.commit();

}

finally

{

 em.close();

}

In the JTA case you will have defined your persistence-unit to be like this

<persistence-unit name="MyUnit" transaction-type="JTA">

 <jta-data-source>java:comp/env/myDS</properties>

 ...

</persistence-unit>

164.1.3 Container-Managed Transactions

When using a JEE container you are giving over control of the transactions to the container. Here
you have Container-Managed Transactions. In terms of your code, you would do like the above
examples except that you would OMIT the tx.begin(), tx.commit(), tx.rollback() since the JEE
container will be doing this for you.

164.1.4 Spring-Managed Transactions

When you use a framework like Spring you would not need to specify the tx.begin(), tx.commit(),
tx.rollback() since that would be done for you.

164.1.5 No Transactions

DataNucleus allows the ability to operate without transactions. With JPA this is enabled by default
(see the 2 properties datanucleus.NontransactionalRead, datanucleus.NontransactionalWrite
set to true). This means that you can read objects and make updates outside of transactions. This is
effectively an "auto-commit" mode.

http://www.springframework.org

1 6 4 T r a n s a c t i o n s 1021

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

EntityManager em = emf.createEntityManager();

{users code to persist objects}

em.close();

When using non-transactional operations, you need to pay attention to the persistence property
datanucleus.nontx.atomic. If this is true then any persist/delete/update will be committed to the
datastore immediately. If this is false then any persist/delete/update will be queued up until the next
transaction (or em.close()) and committed with that.

164.1.6 Flushing

During a transaction, depending on the configuration, operations don't necessarily go to the datastore
immediately, often waiting until commit. In some situations you need persists/updates/deletes to be in
the datastore so that subsequent operations can be performed that rely on those being handled first. In
this case you can flush all outstanding changes to the datastore using

em.flush();

A convenient vendor extension is to find which objects are waiting to be flushed at any time, like this

List<ObjectProvider> objs =

 ((JPAEntityManager)pm).getExecutionContext().getObjectsToBeFlushed();

164.1.7 Transaction Isolation

DataNucleus also allows specification of the transaction isolation level. This is specified via the
EntityManagerFactory property datanucleus.transactionIsolation. It accepts the standard JDBC
values of

• read-uncommitted (1) : dirty reads, non-repeatable reads and phantom reads can occur
• read-committed (2) : dirty reads are prevented; non-repeatable reads and phantom reads can

occur
• repeatable-read (4) : dirty reads and non-repeatable reads are prevented; phantom reads can

occur
• serializable (8) : dirty reads, non-repeatable reads and phantom reads are prevented

The default is read-committed. If the datastore doesn't support a particular isolation level then it
will silently be changed to one that is supported. As an alternative you can also specify it on a per-
transaction basis as follows (using the values in parentheses above).

1 6 4 T r a n s a c t i o n s 1022

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

org.datanucleus.api.jpa.JPAEntityTransaction tx =

 (org.datanucleus.api.jpa.JPAEntityTransaction)pm.currentTransaction();

tx.setOption("transaction.isolation", 2);

164.1.8 Read-Only Transactions

Obviously transactions are intended for committing changes. If you come across a situation where you
don't want to commit anything under any circumstances you can mark the transaction as "read-only"
by calling

EntityManager em = emf.createEntityManager();

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 tx.setRollbackOnly();

 {users code to persist objects}

 tx.rollback();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

}

em.close();

Any call to commit on the transaction will throw an exception forcing the user to roll it back.

164.2 JPA : Transaction Locking
A Transaction forms a unit of work. The Transaction manages what happens within that unit of
work, and when an error occurs the Transaction can roll back any changes performed. There are the
following locking types for a transaction.

• Transactions can lock all records in a datastore and keep them locked until they are ready to
commit their changes. These are known as Pessimistic (or datastore) Locking.

• Transactions can simply assume that things in the datastore will not change until they are ready
to commit, not lock any records and then just before committing make a check for changes. This
is known as Optimistic Locking.

164.2.1 Pessimistic (Datastore) Locking

1 6 4 T r a n s a c t i o n s 1023

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Pessimistic locking isn't directly supported in JPA but are provided as a vendor extension. It is
suitable for short lived operations where no user interaction is taking place and so it is possible to
block access to datastore entities for the duration of the transaction. You would select pessimistic
locking by adding the persistence property datanucleus.Optimistic as false.

By default DataNucleus does not currently lock the objects fetched in pessimistic locking, but
you can configure this behaviour for RDBMS datastores by setting the persistence property
datanucleus.rdbms.useUpdateLock to true. This will result in all "SELECT ... FROM ..." statements
being changed to be "SELECT ... FROM ... FOR UPDATE". This will be applied only where the
underlying RDBMS supports the "FOR UPDATE" syntax.

With pessimistic locking DataNucleus will grab a datastore connection at the first operation, and
maintain it for the duration of the transaction. A single connection is used for the transaction (with the
exception of any Identity Generation operations which need datastore access, so these can use their
own connection).

In terms of the process of pessimistic (datastore) locking, we demonstrate this below.

Operation DataNucleus process Datastore process

Start transaction

Persist object Prepare object (1) for persistence Open connection.
Insert the object (1) into the
datastore

Update object Prepare object (2) for update Update the object (2) into the
datastore

Persist object Prepare object (3) for persistence Insert the object (3) into the
datastore

Update object Prepare object (4) for update Update the object (4) into the
datastore

Flush No outstanding changes so do
nothing

Perform query Generate query in datastore
language

Query the datastore and return
selected objects

Persist object Prepare object (5) for persistence Insert the object (5) into the
datastore

Update object Prepare object (6) for update Update the object (6) into the
datastore

Commit transaction Commit connection

So here whenever an operation is performed, DataNucleus pushes it straight to the datastore.
Consequently any queries will always reflect the current state of all objects in use. However this mode
of operation has no version checking of objects and so if they were updated by external processes in
the meantime then they will overwrite those changes.

It should be noted that DataNucleus provides two persistence properties that allow an amount of
control over when flushing happens with pessimistic locking

• datanucleus.flush.mode when set to MANUAL will try to delay all datastore operations until
commit/flush.

• datanucleus.datastoreTransactionFlushLimit represents the number of dirty objects before a
flush is performed. This defaults to 1.

1 6 4 T r a n s a c t i o n s 1024

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

164.2.2 Optimistic Locking

Optimistic locking is the only official option in JPA. It is suitable for longer lived operations maybe
where user interaction is taking place and where it would be undesirable to block access to datastore
entities for the duration of the transaction. The assumption is that data altered in this transaction will
not be updated by other transactions during the duration of this transaction, so the changes are not
propagated to the datastore until commit()/flush(). The data is checked just before commit to ensure
the integrity in this respect. The most convenient way of checking data for updates is to maintain a
column on each table that handles optimistic locking data. The user will decide this when generating
their MetaData.

Rather than placing version/timestamp columns on all user datastore tables, JPA allows the user
to notate particular classes as requiring optimistic treatment. This is performed by specifying in
MetaData or annotations the details of the field/column to use for storing the version - see versioning
for JPA. With JPA1 you must have a field in your class ready to store the version.

In JPA1 you can read the version by inspecting the field marked as storing the version value.

In terms of the process of optimistic locking, we demonstrate this below.

Operation DataNucleus process Datastore process

Start transaction

Persist object Prepare object (1) for persistence

Update object Prepare object (2) for update

Persist object Prepare object (3) for persistence

Update object Prepare object (4) for update

Flush Flush all outstanding changes to
the datastore

Open connection.
Version check of object (1)
Insert the object (1) in the
datastore.
Version check of object (2)
Update the object (2) in the
datastore.
Version check of object (3)
Insert the object (3) in the
datastore.
Version check of object (4)
Update the object (4) in the
datastore.

Perform query Generate query in datastore
language

Query the datastore and return
selected objects

Persist object Prepare object (5) for persistence

Update object Prepare object (6) for update

Commit transaction Flush all outstanding changes to
the datastore

Version check of object (5)
Insert the object (5) in the datastore
Version check of object (6)
Update the object (6) in the
datastore.
Commit connection.

Here no changes make it to the datastore until the user either commits the transaction, or they invoke
flush(). The impact of this is that when performing a query, by default, the results may not contain
the modified objects unless they are flushed to the datastore before invoking the query. Depending

1 6 4 T r a n s a c t i o n s 1025

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

on whether you need the modified objects to be reflected in the results of the query governs what you
do about that. If you invoke flush() just before running the query the query results will include the
changes. The obvious benefit of optimistic locking is that all changes are made in a block and version
checking of objects is performed before application of changes, hence this mode copes better with
external processes updating the objects.

Please note that for some datastores (e.g RDBMS) the version check followed by update/delete is
performed in a single statement.

See also :-

• JPA MetaData reference for <version> element
• JPA Annotations reference for @Version

1 6 5 E n t i t y G r a p h s 1026

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

165 Entity Graphs
...

165.1 JPA : Entity Graphs
When an object is retrieved from the datastore by JPA typically not all fields are retrieved
immediately. This is because for efficiency purposes only particular field types are retrieved in the
initial access of the object, and then any other objects are retrieved when accessed (lazy loading).
The group of fields that are loaded is called an entity graph. There are 3 types of "entity graphs" to
consider

• "Default Entity Graph" : implicitly defined in all JPA specs, specifying the fetch setting for each
field/property (LAZY/EAGER).

• Named Entity Graphs : a new feature in JPA 2.1 allowing the user to define Named Entity
Graphs in metadata, via annotations or XML

• Unnamed Entity Graphs : a new feature in JPA 2.1 allowing the user to define Entity Graphs via
the JPA API at runtime

165.1.1 Default Entity Graph

JPA provides an initial entity graph, comprising the fields that will be retrieved when an object is
retrieved if the user does nothing to define the required behaviour. You define this "default" by setting
the fetch attribute in metadata for each field/property.

165.1.2 Named Entity Graphs

You can predefine Named Entity Graphs in metadata which can then be used at runtime when
retrieving objects from the datastore (via find/query). For example, if we have the following class

class MyClass

{

 String name;

 HashSet coll;

 MyOtherClass other;

}

and we want to have the option of the other field loaded whenever we load objects of this class, we
define our annotations as

@Entity

@NamedEntityGraph(name="includeOther", attributeNodes={@NamedAttributeNode("other")})

public class MyClass

{

 ...

}

So we have defined an EntityGraph called "includeOther" that just includes the field with name other.
We can retrieve this and then use it in our persistence code, as follows

1 6 5 E n t i t y G r a p h s 1027

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

EntityGraph includeOtherGraph = em.getEntityGraph("includeOther");

Properties props = new Properties();

props.put("javax.persistence.loadgraph", includeOtherGraph);

MyClass myObj = em.find(MyClass.class, id, props);

Here we have made use of the EntityManager.find method and provided the property
javax.persistence.loadgraph to be our EntityGraph. This means that it will fetch all fields in the
default EntityGraph, plus all fields in the includeOther EntityGraph. If we had provided the property
javax.persistence.fetchgraph set to our EntityGraph it would have fetched just the fields defined in
that EntityGraph.

Note that you can also make use of EntityGraphs when using the JPA Query API, specifying the same
properties above but as query hints.

165.1.3 Unnamed Entity Graphs

You can define Entity Graphs at runtime, programmatically. For example, if we have the following
class

class MyClass

{

 String name;

 HashSet coll;

 MyOtherClass other;

}

and we want to have the option of the other field loaded whenever we load objects of this class, we do
the following

EntityGraph includeOtherGraph = em.createEntityGraph(MyClass.class);

includeOtherGraph.addAttributeNodes("other");

So we have defined an EntityGraph that just includes the field with name other. We can then use this
at runtime in our persistence code, as follows

Properties props = new Properties();

props.put("javax.persistence.loadgraph", includeOtherGraph);

MyClass myObj = em.find(MyClass.class, id, props);

Here we have made use of the EntityManager.find method and provided the property
javax.persistence.loadgraph to be our EntityGraph. This means that it will fetch all fields in
the default EntityGraph, plus all fields in this EntityGraph. If we had provided the property
javax.persistence.fetchgraph set to our EntityGraph it would have fetched just the fields defined in
that EntityGraph.

Note that you can also make use of EntityGraphs when using the JPA Query API, specifying the same
properties above but as query hints.

1 6 6 Q u e r y A P I 1028

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

166 Query API
...

166.1 JPA : Query API
Once you have persisted objects you need to query them. For example if you have a web application
representing an online store, the user asks to see all products of a particular type, ordered by the price.
This requires you to query the datastore for these products. JPA specifies support for a pseudo-OO
query language (JPQL), "native" query language for the datastore (for RDBMS this is SQL, for
Cassandra it is CQL), and (RDBMS) Stored Procedures (JPA2.1+).

Which query language is used is down to the developer. The data-tier of an application could be
written by a primarily Java developer, who would typically think in an object-oriented way and so
would likely prefer JPQL. On the other hand the data-tier could be written by a datastore developer
who is more familiar with SQL concepts and so could easily make more use of SQL. This is the
power of an implementation like DataNucleus in that it provides the flexibility for different people to
develop the data-tier utilising their own skills to the full without having to learn totally new concepts.

There are 2 categories of queries with JPA :-

• Programmatic Query where the query is defined using the JPA Query API.
• Named Query where the query is defined in MetaData and referred to by its name at runtime(for

JPQL, Native Query and Stored Procedures).
Let's now try to understand the Query API in JPA

, We firstly need to look at a typical Query. We'll take 2 examples

166.1.1 JPQL Query

Let's create a JPQL query to highlight its usage

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY p.param1 ascending");

q.setParameter("threshold", my_threshold);

List results = q.getResultList();

In this Query, we implicitly select JPQL by using the method EntityManager.createQuery(), and
the query is specified to return all objects of type Product (or subclasses) which have the field
param2 less than some threshold value ordering the results by the value of field param1. We've
specified the query like this because we want to pass the threshold value in as a parameter (so maybe
running it once with one value, and once with a different value). We then set the parameter value of
our threshold parameter. The Query is then executed to return a List of results. The example is to
highlight the typical methods specified for a (JPQL) Query.

166.1.2 SQL Query

Let's create an SQL query to highlight its usage

Query q = em.createNativeQuery("SELECT * FROM Product p WHERE p.param2 < ?1");

q.setParameter(1, my_threshold);

List results = q.getResultList();

http://docs.oracle.com/javaee/7/api/javax/persistence/Query.html
http://docs.oracle.com/javaee/7/api/javax/persistence/Query.html

1 6 6 Q u e r y A P I 1029

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we implicitly select SQL by using the method EntityManager.createNativeQuery(), and the query
is specified like in the JPQL case to return all instances of type Product (using the table name in this
SQL query) where the column param2 is less than some threshold value.

166.1.3 setFirstResult(), setMaxResults()

In JPA to specify the range of a query you have two methods available. So you could do

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY p.param1 ascending");

q.setFirstResult(1);

q.setMaxResults(3);

so we will get results 1, 2, and 3 returned only. The first result starts at 0 by default.

166.1.4 setHint()

JPA's query API allows implementations to support extensions ("hints") and provides a simple
interface for enabling the use of such extensions on queries.

q.setHint("extension_name", value);

DataNucleus provides various extensions for different types of queries.

166.1.5 setParameter()

JPA's query API supports named and numbered parameters and provides method for setting the value
of particular parameters. To set a named parameter, for example, you could do

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY p.param1 ascending");

q.setParameter("threshold", value);

To set a numbered parameter you could do

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < ?1 ORDER BY p.param1 ascending");

q.setParameter(1, value);

Numbered parameters are numbered from 1.

166.1.6 getResultList()

To execute a JPA query you would typically call getResultList. This will return a List of results. This
should not be called when the query is an "UPDATE"/"DELETE".

1 6 6 Q u e r y A P I 1030

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY p.param1 ascending");

q.setParameter("threshold", value);

List results = q.getResultList();

166.1.7 getSingleResult()

To execute a JPA query where you are expecting a single value to be returned you would call
getSingleResult. This will return the single Object. If the query returns more than one result then you
will get an Exception. This should not be called when the query is an "UPDATE"/"DELETE".

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 = :value");

q.setParameter("value", val1);

Product prod = q.getSingleResult();

166.1.8 executeUpdate()

To execute a JPA UPDATE/DELETE query you would call executeUpdate. This will return the
number of objects changed by the call. This should not be called when the query is a "SELECT".

Query q = em.createQuery("DELETE FROM Product p");

int number = q.executeUpdate();

166.1.9 setFlushMode()

By default, when a query is executed it will be evaluated against the contents of the datastore at the
point of execution. If there are any outstanding changes waiting to be flushed then these will not
feature in the results. To make sure all outstanding changes are respected

q.setFlushMode(FlushModeType.AUTO);

166.1.10 setLockMode()

JPA allows control over whether objects found by a fetch (JPQL query) are locked during that
transaction so that other transactions can't update them in the meantime. For example

q.setLockMode(LockModeType.PESSIMISTIC_READ);

You can also specify this for all queries for all EntityManagers using a persistence property
datanucleus.rdbms.useUpdateLock.

1 6 7 Q u e r y C a c h e 1031

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

167 Query Cache
...

167.1 JPA : Query Caching

JPA doesn't currently define a mechanism for caching of queries. DataNucleus provides 3 levels of
caching

• Generic Compilation : when a query is compiled it is initially compiled generically into
expression trees. This generic compilation is independent of the datastore in use, so can be used
for other datastores. This can be cached.

• Datastore Compilation : after a query is compiled into expression trees (above) it is then
converted into the native language of the datastore in use. For example with RDBMS, it is
converted into SQL. This can be cached

• Results : when a query is run and returns objects of the candidate type, you can cache the
identities of the result objects.

167.1.1 Generic Query Compilation Cache

This cache is by default set to soft, meaning that the generic query compilation is cached using soft
references. This is set using the persistence property datanucleus.cache.queryCompilation.type.
You can also set it to strong meaning that strong references are used, or weak meaning that weak
references are used, or finally to none meaning that there is no caching of generic query compilation
information

You can turn caching on/off (default = on) on a query-by-query basis by specifying the query
extension datanucleus.query.compilation.cached as true/false.

167.1.2 Datastore Query Compilation Cache

This cache is by default set to soft, meaning that the datastore query compilation
is cached using soft references. This is set using the persistence property
datanucleus.cache.queryCompilationDatastore.type. You can also set it to strong meaning that
strong references are used, or weak meaning that weak references are used, or finally to none meaning
that there is no caching of datastore-specific query compilation information

You can turn caching on/off (default = on) on a query-by-query basis by specifying the query
extension datanucleus.query.compilation.cached as true/false. As a finer degree of control, where
cached results are used, you can omit the validation of object existence in the datastore by setting the
query extension datanucleus.query.resultCache.validateObjects.

1 6 7 Q u e r y C a c h e 1032

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

167.1.3 Query Results Cache

This cache is by default set to soft, meaning that the datastore query results are cached using soft
references. This is set using the persistence property datanucleus.cache.queryResult.type. You can
also set it to strong meaning that strong references are used, or weak meaning that weak references are
used, or finally to none meaning that there is no caching of query results information. You can also
specify datanucleus.cache.queryResult.cacheName to define the name of the cache used for the
query results cache.

You can turn caching on/off (default = off) on a query-by-query basis by specifying the query
extension datanucleus.query.results.cached as true/false.

Obviously with a cache of query results, you don't necessarily want to retain this cached over a long
period. In this situation you can evict results from the cache like this.

import org.datanucleus.api.jpa.JPAQueryCache;

import org.datanucleus.api.jpa.EntityManagerFactoryImpl;

...

JPAQueryCache cache = ((EntityManagerFactoryImpl)emf).getQueryCache();

cache.evict(query);

which evicts the results of the specific query. The JPAQueryCache has more options available should
you need them

http://www.datanucleus.org/javadocs/jpa/latest/org/datanucleus/jpa/JPAQueryCache.html

1 6 8 J P Q L 1033

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

168 JPQL
...

168.1 JPA : JPQL SELECT Queries
The JPA specification defines JPQL (a pseudo-OO query language, with SQL-like syntax), for
selecting objects from the datastore. To provide a simple example, this is what you would do

Query q = em.createQuery("SELECT p FROM Person p WHERE p.lastName = 'Jones'");

List results = (List)q.getResultList();

This finds all "Person" objects with surname of "Jones". You specify all details in the query.

168.1.1 SELECT Syntax

In JPQL queries you define the query in a single string, defining the result, the candidate class(es), the
filter, any grouping, and the ordering. This string has to follow the following pattern

SELECT [<result>]

 FROM <from_entities_and_variables>

 [WHERE <filter>]

 [GROUP BY <grouping>] [HAVING <having>]

 [ORDER BY <ordering>]

The "keywords" in the query are shown in UPPER CASE are case-insensitive.

168.1.2 FROM Clause

The FROM clause declares query identification variables that represent iteration over objects in the
database. The syntax of the FROM clause is as follows:

from_clause ::= FROM identification_variable_declaration {, {identification_variable_declaration | collection_member_declaration}}*

identification_variable_declaration ::= range_variable_declaration { join | fetch_join }*

range_variable_declaration ::= entity_name [AS] identification_variable

join ::= join_spec join_association_path_expression [AS] identification_variable

fetch_join ::= join_spec FETCH join_association_path_expression

join_spec::= [LEFT [OUTER] | INNER] JOIN

join_association_path_expression ::= join_collection_valued_path_expression | join_single_valued_path_expression

join_collection_valued_path_expression::=

 identification_variable.{single_valued_embeddable_object_field.}*collection_valued_field

join_single_valued_path_expression::=

 identification_variable.{single_valued_embeddable_object_field.}*single_valued_object_field

The FROM clause firstly defines the candidate entity for the query. You can specify the candidate
fully-qualified, or you can specify just the entity name. Using our example

1 6 8 J P Q L 1034

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using candidate name fully qualified

SELECT p FROM org.datanucleus.company.Person p

Using entity name

SELECT p FROM Person p

By default the entity name is the last part of the class name (without the package), but you can
specify it in metadata

Using XML

<entity class="org.datanucleus.company.Person" name="ThePerson">

 ...

</entity>

Using annotations

@Entity(name="ThePerson")

public class Person ...

In strict JPA the entity name cannot be a MappedSuperclass entity name. That is, if you have an
abstract superclass that is persistable, you cannot query for instances of that superclass and its
subclasses. We consider this a significant shortcoming of the querying capability, and allow the
entity name to also be of a MappedSuperclass. You are unlikely to find this supported in other JPA
implementations, but then maybe that's why you chose DataNucleus?

The FROM clause also allows a user to add some explicit joins to related entities, and assign aliases
to the joined entities. These are then usable in the filter/ordering/result etc. If you don't add any joins
DataNucleus will add joins where they are implicit from the filter expression for example. The FROM
clause is of the following structure

FROM {candidate_entity} {candidate_alias}

 [[[LEFT [OUTER] | INNER] JOIN] join_spec [join_alias] *

So you are explicitly stating that the join across join_spec is performed as "LEFT OUTER" or
"INNER" (rather than just leaving it to DataNucleus to decide which to use). Note that the join_spec
can be a relation field, or alternately if you have a Map of non-Entity keys/values then also the Map
field. If you provide the join_alias then you can use it thereafter in other clauses of the query.

Some examples of FROM clauses.

1 6 8 J P Q L 1035

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Join across 2 relations, allowing referral to Address (a) and Owner (o)

SELECT p FROM Person p JOIN p.address a JOIN a.owner o WHERE o.name = 'Fred'

Join to a Map relation field and access to the key/value of the Map.

SELECT VALUE(om) FROM Company c INNER JOIN c.officeMap om ON KEY(om) = 'London'

In strict JPA you cannot join to an embedded element class (of an embeddable). With DataNucleus
you can do this, and hence form queries using fields of the embeddable (not available in most other
JPA providers). See this example, where class Person has a Collection of embeddable Address
objects.

SELECT p FROM Person p LEFT OUTER JOIN p.addresses a WHERE a.name = 'Home'

168.1.3 WHERE clause (filter)

The most important thing to remember when defining the filter for JPQL is that think how you would
write it in SQL, and its likely the same except for FIELD names instead of COLUMN names.
The filter has to be a boolean expression, and can include the candidate entity, fields/properties,
literals, functions, parameters, operators and subqueries

168.1.4 GROUP BY/HAVING clauses

The GROUP BY construct enables the aggregation of values according to a set of properties. The
HAVING construct enables conditions to be specified that further restrict the query result. Such
conditions are restrictions upon the groups. The syntax of the GROUP BY and HAVING clauses is as
follows:

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression | identification_variable

having_clause ::= HAVING conditional_expression

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying
the where clause, and then forming the groups and filtering them according to the HAVING clause.
The HAVING clause causes those groups to be retained that satisfy the condition of the HAVING
clause. The requirements for the SELECT clause when GROUP BY is used follow those of SQL:
namely, any item that appears in the SELECT clause (other than as an argument to an aggregate
function) must also appear in the GROUP BY clause. In forming the groups, null values are treated
as the same for grouping purposes. Grouping by an entity is permitted. In this case, the entity must
contain no serialized state fields or lob-valued state fields. The HAVING clause must specify search
conditions over the grouping items or aggregate functions that apply to grouping items. If there is no
GROUP BY clause and the HAVING clause is used, the result is treated as a single group, and the

1 6 8 J P Q L 1036

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

select list can only consist of aggregate functions. When a query declares a HAVING clause, it must
always also declare a GROUP BY clause.

Some examples

SELECT p.firstName, p.lastName FROM Person p GROUP BY p.lastName

SELECT p.firstName, p.lastName FROM Person p GROUP BY p.lastName HAVING COUNT(p.lastName) > 1

168.1.5 ORDER BY clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered. The
syntax of the ORDER BY clause is

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*

orderby_item ::= state_field_path_expression | result_variable [ASC | DESC]

By default your results will be returned in the order determined by the datastore, so don't rely on
any particular order. You can, of course, specify the order yourself. You do this using field/property
names and ASC/ DESC keywords. For example

field1 ASC, field2 DESC

which will sort primarily by field1 in ascending order, then secondarily by field2 in descending order.

Although it is not (yet) standard JPQL, DataNucleus also supports specifying a directive for where
NULL values of the ordered field/property go in the order, so the full syntax supported is

fieldName [ASC|DESC] [NULLS FIRST|NULLS LAST]

Note that this is only supported for a few RDBMS including H2, HSQLDB, PostgreSQL, DB2,
Oracle, Derby, Firebird, SQLServer v11+.

168.1.6 Fetched Fields

By default a query will fetch fields according to their defined EAGER/LAZY setting, so fields
like primitives, wrappers, Dates, and 1-1/N-1 relations will be fetched, whereas 1-N/M-N fields
will not be fetched. JPQL allows you to include FETCH JOIN as a hint to include 1-N/M-N fields
where possible. For RDBMS datastores any multi-valued field will be bulk-fetched if it is defined
to be EAGER or is placed in the current EntityGraph. By bulk-fetched we mean that there will be a
single SQL issued per collection field (hence avoiding the N+1 problem). Note that you can disable
this by either not putting multi-valued fields in the FetchPlan, or by setting the query extension
"datanucleus.rdbms.query.multivaluedFetch" to "none" (default is "exists" using the single SQL per
field). All non-RDBMS datastores do respect this FETCH JOIN setting, since a collection/map is
stored in a single "column" in the object and so is readily retrievable.

1 6 8 J P Q L 1037

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Note that you can also make use of Entity Graphs to have fuller control over what is retrieved from
each query.

168.1.7 Fields/Properties

In JPQL you refer to fields/properties in the query by referring to the field/bean name. For example,
if you are querying a candidate entity called Product and it has a field "price", then you access it like
this

price < 150.0

Note that if you want to refer to a field/property of an entity you can prefix the field by its alias

p.price < 150.0

You can also chain field references if you have an entity Product (alias = p) with a field of
(persistable) type Inventory, which has a field name, so you could do

p.inventory.name = 'Backup'

168.1.8 Operators

The operators are listed below in order of decreasing precedence.

• Navigation operator (.)
• Arithmetic operators:

• +, - unary
• *, / multiplication and division
• +, - addition and subtraction

• Comparison operators : =, >, >=, <, <=, <> (not equal), [NOT] BETWEEN, [NOT] LIKE,
[NOT] IN, IS [NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF], [NOT] EXISTS

• Logical operators:

• NOT
• AND
• OR

168.1.9 Literals

JPQL supports literals of the following types : Number, boolean, character, String, NULL and
temporal. When String literals are specified using single-string format they should be surrounded by
single-quotes '. Please note that temporal literals are specified using JDBC escape syntax in String
form, namely

{d 'yyyy-mm-dd'} - a Date

{t 'hh:mm:ss'} - a Time

{ts 'yyyy-mm-dd hh:mm:ss.f...'} - a Timestamp

1 6 8 J P Q L 1038

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

168.1.10 Input Parameters

In JPQL queries it is convenient to pass in parameters so we don't have to define the same query for
different values. Let's take two examples

Named Parameters :

Query q = em.createQuery("SELECT p FROM Person p WHERE p.lastName = :surname AND o.firstName = :forename");

q.setParameter("surname", theSurname);

q.setParameter("forename", theForename");

Numbered Parameters :

Query q = em.createQuery("SELECT p FROM Person p WHERE p.lastName = ?1 AND p.firstName = ?2");

q.setParameter(1, theSurname);

q.setParameter(2, theForename);

So in the first case we have parameters that are prefixed by : (colon) to identify them as a parameter
and we use that name when calling Query.setParameter(). In the second case we have parameters that
are prefixed by ? (question mark) and are numbered starting at 1. We then use the numbered position
when calling Query.setParameter().

168.1.11 CASE expressions

For particular use in the result clause, you can make use of a CASE expression where you want to
return different things based on some condition(s). Like this

Query q = em.createQuery(

 "SELECT p.personNum, CASE WHEN p.age < 18 THEN 'Youth' WHEN p.age >= 18 AND p.age < 65 THEN 'Adult' ELSE 'Old' END FROM Person p");

So in this case the second result value will be a String, either "Youth", "Adult" or "Old" depending on
the age of the person. The BNF structure of the JPQL CASE expression is

CASE WHEN conditional_expression THEN scalar_expression {WHEN conditional_expression THEN scalar_expression}* ELSE scalar_expression END

168.1.12 JPQL Functions

JPQL provides an SQL-like query language. Just as with SQL, JPQL also supports a range of
functions to enhance the querying possibilities. The tables below also mark whether a particular
method is supported for evaluation in-memory.

Please note that you can easily add support for other functions for evaluation "in-memory" using this
DataNucleus plugin point

1 6 8 J P Q L 1039

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Please note that you can easily add support for other functions with RDBMS datastore using this
DataNucleus plugin point

168.1.12.1 Aggregate Functions

There are a series of aggregate functions for aggregating the values of a field for all rows of the
results.

Function Name Description Standard In-Memory

COUNT(field) Returns the aggregate
count of the field (Long)

MIN(field) Returns the minimum
value of the field (type of
the field)

MAX(field) Returns the maximum
value of the field (type of
the field)

AVG(field) Returns the average
value of the field (Double)

SUM(field) Returns the sum of the
field value(s) (Long,
Double, BigInteger,
BigDecimal)

168.1.12.2 String Functions

There are a series of functions to be applied to String fields.

Function Name Description Standard In-Memory

CONCAT(str_field,
str_field2 [, str_fieldX])

Returns the concatenation
of the string fields

SUBSTRING(str_field,
num1 [, num2])

Returns the substring of
the string field starting
at position num1, and
optionally with the length
of num2

TRIM([trim_spec]
[trim_char] [FROM]
str_field)

Returns trimmed form of
the string field

LOWER(str_field) Returns the lower case
form of the string field

UPPER(str_field) Returns the upper case
form of the string field

1 6 8 J P Q L 1040

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

LENGTH(str_field) Returns the size of the
string field (number of
characters)

LOCATE(str_field1,
str_field2 [, num])

Returns position of
str_field2 in str_field1
optionally starting at num

168.1.12.3 Temporal Functions

There are a series of functions for use with temporal values

Function Name Description Standard In-Memory

CURRENT_DATE Returns the current date
(day month year) of the
datastore server

CURRENT_TIME Returns the current time
(hour minute second) of
the datastore server

CURRENT_TIMESTAMP Returns the current
timestamp of the
datastore server

YEAR(dateField) Returns the year of the
specified date

MONTH(dateField) Returns the month of the
specified date (between 0
and 11)

DAY(dateField) Returns the day of the
month of the specified
date

HOUR(dateField) Returns the hour of the
specified date

MINUTE(dateField) Returns the minute of the
specified date

SECOND(dateField) Returns the second of the
specified date

168.1.12.4 Collection Functions

There are a series of functions for use with collection values

Function Name Description Standard In-Memory

INDEX(collection_field) Returns index number of
the field element when
that is the element of an
indexed List field.

1 6 8 J P Q L 1041

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

SIZE(collection_field) Returns the size of the
collection field. Empty
collection will return 0

168.1.12.5 Map Functions

There are a series of functions for use with maps

Function Name Description Standard In-Memory

KEY(map_field) Returns the key of the
map

VALUE(map_field) Returns the value of the
map

SIZE(map_field) Returns the size of the
map field. Empty map will
return 0

168.1.12.6 Arithmetic Functions

There are a series of functions for arithmetic use

Function Name Description Standard In-Memory

ABS(numeric_field) Returns the absolute
value of the numeric field

SQRT(numeric_field) Returns the square root of
the numeric field

MOD(num_field1,
num_field2)

Returns the modulus of
the two numeric fields (
num_field1 % num_field2)

ACOS(num_field) Returns the arc-cosine of
a numeric field

ASIN(num_field) Returns the arc-sine of a
numeric field

ATAN(num_field) Returns the arc-tangent of
a numeric field

COS(num_field) Returns the cosine of a
numeric field

SIN(num_field) Returns the sine of a
numeric field

TAN(num_field) Returns the tangent of a
numeric field

DEGREES(num_field) Returns the degrees of a
numeric field

RADIANS(num_field) Returns the radians of a
numeric field

1 6 8 J P Q L 1042

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

CEIL(num_field) Returns the ceiling of a
numeric field

FLOOR(num_field) Returns the floor of a
numeric field

LOG(num_field) Returns the natural
logarithm of a numeric
field

EXP(num_field) Returns the exponent of a
numeric field

168.1.12.7 Other Functions

You have a further function available

Function Name Description Standard In-Memory

FUNCTION(name, [arg1
[,arg2 ...]])

Executes the specified
SQL function "name" with
the defined arguments

168.1.13 Collection Fields

Where you have a collection field, often you want to navigate it to query based on some filter for the
element. To achieve this, you can clearly JOIN to the element in the FROM clause. Alternatively you
can use the MEMBER OF keyword. Let's take an example, you have a field which is a Collection of
Strings, and want to return the owner object that has an element that is "Freddie".

Query q = em.createQuery("SELECT p.firstName, p.lastName FROM Person p WHERE 'Freddie' MEMBER OF p.nicknames");

Beyond this, you can also make use of the Collection functions and use the size of the collection for
example.

168.1.14 Map Fields

Where you have a map field, often you want to navigate it to query based on some filter for the key or
value. Let's take an example, you want to return the value for a particular key in the map of an owner.

Query q = em.createQuery("SELECT VALUE(p.addresses) FROM Person p WHERE KEY(p.addresses) = 'London Flat'");

Beyond this, you can also make use of the Map functions and use the size of the map for example.

Note that in the JPA spec they allow a user to interchangeably use "p.addresses" to refer to
the value of the Map. DataNucleus doesn't support that since that primary expression is a Map
field, and the Map can equally be represented as a join table, key stored in value, or value

1 6 8 J P Q L 1043

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

stored in key. Hence you should always use VALUE(...) if you mean to refer to the Map value -
besides it is a damn sight clearer the intent by doing that.

168.1.15 Subqueries

With JPQL the user has a very flexible query syntax which allows for querying of the vast majority of
data components in a single query. In some situations it is desirable for the query to utilise the results
of a separate query in its calculations. JPQL also allows the use of subqueries. Here's an example

SELECT Object(e) FROM org.datanucleus.Employee e

WHERE e.salary > (SELECT avg(f.salary) FROM org.datanucleus.Employee f)

So we want to find all Employees that have a salary greater than the average salary. The subquery
must be in parentheses (brackets). Note that we have defined the subquery with an alias of "f",
whereas in the outer query the alias is "e".

168.1.15.1 ALL/ANY/SOME Expressions

One use of subqueries with JPQL is where you want to compare with some or all of a particular
expression. To give an example

SELECT emp FROM Employee emp

WHERE emp.salary > ALL (SELECT m.salary FROM Manager m WHERE m.department = emp.department)

So this returns all employees that earn more than all managers in the same department! You can also
compare with SOME/ANY, like this

SELECT emp FROM Employee emp

WHERE emp.salary > ANY (SELECT m.salary FROM Manager m WHERE m.department = emp.department)

So this returns all employees that earn more than any one Manager in the same department.

168.1.15.2 EXISTS Expressions

Another use of subqueries in JPQL is where you want to check on the existence of a particular thing.
For example

SELECT DISTINCT emp FROM Employee emp

WHERE EXISTS (SELECT emp2 FROM Employee emp2 WHERE emp2 = emp.spouse)

So this returns the employees that have a partner also employed.

Note that in strict JPQL you can only have subqueries in WHERE or HAVING clauses.
DataNucleus additionally allows them in the SELECT clause.

168.1.16 Specify candidates to query over

1 6 8 J P Q L 1044

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

With JPA you always query objects of the candidate type in the datastore. DataNucleus extends this
and allows you to provide a Collection of candidate objects that will be queried (rather than going to
the datastore), and it will perform the querying "in-memory". You set the candidates like this

Query query = em.createQuery("SELECT p FROM Products p WHERE ...");

((org.datanucleus.api.jpa.JPAQuery)query).getInternalQuery().setCandidates(myCandidates);

List<Product> results = query.getResultList();

168.1.17 Range of Results

With JPQL you can select the range of results to be returned. For example if you have a web page and
you are paginating the results of some search, you may want to get the results from a query in blocks
of 20 say, with results 0 to 19 on the first page, then 20 to 39, etc. You can facilitate this as follows

Query q = em.createQuery("SELECT p FROM Person p WHERE p.age > 20");

q.setFirstResult(0);

q.setMaxResults(20);

So with this query we get results 0 to 19 inclusive.

168.1.18 Query Result

Whilst the majority of the time you will want to return instances of a candidate class, JPQL also
allows you to return customised results. Consider the following example

Query q = em.createQuery("SELECT p.firstName, p.lastName FROM Person p WHERE p.age > 20");

List<Object[]> results = q.getResultList();

this returns the first and last name for each Person meeting that filter. Obviously we may have some
container class that we would like the results returned in, so if we change the query to this

Query<PersonName> q = em.createQuery(

 "SELECT p.firstName, p.lastName FROM Person p WHERE p.age > 20", PersonName.class);

List<PersonName> results = q.getResultList();

so each result is a PersonName, holding the first and last name. This result class needs to match one of
the following structures

• Constructor taking arguments of the same types and the same order as the result clause. An
instance of the result class is created using this constructor. For example

1 6 8 J P Q L 1045

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public class PersonName

{

 protected String firstName = null;

 protected String lastName = null;

 public PersonName(String first, String last)

 {

 this.firstName = first;

 this.lastName = last;

 }

 ...

}

• Default constructor, and setters for the different result columns, using the alias name for each
column as the property name of the setter. For example

public class PersonName

{

 protected String firstName = null;

 protected String lastName = null;

 public PersonName()

 {

 }

 public void setFirstName(String first) {this.firstName = first;}

 public void setLastName(String last) {this.lastName = last;}

 ...

}

• Default constructor, and a method void put(Object aliasName, Object value)
Note that if the setter property name doesn't match the query result component name, you should use
AS {alias} in the query so they are the same.

A special case, where you don't have a result class but want to easily extract multiple columns in the
form of a Tuple JPA provides a special class javax.persistence.Tuple to supply as the result class in
the above call. From that you can get hold of the column aliases, and their values.

1 6 8 J P Q L 1046

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query<PersonName> q = em.createQuery(

 "SELECT p.firstName, p.lastName FROM Person p WHERE p.age > 20", Tuple.class);

List<Tuple> results = q.getResultList();

for (Tuple t : results)

{

 List<TupleElement> cols = t.getElements();

 for (TupleElement col : cols)

 {

 String colName = col.getAlias();

 Object value = t.get(colname);

 }

}

168.1.19 Query Execution

There are two ways to execute a JPQL query. When you know it will return 0 or 1 results you call

Object result = query.getSingleResult();

If however you know that the query will return multiple results, or you just don't know then you
would call

List results = query.getResultList();

168.2 JPQL In-Memory queries

The typical use of a JPQL query is to translate it into the native query language of the datastore and
return objects matched by the query. For many datastores it is simply impossible to support the full
JPQL syntax in the datastore native query language and so it is necessary to evaluate the query in-
memory. This means that we evaluate as much as we can in the datastore and then instantiate those
objects and evaluate further in-memory. Here we document the current capabilities of in-memory
evaluation in DataNucleus.

• Subqueries using ALL, ANY, SOME, EXISTS are not currently supported
• MEMBER OF syntax is not currently supported.

To enable evaluation in memory you specify the query hint datanucleus.query.evaluateInMemory
to true as follows

query.setHint("datanucleus.query.evaluateInMemory","true");

168.3 Named Query

With the JPA API you can either define a query at runtime, or define it in the MetaData/annotations
for a class and refer to it at runtime using a symbolic name. This second option means that the method
of invoking the query at runtime is much simplified. To demonstrate the process, lets say we have a
class called Product (something to sell in a store). We define the JPA Meta-Data for the class in the

1 6 8 J P Q L 1047

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

normal way, but we also have some query that we know we will require, so we define the following in
the Meta-Data.

 <entity class="Product">

 ...

 <named-query name="SoldOut"><![CDATA[

 SELECT p FROM Product p WHERE p.status == "Sold Out"

]]></named-query>

 </entity>

or using annotations

@Entity

@NamedQuery(name="SoldOut", query="SELECT p FROM Product p WHERE p.status == 'Sold Out'")

public class Product {...}

Note that DataNucleus also supports specifying this using annotations in non-Entity classes.
This is beyond the JPA spec, but is very useful in real applications

So we have a JPQL query called "SoldOut" defined for the class Product that returns all Products (and
subclasses) that have a status of "Sold Out". Out of interest, what we would then do in our application
to execute this query woule be

Query query = em.createNamedQuery("SoldOut");

List<Product> results = query.getResultList();

168.3.1 Saving a Query as a Named Query

You can save a query as a named query like this

Query q = em.createQuery("SELECT p FROM Product p WHERE ...");

...

emf.addNamedQuery("MyQuery", q);

DataNucleus also allows you to create a query, and then save it as a "named" query directly with the
query. You do this as follows

Query q = em.createQuery("SELECT p FROM Product p WHERE ...");

((org.datanucleus.api.jpa.JPAQuery)q).saveAsNamedQuery("MyQuery");

With both methods you can thereafter access the query via

1 6 8 J P Q L 1048

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query q = em.createNamedQuery("MyQuery");

168.3.2 JPQL Strictness

By default DataNucleus allows some extensions in syntax over strict JPQL (as defined by the JPA
spec). To allow only strict JPQL you can do as follows

Query query = em.createQuery(...);

query.setHint("datanucleus.jpql.strict", "true");

168.4 JPQL DELETE Queries
The JPA specification defines a mode of JPQL for deleting objects from the datastore. Note that this
will not invoke any cascading defined on a field basis, with only datastore-defined Foreign Keys
cascading. Additionally related objects already in-memory will not be updated.

168.4.1 DELETE Syntax

The syntax for deleting records is very similar to selecting them

DELETE FROM [<candidate-class>]

 [WHERE <filter>]

The "keywords" in the query are shown in UPPER CASE are case-insensitive.

Query query = em.createQuery("DELETE FROM Person p WHERE firstName = 'Fred'");

int numRowsDeleted = query.executeUpdate();

168.5 JPQL UPDATE Queries
The JPA specification defines a mode of JPQL for updating objects in the datastore. Note that this
will not invoke any cascading defined on a field basis, with only datastore-defined Foreign Keys
cascading. Additionally related objects already in-memory will not be updated.

168.5.1 UPDATE Syntax

The syntax for updating records is very similar to selecting them

UPDATE [<candidate-class>] SET item1=value1, item2=value2

 [WHERE <filter>]

The "keywords" in the query are shown in UPPER CASE are case-insensitive.

1 6 8 J P Q L 1049

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query query = em.createQuery("UPDATE Person p SET p.salary = 10000 WHERE age = 18");

int numRowsUpdated = query.executeUpdate();

In strict JPA you cannot use a subquery in the UPDATE clause. With DataNucleus JPA you can do
this so, for example, you can set a field to the result of a subquery.

Query query = em.createQuery("UPDATE Person p SET p.salary = (SELECT MAX(p2.salary) FROM Person p2 WHERE age < 18) WHERE age = 18");

168.6 JPQL BNF Notation

The BNF defining the JPQL query language is shown below.

1 6 8 J P Q L 1050

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

QL_statement ::= select_statement | update_statement | delete_statement

select_statement ::= select_clause from_clause [where_clause] [groupby_clause] [having_clause] [orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

from_clause ::= FROM identification_variable_declaration

 {, {identification_variable_declaration | collection_member_declaration}}*

identification_variable_declaration ::= range_variable_declaration { join | fetch_join }*

range_variable_declaration ::= entity_name [AS] identification_variable

join ::= join_spec join_association_path_expression [AS] identification_variable

fetch_join ::= join_spec FETCH join_association_path_expression

join_spec::= [LEFT [OUTER] | INNER] JOIN

join_association_path_expression ::= join_collection_valued_path_expression | join_single_valued_path_expression

join_collection_valued_path_expression::=

 identification_variable.{single_valued_embeddable_object_field.}*collection_valued_field

join_single_valued_path_expression::=

 identification_variable.{single_valued_embeddable_object_field.}*single_valued_object_field

collection_member_declaration ::=

 IN (collection_valued_path_expression) [AS] identification_variable

qualified_identification_variable ::= KEY(identification_variable) | VALUE(identification_variable) |

 ENTRY(identification_variable)

single_valued_path_expression ::= qualified_identification_variable |

 state_field_path_expression | single_valued_object_path_expression

general_identification_variable ::= identification_variable | KEY(identification_variable) |

 VALUE(identification_variable)

state_field_path_expression ::= general_identification_variable.{single_valued_object_field.}*state_field

single_valued_object_path_expression ::=

 general_identification_variable.{single_valued_object_field.}* single_valued_object_field

collection_valued_path_expression ::=

 general_identification_variable.{single_valued_object_field.}*collection_valued_field

update_clause ::= UPDATE entity_name [[AS] identification_variable] SET update_item {, update_item}*

update_item ::= [identification_variable.]{state_field | single_valued_object_field} = new_value

new_value ::= scalar_expression | simple_entity_expression | NULL

delete_clause ::= DELETE FROM entity_name [[AS] identification_variable]

select_clause ::= SELECT [DISTINCT] select_item {, select_item}*

select_item ::= select_expression [[AS] result_variable]

select_expression ::= single_valued_path_expression | scalar_expression | aggregate_expression |

 identification_variable | OBJECT(identification_variable) | constructor_expression

constructor_expression ::= NEW constructor_name (constructor_item {, constructor_item}*)

constructor_item ::= single_valued_path_expression | scalar_expression | aggregate_expression |

 identification_variable

aggregate_expression ::= { AVG | MAX | MIN | SUM } ([DISTINCT] state_field_path_expression) |

 COUNT ([DISTINCT] identification_variable | state_field_path_expression |

 single_valued_object_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression | identification_variable

having_clause ::= HAVING conditional_expression

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*

orderby_item ::= state_field_path_expression | result_variable [ASC | DESC]

subquery ::= simple_select_clause subquery_from_clause [where_clause] [groupby_clause] [having_clause]

subquery_from_clause ::= FROM subselect_identification_variable_declaration

 {, subselect_identification_variable_declaration | collection_member_declaration}*

subselect_identification_variable_declaration ::= identification_variable_declaration |

 derived_path_expression [AS] identification_variable {join}*|

 derived_collection_member_declaration

derived_path_expression ::=

 superquery_identification_variable.{single_valued_object_field.}*collection_valued_field |

 superquery_identification_variable.{single_valued_object_field.}*single_valued_object_field

derived_collection_member_declaration ::=

 IN superquery_identification_variable.{single_valued_object_field.}*collection_valued_field

simple_select_clause ::= SELECT [DISTINCT] simple_select_expression

simple_select_expression::= single_valued_path_expression | scalar_expression | aggregate_expression |

 identification_variable

scalar_expression ::= simple_arithmetic_expression | string_primary | enum_primary |

 datetime_primary | boolean_primary | case_expression | entity_type_expression

conditional_expression ::= conditional_term | conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression |

 in_expression | like_expression | null_comparison_expression |

 empty_collection_comparison_expression | collection_member_expression | exists_expression

between_expression ::=

 arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression |

 string_expression [NOT] BETWEEN string_expression AND string_expression |

 datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression

in_expression ::= {state_field_path_expression | type_discriminator} [NOT] IN

 { (in_item {, in_item}*) | (subquery) | collection_valued_input_parameter }

in_item ::= literal | single_valued_input_parameter

like_expression ::= string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

null_comparison_expression ::= {single_valued_path_expression | input_parameter} IS [NOT] NULL

empty_collection_comparison_expression ::= collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::= entity_or_value_expression [NOT] MEMBER [OF] collection_valued_path_expression

entity_or_value_expression ::= single_valued_object_path_expression | state_field_path_expression |

 simple_entity_or_value_expression

simple_entity_or_value_expression ::= identification_variable | input_parameter | literal

exists_expression::= [NOT] EXISTS (subquery)

all_or_any_expression ::= { ALL | ANY | SOME} (subquery)

comparison_expression ::=

 string_expression comparison_operator {string_expression | all_or_any_expression} |

 boolean_expression { =|<>} {boolean_expression | all_or_any_expression} |

 enum_expression { =|<>} {enum_expression | all_or_any_expression} |

 datetime_expression comparison_operator

 {datetime_expression | all_or_any_expression} |

 entity_expression { = | <>} {entity_expression | all_or_any_expression} |

 arithmetic_expression comparison_operator

 {arithmetic_expression | all_or_any_expression} |

 entity_type_expression { =|<>} entity_type_expression}

comparison_operator ::= = | > | >= | < | <= | <>

arithmetic_expression ::= simple_arithmetic_expression | (subquery)

simple_arithmetic_expression ::= arithmetic_term | simple_arithmetic_expression { + | - } arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor

arithmetic_factor ::= [{ + | - }] arithmetic_primary

arithmetic_primary ::= state_field_path_expression | numeric_literal |

 (simple_arithmetic_expression) | input_parameter | functions_returning_numerics |

 aggregate_expression | case_expression

string_expression ::= string_primary | (subquery)

string_primary ::= state_field_path_expression | string_literal |

 input_parameter | functions_returning_strings | aggregate_expression | case_expression

datetime_expression ::= datetime_primary | (subquery)

datetime_primary ::= state_field_path_expression | input_parameter | functions_returning_datetime |

 aggregate_expression | case_expression | date_time_timestamp_literal

boolean_expression ::= boolean_primary | (subquery)

boolean_primary ::= state_field_path_expression | boolean_literal | input_parameter |

 case_expression

enum_expression ::= enum_primary | (subquery)

enum_primary ::= state_field_path_expression | enum_literal | input_parameter | case_expression

entity_expression ::= single_valued_object_path_expression | simple_entity_expression

simple_entity_expression ::= identification_variable | input_parameter

entity_type_expression ::= type_discriminator | entity_type_literal | input_parameter

type_discriminator ::= TYPE(identification_variable | single_valued_object_path_expression |

 input_parameter)

functions_returning_numerics::= LENGTH(string_primary) |

 LOCATE(string_primary, string_primary[, simple_arithmetic_expression]) |

 ABS(simple_arithmetic_expression) |

 SQRT(simple_arithmetic_expression) |

 MOD(simple_arithmetic_expression, simple_arithmetic_expression) |

 SIZE(collection_valued_path_expression) |

 INDEX(identification_variable)

functions_returning_datetime ::= CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP

functions_returning_strings ::=

 CONCAT(string_primary, string_primary {, string_primary}*) |

 SUBSTRING(string_primary, simple_arithmetic_expression [, simple_arithmetic_expression]) |

 TRIM([[trim_specification] [trim_character] FROM] string_primary) |

 LOWER(string_primary) |

 UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH

case_expression ::= general_case_expression | simple_case_expression | coalesce_expression |

 nullif_expression

general_case_expression::= CASE when_clause {when_clause}* ELSE scalar_expression END

when_clause::= WHEN conditional_expression THEN scalar_expression

simple_case_expression::=

 CASE case_operand simple_when_clause {simple_when_clause}*

 ELSE scalar_expression

 END

case_operand::= state_field_path_expression | type_discriminator

simple_when_clause::= WHEN scalar_expression THEN scalar_expression

coalesce_expression::= COALESCE(scalar_expression {, scalar_expression}+)

nullif_expression::= NULLIF(scalar_expression, scalar_expression)

1 6 9 J P Q L C r i t e r i a 1051

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

169 JPQL Criteria
...

169.1 JPA : JPQL Criteria Queries
In JPA there is a query API referred to as "criteria". This is really an API allowing the construction
of queries expression by expression, and optionally making it type-safe. It provides two ways of
specifying a field/property. The first way is using Strings, and the second using a MetaModel. The
advantage of the MetaModel is that it means that your queries are refactorable if you rename a field.
Each example will be expressed in both ways where appropriate so you can see the difference.

169.1.1 Creating a Criteria query

To use the JPA Criteria API, firstly you need to create a CriteriaQuery object for the candidate in
question, and set the candidate, its alias, and the result to be of the candidate type

CriteriaBuilder cb = emf.getCriteriaBuilder();

CriteriaQuery<Person> crit = cb.createQuery(Person.class);

Root<Person> candidateRoot = crit.from(Person.class);

candidateRoot.alias("p");

crit.select(candidateRoot);

So what we have there equates to

SELECT p FROM mydomain.Person p

For a complete list of all methods available on CriteriaBuilder, refer to

For a complete list of all methods available on CriteriaQuery, refer to

169.1.2 JPQL equivalent of the Criteria query

If you ever want to know what is the equivalent JPQL string-based query for your Criteria, just print
out criteriaQuery.toString(). This is not part of the JPA spec, but something that we feel is very
useful so is provided as a DataNucleus vendor extension. So, for example, the criteria query above
would result in the following from crit.toString()

SELECT p FROM mydomain.Person p

169.1.3 Criteria API : Result clause

The basic Criteria query above is fine, but you may want to define a result other than the candidate.
To do this we need to use the Criteria API.

http://java.sun.com/javaee/6/docs/api/javax/persistence/criteria/CriteriaBuilder.html
http://java.sun.com/javaee/6/docs/api/javax/persistence/criteria/CriteriaBuilder.html
http://java.sun.com/javaee/6/docs/api/javax/persistence/criteria/CriteriaQuery.html
http://java.sun.com/javaee/6/docs/api/javax/persistence/criteria/CriteriaQuery.html

1 6 9 J P Q L C r i t e r i a 1052

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Path nameField = candidateRoot.get("name");

crit.select(nameField);

which equates to

SELECT p.name

Note that here we accessed a field by its name (as a String). We could easily have accessed it via the
Criteria MetaModel too.

169.1.4 Criteria API : From clause joins

The basic Criteria query above is fine, but you may want to define some explicit joins. To do this we
need to use the Criteria API.

Metamodel model = emf.getMetamodel();

ManagedType personType = model.type(Person.class);

Attribute addressAttr = personType.getAttribute("address");

Join addressJoin = candidateRoot.join((SingularAttribute)addressAttr);

addressJoin.alias("a");

which equates to

FROM mydomain.Person p JOIN p.address a

169.1.5 Criteria API : Filter

The basic Criteria query above is fine, but in the majority of cases we want to define a filter. To do
this we need to use the Criteria API.

String-based:

Predicate nameEquals = cb.equal(candidateRoot.get("name"), "First");

crit.where(nameEquals);

MetaModel-based:

Predicate nameEquals = cb.equal(candidateRoot.get(Person_.name), "First");

crit.where(nameEquals);

You can also invoke methods, so a slight variation on this clause would be

String-based:

Predicate nameUpperEquals = cb.equal(cb.upper(candidateRoot.get("name")), "FIRST");

MetaModel-based:

Predicate nameUpperEquals = cb.equal(cb.upper(candidateRoot.get(Person_.name)), "FIRST");

which equates to

WHERE (UPPER(p.name) = 'FIRST')

1 6 9 J P Q L C r i t e r i a 1053

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

169.1.6 Criteria API : Ordering

The basic Criteria query above is fine, but in many cases we want to define ordering. To do this we
need to use the Criteria API.

String-based:

Order orderFirstName = cb.desc(candidateRoot.get("name"));

crit.orderBy(orderFirstName);

MetaModel-based:

Order orderFirstName = cb.desc(candidateRoot.get(Person_.name));

crit.orderBy(orderFirstName);

which equates to

ORDER BY p.name DESC

169.1.7 Criteria API : Parameters

Another common thing we would want to do is specify input parameters. To do this we need to use
the Criteria API. Let's take an example of a filter with parameters.

String-based:

ParameterExpression param1 = cb.parameter(String.class, "myParam1");

Predicate nameEquals = cb.equal(candidateRoot.get("name"), param1);

crit.where(nameEquals);

MetaModel-based:

ParameterExpression param1 = cb.parameter(String.class, "myParam1");

Predicate nameEquals = cb.equal(candidateRoot.get(Person_.name), param1);

crit.where(nameEquals);

which equates to

WHERE (p.name = :myParam)

Don't forget to set the value of the parameters before executing the query!

169.1.8 Criteria API : Result as Tuple

You sometimes need to define a result for a query. You can define a result class just like with normal
JPQL, but a special case is where you don't have a particular result class and want to use the built-in
JPA standard Tuple class.

CriteriaQuery<Tuple> crit = cb.createTupleQuery();

169.1.9 Executing a Criteria query

Ok, so we've seen how to generate a Criteria query. So how can we execute it ? This is simple;
convert it into a standard JPA query, set any parameter values and execute it.

1 6 9 J P Q L C r i t e r i a 1054

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Query query = em.createQuery(crit);

List<Person> results = query.getResultList();

169.1.10 Criteria API : UPDATE query

So the previous examples concentrated on SELECT queries. Let's now do an UPDATE

String-based:

CriteriaUpdate<Person> crit = qb.createCriteriaUpdate(Person.class);

Root<Person> candidate = crit.from(Person.class);

candidate.alias("p");

crit.set(candidate.get("firstName"), "Freddie");

Predicate teamName = qb.equal(candidate.get("firstName"), "Fred");

crit.where(teamName);

Query q = em.createQuery(crit);

int num = q.executeUpdate();

MetaModel-based:

CriteriaUpdate<Person> crit = qb.createCriteriaUpdate(Person.class);

Root<Person> candidate = crit.from(Person.class);

candidate.alias("p");

crit.set(candidate.get(Person_.firstName), "Freddie");

Predicate teamName = qb.equal(candidate.get(Person.firstName), "Fred");

crit.where(teamName);

Query q = em.createQuery(crit);

int num = q.executeUpdate();

which equates to

UPDATE Person p SET p.firstName = 'Freddie' WHERE p.firstName = 'Fred'

169.1.11 Criteria API : DELETE query

So the previous examples concentrated on SELECT queries. Let's now do a DELETE

1 6 9 J P Q L C r i t e r i a 1055

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

String-based:

CriteriaDelete<Person> crit = qb.createCriteriaDelete(Person.class);

Root<Person> candidate = crit.from(Person.class);

candidate.alias("p");

Predicate teamName = qb.equal(candidate.get("firstName"), "Fred");

crit.where(teamName);

Query q = em.createQuery(crit);

int num = q.executeUpdate();

MetaModel-based:

CriteriaDelete<Person> crit = qb.createCriteriaDelete(Person.class);

Root<Person> candidate = crit.from(Person.class);

candidate.alias("p");

Predicate teamName = qb.equal(candidate.get(Person.firstName), "Fred");

crit.where(teamName);

Query q = em.createQuery(crit);

int num = q.executeUpdate();

which equates to

DELETE FROM Person p WHERE p.firstName = 'Fred'

169.1.12 MetaModel

As we mentioned at the start of this section, there is a MetaModel allowing refactorability. In JPA the
MetaModel is a static metamodel of generated classes that mirror the applications persistable classes
and have persistable fields marked as public and static so that they can be accessed when generating
the queries. In the examples above you saw reference to a class with name with suffix "_". This is a
metamodel class. It is defined below.

The JPA spec contains the following description of the static metamodel.
For every managed class in the persistence unit, a corresponding metamodel class is produced as
follows:

• For each managed class X in package p, a metamodel class X_ in package p is created.
• The name of the metamodel class is derived from the name of the managed class by appending

"_" to the name of the managed class.
• The metamodel class X_ must be annotated with the javax.persistence.StaticMetamodel

annotation
• If class X extends another class S, where S is the most derived managed class (i.e., entity or

mapped superclass) extended by X, then class X_ must extend class S_, where S_ is the meta-
model class created for S.

• For every persistent non-collection-valued attribute y declared by class X, where the type of y is
Y, the metamodel class must contain a declaration as follows:
public static volatile SingularAttribute<X, Y> y;

• For every persistent collection-valued attribute z declared by class X, where the element type of
z is Z, the metamodel class must contain a declaration as follows:

• if the collection type of z is java.util.Collection, then
public static volatile CollectionAttribute<X, Z> z;

• if the collection type of z is java.util.Set, then

1 6 9 J P Q L C r i t e r i a 1056

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

public static volatile SetAttribute<X, Z> z;

• if the collection type of z is java.util.List, then
public static volatile ListAttribute<X, Z> z;

• if the collection type of z is java.util.Map, then
public static volatile MapAttribute<X, K, Z> z;

where K is the type of the key of the map in class X
Let's take an example, for the following class

package org.datanucleus.samples.jpa2.metamodel;

import java.util.*;

import javax.persistence.*;

@Entity

public class Person

{

 @Id

 long id;

 String name;

 @OneToMany

 List<Address> addresses;

}

the static metamodel class will be

package org.datanucleus.samples.jpa2.metamodel;

import javax.persistence.metamodel.*;

@StaticMetamodel(Person.class)

public class Person_

{

 public static volatile SingularAttribute<Person, Long> id;

 public static volatile SingularAttribute<Person, String> name;

 public static volatile ListAttribute<Person, Address> addresses;

}

So how do we generate this metamodel definition for our query classes? DataNucleus provides an
annotation processor in the jar datanucleus-jpa-query that can be used when compiling your model
classes to generate the static metamodel classes. What this does is when the compile is invoked, all
classes that have persistence annotations will be passed to the annotation processor and a Java file
generated for its metamodel. Then all classes (original + metamodel) are compiled.

To enable this in Maven you would need the above jar, plus persistence-api.jar to be in the
CLASSPATH at compile

1 6 9 J P Q L C r i t e r i a 1057

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.7</source>

 <target>1.7</target>

 </configuration>

</plugin>

To enable this in Eclipse you would need to do the following

• Go to Java Compiler and make sure the compiler compliance level is 1.7 or above (needed for
DN 4.0+ anyway)

• Go to Java Compiler -> Annotation Processing and enable the project specific settings and
enable annotation processing

• Go to Java Compiler -> Annotation Processing -> Factory Path, enable the project specific
settings and then add the following jars to the list: datanucleus-jpa-query.jar, persistence-api.jar

1 7 0 N a t i v e Q u e r y 1058

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

170 Native Query
...

170.1 JPA : Native Queries
The JPA specification defines its interpretation of native queries, for selecting objects from the
datastore. To provide a simple example for RDBMS (i.e using SQL), this is what you would do

Query q = em.createNativeQuery("SELECT p.id, o.firstName, o.lastName FROM Person p, Job j WHERE (p.job = j.id) AND j.name = 'Cleaner'");

List results = (List)q.getResultsList();

This finds all "Person" objects that do the job of "Cleaner". The syntax chosen has to be runnable
on the RDBMS that you are using (and since SQL is anything but "standard" you will likely have to
change your query when moving to another datastore).

170.1.1 Input Parameters

In JPQL queries it is convenient to pass in parameters so we don't have to define the same query for
different values. Here's an example

Numbered Parameters :

Query q = em.createQuery("SELECT p FROM Person p WHERE p.lastName = ?1 AND p.firstName = ?2");

q.setParameter(1, theSurname).setParameter(2, theForename);

So we have parameters that are prefixed by ? (question mark) and are numbered starting at 1. We
then use the numbered position when calling Query.setParameter(). This is known as numbered
parameters. With JPA native queries we can't use named parameters officially.

DataNucleus also actually supports use of named parameters where you assign names just like in
JPQL. This is not defined by the JPA specification so dont expect other JPA implementations to
support it. Let's take the previous example and rewrite it using named parameters, like this

Named Parameters :

Query q = em.createQuery("SELECT p FROM Person p WHERE p.lastName = :firstParam AND p.firstName = :otherParam");

q.setParameter("firstParam", theSurname).setParameter("otherParam", theForename);

170.1.2 Range of Results

With SQL you can select the range of results to be returned. For example if you have a web page and
you are paginating the results of some search, you may want to get the results from a query in blocks
of 20 say, with results 0 to 19 on the first page, then 20 to 39, etc. You can facilitate this as follows

Query q = em.createNativeQuery("SELECT p FROM Person p WHERE p.age > 20");

q.setFirstResult(0).setMaxResults(20);

So with this query we get results 0 to 19 inclusive.

1 7 0 N a t i v e Q u e r y 1059

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

170.1.3 Query Execution

There are two ways to execute a native query. When you know it will return 0 or 1 results you call

Object result = query.getSingleResult();

If however you know that the query will return multiple results, or you just don't know then you
would call

List results = query.getResultList();

170.1.4 SQL Result Definition

By default, if you simply execute a native query and don't specify the result mapping, then when you
execute getResultList() each row of the results will be an Object array. You can however define how
the results are mapped to some result class for example. Let's give some examples of what you can do.
If we have the following entities

@Entity

@Table(name="LOGIN")

public class Login

{

 @Id

 private long id;

 private String userName;

 private String password;

 public Login(String user, String pwd)

 {

 ...

 }

}

@Entity

@Table(name="LOGINACCOUNT")

public class LoginAccount

{

 @Id

 private long id;

 private String firstName;

 private String lastName;

 @OneToOne(cascade={CascadeType.MERGE, CascadeType.PERSIST}, orphanRemoval=true)

 @JoinColumn(name="LOGIN_ID")

 private Login login;

 public LoginAccount(long id, String firstName, String lastName)

 {

 ...

 }

}

1 7 0 N a t i v e Q u e r y 1060

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The first thing to do is to select both LOGIN and LOGINACCOUNT columns in a single call, and
return instances of the 2 entities. So we define the following in the LoginAccount class

@SqlResultSetMappings({

 @SqlResultSetMapping(name="LOGIN_PLUS_ACCOUNT",

 entities={@EntityResult(entityClass=LoginAccount.class), @EntityResult(entityClass=Login.class)})

and we now execute the native query as

List<Object[]> result = em.createNativeQuery("SELECT P.ID, P.FIRSTNAME, P.LASTNAME, P.LOGIN_ID, L.ID, L.USERNAME, L.PASSWORD " +

 "FROM JPA_AN_LOGINACCOUNT P, JPA_AN_LOGIN L", "AN_LOGIN_PLUS_ACCOUNT").getResultList();

Iterator iter = result.iterator();

while (iter.hasNext())

{

 Object[] row = iter.next();

 LoginAccount acct = (LoginAccount)obj[0];

 Login login = (Login)obj[1];

 ...

}

Next thing to try is the same as above, returning 2 entities for a row, but here we explicitly define the
mapping of SQL column to the constructor parameter.

@SqlResultSetMapping(name="AN_LOGIN_PLUS_ACCOUNT_ALIAS", entities={

 @EntityResult(entityClass=LoginAccount.class, fields={@FieldResult(name="id", column="THISID"), @FieldResult(name="firstName", column="FN")}),

 @EntityResult(entityClass=Login.class, fields={@FieldResult(name="id", column="IDLOGIN"), @FieldResult(name="userName", column="UN")})

 })

and we now execute the native query as

List<Object[]> result = em.createNativeQuery("SELECT P.ID AS THISID, P.FIRSTNAME AS FN, P.LASTNAME, P.LOGIN_ID, " +

 "L.ID AS IDLOGIN, L.USERNAME AS UN, L.PASSWORD FROM JPA_AN_LOGINACCOUNT P, JPA_AN_LOGIN L", "AN_LOGIN_PLUS_ACCOUNT_ALIAS").getResultList();

Iterator iter = result.iterator();

while (iter.hasNext())

{

 Object[] row = iter.next();

 LoginAccount acct = (LoginAccount)obj[0];

 Login login = (Login)obj[1];

 ...

}

For our final example we will return each row as a non-entity class, defining how the columns map to
the constructor for the result class.

1 7 0 N a t i v e Q u e r y 1061

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

@SqlResultSetMapping(name="AN_LOGIN_PLUS_ACCOUNT_CONSTRUCTOR", classes={

 @ConstructorResult(targetClass=LoginAccountComplete.class,

 columns={@ColumnResult(name="FN"), @ColumnResult(name="LN"), @ColumnResult(name="USER"), @ColumnResult(name="PWD")}),

 })

with non-entity result class defined as

public class LoginAccountComplete

{

 String firstName;

 String lastName;

 String userName;

 String password;

 public LoginAccountComplete(String firstName, String lastName, String userName, String password)

 {

 ...

 }

 ...

}

and we execute the query like this

List result = em.createNativeQuery("SELECT P.FIRSTNAME AS FN, P.LASTNAME AS LN, L.USERNAME AS USER, L.PASSWORD AS PWD FROM " +

 "JPA_AN_LOGINACCOUNT P, JPA_AN_LOGIN L","AN_LOGIN_PLUS_ACCOUNT_CONSTRUCTOR").getResultList();

Iterator iter = result.iterator();

while (iter.hasNext())

{

 LoginAccountComplete acctCmp = (LoginAccountComplete)iter.next();

 ...

}

170.2 Named Native Query

With the JPA API you can either define a query at runtime, or define it in the MetaData/annotations
for a class and refer to it at runtime using a symbolic name. This second option means that the method
of invoking the query at runtime is much simplified. To demonstrate the process, lets say we have a
class called Product (something to sell in a store). We define the JPA Meta-Data for the class in the
normal way, but we also have some query that we know we will require, so we define the following in
the Meta-Data.

 <entity class="Product">

 ...

 <named-native-query name="PriceBelowValue"><![CDATA[

 SELECT NAME FROM PRODUCT WHERE PRICE < ?1

]]></named-native-query>

 </entity>

1 7 0 N a t i v e Q u e r y 1062

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

or using annotations

@Entity

@NamedNativeQuery(name="PriceBelowValue", query="SELECT NAME FROM PRODUCT WHERE PRICE < ?1")

public class Product {...}

So here we have a native query that will return the names of all Products that have a price less than
a specified value. This leaves us the flexibility to specify the value at runtime. So here we run our
named native query, asking for the names of all Products with price below 20 euros.

Query query = em.createNamedQuery("PriceBelowValue");

List results = query.setParameter(1, new Double(20.0)).getResultList();

1 7 1 S t o r e d P r o c e d u r e s 1063

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

171 Stored Procedures
...

171.1 JPA : Stored Procedures
The JPA 2.1 specification adds support for calling stored procedures through its API. It allows some
flexibility in the type of stored procedure being used, supporting IN/OUT/INOUT parameters as well
as result sets being returned. Obviously if a datastore does not support stored procedures then this
functionality will not apply.

You start off by creating a stored procedure query, like this, referencing the stored procedure name in
the datastore.

StoredProcedureQuery spq = em.createStoredProcedureQuery("PERSON_SP_1");

If we have any parameters in this stored procedure we need to register them, for example

spq.registerStoredProcedureParameter("PARAM1", String.class, ParameterMode.IN);

spq.registerStoredProcedureParameter("PARAM2", Integer.class, ParameterMode.OUT);

If you have any result class, or result set mapping then you can specify those in the
createStoredProcedureQuery call. Now we are ready to execute the query and access the results.

171.1.1 Simple execution, returning a result set

A common form of stored procedure will simply return a single result set. You execute such a
procedure as follows

List results = spq.getResultList();

or if expecting a single result, then

Object result = spq.getSingleResult();

171.1.2 Simple execution, returning output parameters

A common form of stored procedure will simply return output parameter(s). You execute such a
procedure as follows

spq.execute();

Object paramVal = spq.getOutputParameterValue("PARAM2");

or you can also access the output parameters via position (if specified by position).

1 7 1 S t o r e d P r o c e d u r e s 1064

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

171.1.3 Generalised execution, for multiple result sets

A more complicated, yet general, form of execution of the stored procedure is as follows

boolean isResultSet = spq.execute(); // returns true when we have a result set from the proc

List results1 = spq.getResultList(); // get the first result set

if (spq.hasMoreResults())

{

 List results2 = spq.getResultList(); // get the second result set

}

So the user can get hold of multiple result sets returned by their stored procedure.

171.2 Named Stored Procedure Queries
Just as with normal queries, you can also register a stored procedure query at development time and
then access it via name from the EntityManager. So we define one like this (not important on which
class it is defined)

@NamedStoredProcedureQuery(name="myTestProc", procedureName="MY_TEST_SP_1",

 parameters={@StoredProcedureParameter(name="PARAM1", type=String.class, mode=ParameterMode.IN})

@Entity

public class MyClass {...}

and then create the query from the EntityManager

StoredProcedureQuery spq = em.createNamedStoredProcedureQuery("myTestProc");

1 7 2 D e v e l o p m e n t G u i d e s 1065

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

172 Development Guides
...

172.1 Development Guides for JPA
The following development guides demonstrate the use of JPA using DataNucleus. If you have a
guide that you think would be useful in educating users in some concepts of JPA, please contribute it
via our website.

• Datastore Replication
• JavaEE Environments
• OSGi Environments
• Security
• Troubleshooting
• Performance Tuning
• Monitoring
• Logging
• Maven with DataNucleus
• Eclipse with DataNucleus
• IDEA with DataNucleus
• Netbeans with DataNucleus
• Eclipse Dali
• TomEE and DataNucleus

1 7 3 D a t a s t o r e R e p l i c a t i o n 1066

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

173 Datastore Replication
...

173.1 JPA : Datastore Replication

Many applications make use of multiple datastores. It is a common requirement to be able to replicate
parts of one datastore in another datastore. Obviously, depending on the datastore, you could make
use of the datastores own capabilities for replication. DataNucleus provides its own extension to
JPA to allow replication from one datastore to another. This extension doesn't restrict you to using 2
datastores of the same type. You could replicate from RDBMS to XML for example, or from MySQL
to HSQLDB.

You need to make sure you have the persistence property datanucleus.attachSameDatastore set
to false if using replication

Note that the case of replication between two RDBMS of the same type is usually way more
efficiently replicated using the capabilities of the datastore itself

The following sample code will replicate all objects of type Product and Employee from EMF1 to
EMF2. These EMFs are created in the normal way so, as mentioned above, EMF1 could be for a
MySQL datastore, and EMF2 for XML. By default this will replicate the complete object graphs
reachable from these specified types.

import org.datanucleus.api.jpa.JPAReplicationManager;

...

JPAReplicationManager replicator = new JPAReplicationManager(emf1, emf2);

replicator.replicate(new Class[]{Product.class, Employee.class});

1 7 4 J a v a E E E n v i r o n m e n t s 1067

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

174 JavaEE Environments
...

174.1 JPA : Usage of DataNucleus within a JavaEE environment
JPA is designed to allow easy deployment into a JavaEE container. The JavaEE container takes care
of integration of the JPA implementation (DataNucleus), so there is no JCA connector required.

Key points to remember when deploying your JPA application to use DataNucleus under JavaEE

• Define a JTA datasource for your persistence operations
• Define a non-JTA datasource for your schema and sequence operations. These are cross-

EntityManager and so need their own datasource that is not affected by transactions.
Individual guides for specific JavaEE servers are listed below. If you have a guide for some other
server, please notify us via the DataNucleus forum and it will be added to this list.

174.2 JBoss AS7

This guide was provided by Nicolas Seyvet. It is linked to from the JBoss docs.

JBoss AS7 is the latest JavaEE server from JBoss. Despite searching in multiple locations, I could
not find a comprehensive guide on how to switch from the default JBoss Hibernate JPA provider to
Datanucleus 3. If you try this guide, please PM the author (or add a comment) and let me know how it
worked out. Your feedback will be used to improve this guide. This guide is cross-referenced as part
of the JBoss JPA Reference Guide.

174.2.1 Download JBoss AS 7 and DataNucleus 3.2+

• JBoss : At the time I am writing this "How To", the latest JBoss AS available from the main
JBoss community site is 7.1.1.Final aka Brontes. In this guide, the latest 7.x SNAPSHOT was
used but the steps will work with any JBoss 7.x version.

• DataNucleus : Version 4.0.0 was used, from SourceForge.

174.2.2 Install JBoss AS 7

Install JBoss AS 7 by unzipping the downloaded JBoss zip file in the wanted folder to be used as the
JBoss home root folder (example: /local/jboss). From this point, the path where JBoss is unzipped will
be referred to as *$JBOSS_HOME*.

Note: JBoss AS 7 configuration is controlled by either standalone.xml ($JBOSS_HOME/standalone/
configuration) or domain.xml ($JBOSS_HOME/domain/configuration) depending on the operation
mode (standalone or domain) of the application server. The domain mode is typically used for
cases where the AS is deployed in a cluster environment. In this tutorial, a single AS instance is
used, as such, the standalone mode is selected and all configuration changes will be applied to the
"standalone.xlm" file.

174.2.2.1 Start JBoss

To start the server, use:

https://docs.jboss.org/author/display/AS72/JPA+Reference+Guide#JPAReferenceGuide-UsingDataNucleus
http://www.jboss.org/as7
http://www.jboss.org/as7
http://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 7 4 J a v a E E E n v i r o n m e n t s 1068

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

On Linux:

$ cd $JBOSS_HOME/bin/

$./standalone.sh

On Windows:

$ cd $JBOSS_HOME/bin/

$ standalone.bat

After a few seconds, a message should indicate the server is started.

17:23:00,251 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874: JBoss AS 7.2.0.Alpha1-SNAPSHOT "Steropes" started

 in 3717ms - Started 198 of 257 services (56 services are passive or on-demand)

To verify, access the administration GUI located at http://localhost:9990/, and expect to see a
"Welcome to AS 7" banner. On the first start up, a console will show that an admin user must first be
created in order to be able to access the management UI. Follow the steps and create a user.

On Linux:

$JBOSS_HOME/bin$ add-user.sh

On Windows:

$JBOSS_HOME/bin$ add-user.bat

174.2.2.2 Add a JDBC DataSource (Optional)

This step is only necessary if an RDBMS solution is used as a data store, or if external drivers are
required. This tutorial will use MySQL as the RDBMS storage, and the required drivers and data
source will be added. For more information, about data sources under JBoss AS 7, refer to the JBoss
docs

174.2.2.3 Add MySQL drivers

For MySQL, it is recommended to use Connector/J, which can be found here. Note that this tutorial
uses version 5.1.20. Note: JBoss uses OSGI to define a set of modules, further info about class
loading in JBoss. In short, the configuration files binds the services and the modules, defining what is
available in the class loader for a specific service or application.

While dropping the drivers in the $JBOSS_HOME/standalone/deployments directory works, this
approach is not recommended. The proper approach is to add the drivers by defining a new module
containing the required libraries. The full instructions are available under here.

Short walk through for MySQL:

• Get the drivers
• create a "mysql" directory under $JBOSS_HOME/modules/com/
• create a "main" directory under $JBOSS_HOME/modules/com/mysql

http://localhost:9990/
https://community.jboss.org/wiki/DataSourceConfigurationInAS7
https://community.jboss.org/wiki/DataSourceConfigurationInAS7
http://dev.mysql.com/downloads/connector/j/
https://docs.jboss.org/author/display/AS71/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS71/Class+Loading+in+AS7
https://community.jboss.org/wiki/DataSourceConfigurationInAS7#Installing_a_JDBC_driver_as_a_module

1 7 4 J a v a E E E n v i r o n m e n t s 1069

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Copy the "mysql-connector-java-5.1.20-bin.jar" drivers under $JBOSS_HOME/modules/com/
mysql/main

• Add a "module.xml" file under $JBOSS_HOME/modules/com/mysql/main

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.0" name="com.mysql">

 <resources>

 <resource-root path="mysql-connector-java-5.1.20-bin.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 </dependencies>

</module>

The name is important as it defines the module name and is used in the "standalone.xml"
configuration file. Now, let's say the URL to the MySQL database to be used is "jdbc:mysql://
localhost:3306/simple", there are three ways to add that to the server, either through the management
console at localhost or, by modifying the "standalone.xml" configuration file, or by using the
Command Line Interface (CLI).

Let's modify the "standalone.xml" file. Verify the AS is stopped. Open "standalone.xml" for editing.
Search for "subsystem xmlns="urn:jboss:domain:datasources:1.1", the section defines data sources
and driver references. Let's add our data source and drivers. Add the following in the datasources
section:

http://localhost:9990/console/App.html#datasources
http://localhost:9990/console/App.html#datasources
https://community.jboss.org/wiki/CommandLineInterface
https://community.jboss.org/wiki/CommandLineInterface

1 7 4 J a v a E E E n v i r o n m e n t s 1070

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<datasource jndi-name="java:/jdbc/simple" pool-name="MySQL-DS" enabled="true">

 <connection-url>jdbc:mysql://localhost:3306/simple</connection-url>

 <driver>com.mysql</driver>

 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>

 <pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>100</max-pool-size>

 <prefill>true</prefill>

 </pool>

 <security>

 <user-name>[A valid DB user name]</user-name>

 <password>[A valid DB password]</password>

 </security>

 <statement>

 <prepared-statement-cache-size>32</prepared-statement-cache-size>

 <share-prepared-statements>true</share-prepared-statements>

 </statement>

 </datasource>

 <datasource jta="false" jndi-name="java:/jdbc/simple-nonjta" pool-name="MySQL-DS-NonJTA" enabled="true">

 <connection-url>jdbc:mysql://localhost:3306/simple</connection-url>

 <driver>com.mysql</driver>

 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>

 <security>

 <user-name>[A valid DB user name]</user-name>

 <password>[A valid DB password]</password>

 </security>

 <statement>

 <share-prepared-statements>false</share-prepared-statements>

 </statement>

 </datasource>

The above defines two data sources (MySQL-DS and MySQL-DS-NonJTA) referring to the same
database. The difference between the two is that MySQL-DS has JTA enabled while MySQL-
DS-NonJTA does not. This is useful to separate operations during the database automated schema
generation phase. Any change to a schema should be made outside the scope of JTA. Many JDBC
drivers (for example) will fall apart (assorted type of SQLException) if you try to commit a
connection with DDL and SQL mixed, or SQL first then DDL after. Consequently it is recommended
to have a separate data source for such operations, hence using the non-jta-data-source.

In the drivers section, add:

<driver name="com.mysql" module="com.mysql">

 <xa-datasource-class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-datasource-class>

 </driver>

The above defines which drivers to use for the data sources MySQL-DS and MySQL-DS-NonJTA.
More info is available as part of the JBoss documentation, refer to the section describing how to setup
a new data source.

https://community.jboss.org/wiki/DataSourceConfigurationInAS7
https://community.jboss.org/wiki/DataSourceConfigurationInAS7

1 7 4 J a v a E E E n v i r o n m e n t s 1071

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

174.2.3 Add DataNucleus to JBoss

This step adds the DataNucleus libraries as a JBoss module.

• Create a directory to store the DataNucleus libraries, as $JBOSS_HOME/modules/org/
datanucleus/main

• Add the following jars from the lib directory of the datanucleus-accessplatform-full-deps ZIP
file lib directory : datanucleus-api-jpa-XXX.jar, datanucleus-core-XXX.jar, datanucleus-rdbms-
XXX.jar, datanucleus-jpa-query-XXX.jar

• Add a "module.xml" file in the $JBOSS_HOME/modules/org/datanucleus/main directory like
this

<module xmlns="urn:jboss:module:1.1" name="org.datanucleus">

 <dependencies>

 <module name="javax.api"/>

 <module name="javax.persistence.api"/>

 <module name="javax.transaction.api"/>

 <module name="javax.validation.api"/>

 </dependencies>

 <resources>

 <resource-root path="datanucleus-api-jpa-4.0.5.jar"/>

 <resource-root path="datanucleus-core-4.0.4.jar"/>

 <resource-root path="datanucleus-rdbms-4.0.6.jar"/>

 <resource-root path="datanucleus-jpa-query-4.0.4.jar"/>

 </resources>

</module>

At this point, all the JPA dependencies are resolved.

174.2.4 A simple example using DataNucleus JPA and JBoss AS7

Now you simply need to define persistence.xml and use JPA as you normally would. In order
to use DataNucleus as a persistence provider, the "persistence.xml" file must contain the
"jboss.as.jpa.providerModule" property. Using the datasources defined above, an example of a
"persistence.xml" file could be:

1 7 4 J a v a E E E n v i r o n m e n t s 1072

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

 <persistence-unit name="[Persistence Unit Name]" transaction-type="JTA">

 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>

 <!-- MySQL DS -->

 <jta-data-source>java:/jdbc/simple</jta-data-source>

 <non-jta-data-source>java:/jdbc/simple-nonjta</non-jta-data-source>

 <class>[Entities must be listed here]</class>

 <properties>

 <!-- Magic JBoss property for specifying the persistence provider -->

 <property name="jboss.as.jpa.providerModule" value="org.datanucleus"/>

 <!-- following is probably not useful... but it ensures we bind to the JTA transaction manager...-->

 <property name="datanucleus.jtaLocator" value="custom_jndi"/>

 <property name="datanucleus.jtaJndiLocation" value="java:/TransactionManager"/>

 <property name="datanucleus.autoCreateSchema" value="true"/>

 <property name="datanucleus.metadata.validate" value="false"/>

 <property name="datanucleus.validateTables" value="false"/>

 <property name="datanucleus.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

1 7 5 O S G i E n v i r o n m e n t s 1073

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

175 OSGi Environments
...

175.1 JPA : Usage of DataNucleus within an OSGi environment
DataNucleus jars are OSGi bundles, and as such, can be deployed in an OSGi environment. Being
an OSGi environment care must be taken with respect to class-loading. In particular the persistence
property datanucleus.primaryClassLoader will need setting. Please refer to the associated guides
for JDO to assist you further.

An important thing to note : any dependent jar that is required by DataNucleus needs to be OSGi
enabled. By this we mean the jar needs to have the MANIFEST.MF file including ExportPackage for
the packages required by DataNucleus. Failure to have this will result in ClassNotFoundException
when trying to load its classes.

The javax.persistence jar that is included in the DataNucleus distribution is OSGi-enabled.

When using DataNucleus in an OSGi environment you can set the persistence property
datanucleus.plugin.pluginRegistryClassName to org.datanucleus.plugin.OSGiPluginRegistry.

175.1.1 JPA and OSGi

In a non OSGi world the persitence provider implementation is loaded using the service provider
pattern. The full qualified name of the implementation is stored in a file under META-INF/services/
javax.persistence.spi.PersistenceProvider (inside the jar of the implementation) and each time
the persistence provider is required it gets loaded with a Class.forName using the name of the
implementing class found inside the META-INF/services/javax.persistence.spi.PersistenceProvider.
In the OSGi world that doesn't work. The bundle that needs to load the persistence provider
implementation cannot load META-INF/services/javax.persistence.spi.PersistenceProvider. A work
around is to copy that file inside each bundle that requires access to the peristence provider. Another
work around is to export the persistence provider as OSGi service. This is what the DataNucleus JPA
jar does.

Further reading available on this link

175.1.2 Sample using OSGi and JPA

Please make use of the OSGi sample. This provides a simple example that you can build and load
into such as Apache Karaf to demonstrate JPA persistence. Here we attempt to highlight the key
aspects specific to OSGi in this sample.

Model classes are written in the exact same way as you would for any application.

Creation of the EMF is specified in a persistence-unit as normal except that we need to provide two
overriding properties

 Map<Object, Object> overrideProps = new HashMap();

 overrideProps.put("datanucleus.primaryClassLoader", this.getClass().getClassLoader());

 overrideProps.put("datanucleus.plugin.pluginRegistryClassName", "org.datanucleus.plugin.OSGiPluginRegistry");

 EntityManagerFactory emf = Persistence.createEntityManagerFactory("PU", overrideProps);

so we have provided a class loader for the OSGi context of the application, and also specified that we
want to use the OSGiPluginRegistry.

http://jazoon.com/Portals/0/Content/slides/we_a7_1630-1650_ward.pdf
https://github.com/datanucleus/samples-jpa/tree/master/osgi_basic

1 7 5 O S G i E n v i r o n m e n t s 1074

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

All persistence and query operations using EntityManager etc thereafter are identical to what you
would use in a normal JSE/JEE application.

The pom.xml also defines the imports/exports for our OSGi application bundle, so look at this if
wanting guidance on what these could look like when using Maven and the "felix bundle" plugin.

If you read the file README.txt you can see basic instructions on how to deploy this application
into a fresh download of Apache Karaf, and run it. It makes uses of Spring DM to start the JPA
"application".

175.2 LocalContainerEntityManagerFactoryBean class for use in Virgo 3.0
OSGi environment
When using DataNucleus 3.x in a Virgo 3.0.x OSGi environment, which is essentially Eclipse
Equinox + Spring dm Server with Spring 3.0.5.RELEASE included, the following class is working for
me to use in your Spring configuration. You can use this class as a drop-in replacement for Spring's
org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean. It was inspired by the
code-ish sample at HOWTO Use Datanucleus with OSGi and Spring DM.

1 7 5 O S G i E n v i r o n m e n t s 1075

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

import java.util.HashMap;

import java.util.Map;

import javax.persistence.EntityManagerFactory;

import javax.persistence.PersistenceException;

import javax.persistence.spi.PersistenceUnitInfo;

import org.datanucleus.util.StringUtils;

import org.osgi.framework.Bundle;

import org.osgi.framework.BundleContext;

import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;

import org.springframework.osgi.context.BundleContextAware;

public class DataNucleusOsgiLocalContainerEntityManagerFactoryBean extends

 LocalContainerEntityManagerFactoryBean implements BundleContextAware

{

 public static final String DEFAULT_JPA_API_BUNDLE_SYMBOLIC_NAME = "org.datanucleus.api.jpa";

 public static final String DEFAULT_PERSISTENCE_PROVIDER_CLASS_NAME = "org.datanucleus.api.jpa.PersistenceProviderImpl";

 public static final String DEFAULT_OSGI_PLUGIN_REGISTRAR_CLASS_NAME = "org.datanucleus.plugin.OSGiPluginRegistry";

 public static final String DEFAULT_OSGI_PLUGIN_REGISTRAR_PROPERTY_NAME = "datanucleus.plugin.pluginRegistryClassName";

 protected BundleContext bundleContext;

 protected ClassLoader classLoader;

 protected String jpaApiBundleSymbolicName = DEFAULT_JPA_API_BUNDLE_SYMBOLIC_NAME;

 protected String persistenceProviderClassName = DEFAULT_PERSISTENCE_PROVIDER_CLASS_NAME;

 protected String osgiPluginRegistrarClassName = DEFAULT_OSGI_PLUGIN_REGISTRAR_CLASS_NAME;

 protected String osgiPluginRegistrarPropertyName = DEFAULT_OSGI_PLUGIN_REGISTRAR_PROPERTY_NAME;

 @Override

 public void setBundleContext(BundleContext bundleContext) {

this.bundleContext = bundleContext;

 }

 @Override

 protected EntityManagerFactory createNativeEntityManagerFactory() throws PersistenceException

 {

 ClassLoader original = getBeanClassLoader(); // save for later

 try

 {

 if (bundleContext != null)

 {

 // default

 String name = getPersistenceProviderClassName();

 PersistenceUnitInfo info = getPersistenceUnitInfo();

 if (info != null && !StringUtils.isEmpty(info.getPersistenceProviderClassName()))

 {

 // use class name of PU

 name = info.getPersistenceProviderClassName();

 }

 if (StringUtils.isEmpty(getJpaApiBundleSymbolicName()))

 {

 throw new IllegalStateException("no DataNucleus JPA API bundle symbolic name given");

 }

 // set the bean class loader to use it so that Spring can find the persistence provider class

 setBeanClassLoader(getBundleClassLoader(getJpaApiBundleSymbolicName(), name));

 // since we're in an OSGi environment by virtue of the use of this class, ensure a plugin registration mechanism is being used

 if (info == null || (info.getProperties() != null && !info.getProperties().containsKey(getOsgiPluginRegistrarPropertyName())))

 {

 Map<String, Object> map = getJpaPropertyMap();

 map = map == null ? new HashMap<String, Object>() : map;

 if (map.get(getOsgiPluginRegistrarPropertyName()) == null) {

 map.put(getOsgiPluginRegistrarPropertyName(), getOsgiPluginRegistrarClassName());

 }

 }

 }

 // now let Springy do its thingy

 return super.createNativeEntityManagerFactory();

 }

 finally

 {

 setBeanClassLoader(original); // revert bean classloader

 }

 }

 protected ClassLoader getBundleClassLoader(String bundleSymbolicName,String classNameToLoad)

 {

 ClassLoader classloader = null;

 Bundle[] bundles = bundleContext.getBundles();

 for (int x = 0; x < bundles.length; x++)

 {

 if (bundleSymbolicName.equals(bundles[x].getSymbolicName())) {

 try

 {

 classloader = bundles[x].loadClass(classNameToLoad).getClassLoader();

 }

 catch (ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 break;

 }

 }

 return classloader;

 }

 public String getJpaApiBundleSymbolicName() {

 return jpaApiBundleSymbolicName;

 }

 public void setJpaApiBundleSymbolicName(String jpaApiBundleSymbolicName) {

 this.jpaApiBundleSymbolicName = jpaApiBundleSymbolicName;

 }

 public String getPersistenceProviderClassName() {

 return persistenceProviderClassName;

 }

 public void setPersistenceProviderClassName(String persistenceProviderClassName) {

 this.persistenceProviderClassName = persistenceProviderClassName;

 }

 public String getOsgiPluginRegistrarClassName() {

 return osgiPluginRegistrarClassName;

 }

 public void setOsgiPluginRegistrarClassName(String osgiPluginRegistrarClassName) {

 this.osgiPluginRegistrarClassName = osgiPluginRegistrarClassName;

 }

 public String getOsgiPluginRegistrarPropertyName() {

 return osgiPluginRegistrarPropertyName;

 }

 public void setOsgiPluginRegistrarPropertyName(String osgiPluginRegistrarPropertyName) {

 this.osgiPluginRegistrarPropertyName = osgiPluginRegistrarPropertyName;

 }

}

1 7 6 P e r f o r m a n c e T u n i n g 1076

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

176 Performance Tuning
...

176.1 JPA : Performance Tuning
DataNucleus, by default, provides certain functionality. In particular circumstances some of this
functionality may not be appropriate and it may be desirable to turn on or off particular features to
gain more performance for the application in question. This section contains a few common tips

176.1.1 Enhancement

You should perform enhancement before runtime. That is, do not use java agent since it will enhance
classes at runtime, when you want responsiveness from your application.

176.1.2 Schema : Creation

DataNucleus provides 4 persistence properties datanucleus.schema.autoCreateAll,
datanucleus.schema.autoCreateTables, datanucleus.schema.autoCreateColumns, and
datanucleus.schema.autoCreateConstraints that allow creation of the datastore tables. This can
cause performance issues at startup. We recommend setting these to false at runtime, and instead
using SchemaTool to generate any required database schema before running DataNucleus (for
RDBMS, HBase, etc).

176.1.3 Schema : O/R Mapping

Where you have an inheritance tree it is best to add a discriminator to the base class so that it's
simple for DataNucleus to determine the class name for a particular row. For RDBMS : this results
in cleaner/simpler SQL which is faster to execute, otherwise it would be necessary to do a UNION
of all possible tables. For other datastores, a discriminator stores the key information necessary to
instantiate the resultant class on retrieval so ought to be more efficient also.

176.1.4 Schema : Validation

DataNucleus provides 3 persistence properties datanucleus.schema.validateTables,
datanucleus.schema.validateConstraints, datanucleus.schema.validateColumns that enforce
strict validation of the datastore tables against the Meta-Data defined tables. This can cause
performance issues at startup. In general this should be run only at schema generation, and should
be turned off for production usage. Set all of these properties to false. In addition there is a property
datanucleus.rdbms.CheckExistTablesOrViews which checks whether the tables/views that the
classes map onto are present in the datastore. This should be set to false if you require fast start-
up. Finally, the property datanucleus.rdbms.initializeColumnInfo determines whether the default
values for columns are loaded from the database. This property should be set to NONE to avoid
loading database metadata.

To sum up, the optimal settings with schema creation and validation disabled are:

1 7 6 P e r f o r m a n c e T u n i n g 1077

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

#schema creation

datanucleus.schema.autoCreateAll=false

datanucleus.schema.autoCreateTables=false

datanucleus.schema.autoCreateColumns=false

datanucleus.schema.autoCreateConstraints=false

#schema validation

datanucleus.schema.validateTables=false

datanucleus.schema.validateConstraints=false

datanucleus.schema.validateColumns=false

datanucleus.rdbms.CheckExistTablesOrViews=false

datanucleus.rdbms.initializeColumnInfo=None

176.1.5 EntityManagerFactory usage

Creation of EntityManagerFactory objects can be expensive and should be kept to a minimum.
Depending on the structure of your application, use a single factory per datastore wherever possible.
Clearly if your application spans multiple servers then this may be impractical, but should be borne in
mind.

You can improve startup speed by not specifying all classes in the persistence-unit so that they are
discovered at runtime. Obviously this may impact on persistence operations later if classes are not
known about.

Some RDBMS (such as Oracle) have trouble returning information across multiple catalogs/schemas
and so, when DataNucleus starts up and tries to obtain information about the existing tables, it can
take some time. This is easily remedied by specifying the catalog/schema name to be used - either for
the EMF as a whole (using the persistence properties datanucleus.Catalog, datanucleus.Schema)
or for the package/class using attributes in the MetaData. This subsequently reduces the amount of
information that the RDBMS needs to search through and so can give significant speed ups when you
have many catalogs/schemas being managed by the RDBMS.

176.1.6 Database Connection Pooling

DataNucleus, by default, will allocate connections when they are required. It then will close the
connection. In addition, when it needs to perform something via JDBC (RDBMS datastores) it will
allocate a PreparedStatement, and then discard the statement after use. This can be inefficient relative
to a database connection and statement pooling facility such as Apache DBCP. With Apache DBCP a
Connection is allocated when required and then when it is closed the Connection isn't actually closed
but just saved in a pool for the next request that comes in for a Connection. This saves the time taken
to establish a Connection and hence can give performance speed ups the order of maybe 30% or more.
You can read about how to enable connection pooling with DataNucleus in the Connection Pooling
Guide.

As an addendum to the above, you could also turn on caching of PreparedStatements. This can also
give a performance boost, depending on your persistence code, the JDBC driver and the SQL being
issued. Look at the persistence property datanucleus.connectionPool.maxStatements.

1 7 6 P e r f o r m a n c e T u n i n g 1078

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

176.1.7 EntityManager usage

Clearly the structure of your application will have a major influence on how you utilise an
EntityManager. A pattern that gives a clean definition of process is to use a different persistence
manager for each request to the data access layer. This reduces the risk of conflicts where one thread
performs an operation and this impacts on the successful completion of an operation being performed
by another thread. Creation of EM's is not an expensive process and use of multiple threads writing to
the same manager should be avoided.

Make sure that you always close the EntityManager after use. It releases all resources connected
to it, and failure to do so will result in memory leaks. Also note that when closing the EntityManager
if you have the persistence property datanucleus.detachOnClose set to true (when in an extended
PersistenceContext) this will detach all objects in the Level1 cache. Disable this if you don't need
these objects to be detached, since it can be expensive when there are many objects.

176.1.8 Persistence Process

To optimise the persistence process for performance you need to analyse what operations are
performed and when, to see if there are some features that you could disable to get the persistence you
require and omit what is not required. If you think of a typical transaction, the following describes the
process

• Start the transaction
• Perform persistence operations. If you are using "optimistic" transactions then all datastore

operations will be delayed until commit. Otherwise all datastore operations will default to being
performed immediately. If you are handling a very large number of objects in the transaction
you would benefit by either disabling "optimistic" transactions, or alternatively setting the
persistence property datanucleus.flush.mode to AUTO, or alternatively, do a manual flush every
"n" objects, like this

for (int i=0;i<1000000;i++)

{

 if ((i%10000)/10000 == 0 && i != 0)

 {

 pm.flush();

 }

 ...

}

• Commit the transaction

• All dirty objects are flushed.
• Objects enlisted in the transaction are put in the Level 2 cache. You can disable the level 2

cache with the persistence property datanucleus.cache.level2.type set to none
• Objects enlisted in the transaction are detached if you have the persistence property

datanucleus.detachAllOnCommit set to true (when using a transactional
PersistenceContext). Disable this if you don't need these objects to be detached at this point

176.1.9 Retrieval of object by identity

If you are retrieving an object by its identity and know that it will be present in the Level2 cache, for
example, you can set the persistence property datanucleus.findObject.validateWhenCached to false
and this will skip a separate call to the datastore to validate that the object exists in the datastore.

1 7 6 P e r f o r m a n c e T u n i n g 1079

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

176.1.10 Identity Generators

DataNucleus provides a series of value generators for generation of identity values. These can have an
impact on the performance depending on the choice of generator, and also on the configuration of the
generator.

• The max strategy should not really be used for production since it makes a separate DB call for
each insertion of an object. Something like the table strategy should be used instead. Better still
would be to choose auto and let DataNucleus decide for you.

• The sequence strategy allows configuration of the datastore sequence. The default can be non-
optimum. As a guide, you can try setting key-cache-size to 10

The auto identity generator value is the recommended choice since this will allow DataNucleus to
decide which identity generator is best for the datastore in use.

176.1.11 Collection/Map caching

DataNucleus has 2 ways of handling calls to SCO Collections/Maps. The original method was to
pass all calls through to the datastore. The second method (which is now the default) is to cache
the collection/map elements/keys/values. This second method will read the elements/keys/values
once only and thereafter use the internally cached values. This second method gives significant
performance gains relative to the original method. You can configure the handling of collections/maps
as follows :-

• Globally for the EMF - this is controlled by setting the persistence property
datanucleus.cache.collections. Set it to true for caching the collections (default), and false to
pass through to the datastore.

• For the specific Collection/Map - this overrides the global setting and is controlled by adding
a MetaData <collection> or <map> extension cache. Set it to true to cache the collection data,
and false to pass through to the datastore.

The second method also allows a finer degree of control. This allows the use of lazy loading of data,
hence elements will only be loaded if they are needed. You can configure this as follows :-

• Globally for the EMF - this is controlled by setting the property
datanucleus.cache.collections.lazy. Set it to true to use lazy loading, and set it to false to load
the elements when the collection/map is initialised.

• For the specific Collection/Map - this overrides the global EMF setting and is controlled by
adding a MetaData <collection> or <map> extension cache-lazy-loading. Set it to true to use
lazy loading, and false to load once at initialisation.

176.1.12 NonTransactional Reads (Reading persistent objects outside a transaction)

Performing non-transactional reads has advantages and disadvantages in performance and data
freshness in cache. The objects read are held cached by the EntityManager. The second time an
application requests the same objects from the EntityManager they are retrieved from cache. The time
spent reading the object from cache is minimum, but the objects may become stale and not represent
the database status. If fresh values need to be loaded from the database, then the user application
should first call refresh on the object.

Another disadvantage of performing non-transactional reads is that each operation realized opens a
new database connection, but it can be minimized with the use of connection pools, and also on some
of the datastore the (nontransactional) connection is retained.

1 7 6 P e r f o r m a n c e T u n i n g 1080

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

176.1.13 Accessing fields of persistent objects when not managed by a EntityManager

Reading fields of unmanaged objects (outside the scope of an EntityManager) is a trivial task, but
performed in a certain manner can determine the application performance. The objective here is not
give you an absolute response on the subject, but point out the benefits and drawbacks for the many
possible solutions.

• Use datanucleus.RetainValues=true. This is the default for JPA operation and will ensure that
after commit the fields of the object retain their values (rather than being nulled).

• Use detach method.

Object copy = null;

try

{

 EntityManager em = emf.createEntityManager();

 em.getTransaction().begin();

 //retrieve in some way the object, query, find, etc

 Object obj = em.find(MyClass.class, id);

 copy = em.detach(obj);

 em.getTransaction().commit();

}

finally

{

 em.close();

}

//read or change the detached object here

System.out.prinln(copy.getName());

• Use datanucleus.detachAllOnCommit=true. Dependent on the persistence context you may
automatically have this set.

Object obj = null;

try

{

 EntityManager pm = emf.createEntityManager();

 em.getTransaction().begin();

 //retrieve in some way the object, query, find, etc

 obj = em.find(MyClass.class, id);

 em.getTransaction().commit(); // Object "obj" is now detached

}

finally

{

 em.close();

}

//read or change the detached object here

System.out.prinln(obj.getName());

The bottom line is to not use detachment if instances will only be used to read values.

1 7 6 P e r f o r m a n c e T u n i n g 1081

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

176.1.14 Fetch Control

When fetching objects you have control over what gets fetched. This can have an impact if you are
then detaching those objects. With JPA the maximum fetch depth is -1 (unlimited). So with JPA you
ought to set it to the extent that you want to detach, or better still make use of DataNucleus fetch
groups to control the specific fields to detach.

176.1.15 Logging

I/O consumes a huge slice of the total processing time. Therefore it is recommended to reduce or
disable logging in production. To disable the logging set the DataNucleus category to OFF in the
Log4j configuration. See Logging for more information.

log4j.category.DataNucleus=OFF

176.2 General Comments on Overall Performance
In most applications, the performance of the persistence layer is very unlikely to be a bottleneck.
More likely the design of the datastore itself, and in particular its indices are more likely to have the
most impact, or alternatively network latency. That said, it is the DataNucleus projects' committed
aim to provide the best performance possible, though we also want to provide functionality, so there is
a compromise with respect to resource.

What is a benchmark? This is simply a series of persistence operations performing particular things e.g
persist n objects, or retrieve n objects. If those operations are representative of your application then the
benchmark is valid to you.

To find (or create) a benchmark appropriate to your project you need to determine the typical
persistence operations that your application will perform. Are you interested in persisting 100 objects
at once, or 1 million, for example? Then when you have a benchmark appropriate for that operation,
compare the persistence solutions.

The performance tuning guide above gives a good oversight of tuning capabilities, and also refer to
the following blog entry for our take on performance of DataNucleus AccessPlatform. And then the
later blog entry about how to tune for bulk operations

176.2.1.1 GeeCon JPA provider comparison (Jun 2012)

There is an interesting presentation on JPA provider performance that was presented at GeeCon 2012
by Patrycja Wegrzynowicz. This presentation takes the time to look at what operations the persistence
provider is performing, and does more than just "persist large number of flat objects into a single
table", and so gives you something more interesting to analyse. DataNucleus comes out pretty well in
many situations. You can also see the PDF here.

176.2.1.2 PolePosition (Dec 2008)

The PolePosition benchmark is a project on SourceForge to provide a benchmark of the write, read
and delete of different data structures using the various persistence tools on the market. JPOX was
run against this benchmark just before being renamed as DataNucleus and the following conclusions
about the benchmark were made.

• It is essential that tests for such as Hibernate and DataNucleus performance comparable things.
Some of the original tests had the "delete" simply doing a "DELETE FROM TBL" for Hibernate

http://datanucleus.wordpress.com/2011/03/performance-benchmarking.html
http://datanucleus.wordpress.com/2013/02/performance-effect-of-various-features.html
http://vimeo.com/44789644
http://s3-eu-west-1.amazonaws.com/presentations2012/50_presentation.pdf
http://www.polepos.org

1 7 6 P e r f o r m a n c e T u n i n g 1082

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

yet doing an Extent followed by delete each object individually for a JDO implementation.
This is an unfair comparison and in the source tree in JPOX SVN this is corrected. This fix was
pointed out to the PolePos SourceForge project but is not, as yet, fixed

• It is essential that schema is generated before the test, otherwise the test is no longer a
benchmark of just a persistence operation. The source tree in JPOX SVN assumes the schema
exists. This fix was pointed out to the PolePos SourceForge project but is not, as yet, fixed

• Each persistence implementation should have its own tuning options, and be able to add things
like discriminators since that is what would happen in a real application. The source tree in JPOX
SVN does this for JPOX running. Similarly a JDO implementation would tune the fetch groups
being used - this is not present in the SourceForge project but is in JPOX SVN.

• DataNucleus performance is considered to be significantly improved over JPOX particularly due
to batched inserts, and due to a rewritten query implementation that does enhanced fetching.

1 7 7 T r o u b l e s h o o t i n g 1083

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

177 Troubleshooting
...

177.1 JPA : Troubleshooting
This section describes the most common problems found when using DataNucleus in different
architectures. It describes symptoms and methods for collecting data for troubleshooting thus reducing
time to narrow the problem down and come to a solution.

177.2 Out Of Memory error

177.2.1 Introdution

Java allocate objects in the runtime memory data area called heap. The heap is created on virtual
machine start-up. The memory allocated to objects are reclaimed by Garbage Collectors when the
object is no longer referenced (See Object References). The heap may be of a fixed size, but can also
be expanded when more memory is needed or contracted when no longer needed. If a larger heap is
needed and it cannot be allocated an OutOfMemory is thrown. See JVM Specification.

Native memory is used by the JVM to perform its operations like creation of threads, sockets, jdbc
drivers using native code, libraries using native code, etc.

The maximum size of heap memory is determined by the -Xmx on the java command line. If Xmx is
not set, then the JVM decides for the maximum heap. The heap and native memory are limited to the
maximum memory allocated by the JVM. For example, if the JVM Xmx is set to 1GB and currently
use of native memory is 256MB then the heap can only use 768MB.

177.2.2 Causes

Common causes of out of memory:

• Not enough heap - The JVM needs more memory to deal with the application requirements.
Queries returning more objects than usual can be the cause.

• Not enough PermGen - The JVM needs more memory to load class definitions.
• Memory Leaks - The application does not close the resources, like the EntityManager or Queries,

and the JVM cannot reclaim the memory.
• Caching - Caching in the application or inside DataNucleus holding strong references to objects.
• Garbage Collection - If no full garbage collection is performed before the OutOfMemory it can

indicate a bug in the JVM Garbage Collector.
• Memory Fragmentation - A large object needs to be placed in the memory, but the JVM cannot

allocate a continous space to it because the memory is fragmented.
• JDBC driver - a bug in the JDBC driver not flushing resources or keeping large result sets in

memory.

177.2.3 Throubleshooting

177.2.3.1 JVM

Collect garbage collection information by adding -verbosegc to the java command line. The
verbosegc flag will print garbage collections to System output.

http://java.sun.com/developer/technicalArticles/ALT/RefObj/
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

1 7 7 T r o u b l e s h o o t i n g 1084

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

177.2.3.2 Sun JVM

The Sun JVM 1.4 or upper accepts the flag -XX:+PrintGCDetails, which prints detailed information
on Garbage Collections. The Sun JVM accepts the flag -verbose:class, which prints information about
each class loaded. This is useful to troubleshoot issues when OutOfMemory occurs due to lack of
space in the PermGen, or when NoClassDefFoundError or Linkage errors occurs. The Sun JVM 1.5
or upper accepts the flag -XX:+HeapDumpOnOutOfMemoryError, which creates a hprof binary file
head dump in case of an OutOfMemoryError. You can analyse the heap dump using tools such as jhat
or YourKit profiler.

177.2.3.3 DataNucleus

DataNucleus keeps in cache persistent objects using weak references by default. Enable debug mode
DataNucleus.Cache category to investigate the size of the cache in DataNucleus.

177.2.4 Resolution

DataNucleus can be configured to reduce the number of objects in cache. DataNucleus has cache for
persistent objects, metadata, datastore metadata, fields of type Collection or Map, or query results.

177.2.4.1 Query Results Cache

The query results hold strong references to the retrieved objects. If a query returns too many objects it
can lead to OutOfMemory error. To be able to query over large result sets, change the result set type
to scroll-insensitive using the persistence property datanucleus.rdbms.query.resultSetType.

177.2.4.2 EntityManager leak

It's also a best practice to ensure the EntityManager is closed in a try finally block. The
EntityManager has level 1 cache of persistence objects. See the following example:

EntityManager em = emf.createEntityManager();

EntityTransaction tx = em.getTransaction();

try

{

 tx.begin();

 //...

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

177.2.4.3 Cache for fields of Collection or Map

If collection or map fields have large number of elements, the caching of elements can be disabled
with the property datanucleus.cache.collections setting it to false.

1 7 7 T r o u b l e s h o o t i n g 1085

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

177.2.4.4 Persistent Objects cache

The cache control of persistent objects is described in the Cache Guide

177.2.4.5 Metadata and Datastore Metadata cache

The metadata and datastore metadata caching cannot be controled by the application, because the
memory required for it is insignificant.

177.2.4.6 OutOfMemory when persisting new objects

When persistent many objects, the flush operation should be periodically invoked. This will give a
hint to DataNucleus to flush the changes to the database and release the memory. In the below sample
the em.flush() operation is invoked on every 10,000 objects persisted.

EntityManager em = emf.createEntityManager();

EntityTransaction tx = em.getTransaction();

try

{

 tx.begin();

 for (int i=0; i<100000; i++)

 {

 Wardrobe wardrobe = new Wardrobe();

 wardrobe.setModel("3 doors");

 pm.makePersistent(wardrobe);

 if (i % 10000 == 0)

 {

 em.flush();

 }

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

177.3 Frozen application

177.3.1 Introdution

The application pauses for short or long periods or hangs during very long time.

177.3.2 Causes

Common causes:

• Database Locking - Database waiting other transactions to release locks due to deadlock or
locking contentions.

1 7 7 T r o u b l e s h o o t i n g 1086

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

• Garbage Collection Pauses - The garbage collection pauses the application to free memory
resources.

• Application Locking - Thread 2 waiting for resources locked by Thread 1.

177.3.3 Throubleshooting

177.3.3.1 Database locking

Use a database specific tool or database scripts to find the current database locks. In Microsoft SQL,
the stored procedured sp_lock can be used to examinate the database locks.

177.3.3.2 Query Timeout

To avoid database locking to hang the application when a query is performed, set the query timeout.
See Query Timeout.

177.3.3.3 Garbage Collection pauses

Check if the application freezes when the garbage collection starts. Add -verbosegc to the java
command line and restart the application.

177.3.3.4 Application Locking

Thread dumps are snapshots of the threads and monitors in the JVM. Thread dumps help to diagnose
applications by showing what the application is doing at a certain moment of time. To generate
Thread Dumps in MS Windows, press <ctrl><break> in the window running the java application. To
generate Thread Dumps in Linux/Unix, execute kill -3 process_id

To effectively diagnose a problem, take 5 Thread Dumps with 3 to 5 seconds internal between each
one. See An Introduction to Java Stack Traces.

177.4 Postgres

177.4.1 ERROR: schema does not exist

177.4.1.1 Problem

Exception org.postgresql.util.PSQLException: ERROR: schema "PUBLIC" does not exist raised
during transaction.

177.4.1.2 Troubleshooting

• Verify that the schema "PUBLIC" exists. If the name is lowercased ("public"), set
datanucleus.identifier.case=PreserveCase, since Postgres is case sensitive.

• Via pgAdmin Postgres tool, open a connection to the schema and verify it is acessible with
issuing a SELECT 1 statement.

http://java.sun.com/developer/technicalArticles/Programming/Stacktrace/

1 7 7 T r o u b l e s h o o t i n g 1087

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

177.5 Command Line Tools

177.5.1 CreateProcess error=87

177.5.1.1 Problem

CreateProcess error=87 when running DataNucleus tools under Microsoft Windows OS.

Windows has an (antiquated) command line length limitation, between 8K and 64K characters
depending on the Windows version, that may be triggered when running tools such as the Enhancer or
the SchemaTool with too many arguments.

177.5.1.2 Solution

When running such tools from Maven or Ant, disable the fork mechanism by setting the option
fork="false".

1 7 8 M o n i t o r i n g 1088

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

178 Monitoring
...

178.1 JPA : Monitoring
DataNucleus allows a user to enable various MBeans internally. These can then be used for
monitoring the number of datastore calls etc.

178.1.1 Via API

The simplest way to monitor DataNucleus is to use its API for monitoring. Internally there are several
MBeans (as used by JMX) and you can navigate to these to get the required information. To enable
this set the persistence property datanucleus.enableStatistics to true. There are then two sets of
statistics; one for the EMF and one for each EM. You access these as follows

JPAEntityManagerFactory dnemf = (JPAEntityManagerFactory)emf;

FactoryStatistics stats = dnemf.getNucleusContext().getStatistics();

... (access the statistics information)

JPAEntityManager dnem = (JPAEntityManager)em;

ManagerStatistics stats = dnem.getExecutionContext().getStatistics();

... (access the statistics information)

178.1.2 Using JMX

The MBeans used by DataNucleus can be accessed via JMX at runtime. More about JMX here.

An MBean server is bundled with Sun JRE since version 1.5, and you can easily activate DataNucleus
MBeans registration by creating your EMF with the persistence property datanucleus.jmxType as
default

Additionally, setting a few system properties are necessary for configuring the Sun JMX
implementation. The minimum properties required are the following:

• com.sun.management.jmxremote
• com.sun.management.jmxremote.authenticate
• com.sun.management.jmxremote.ssl
• com.sun.management.jmxremote.port=<port number>

Usage example:

java -cp TheClassPathInHere

 -Dcom.sun.management.jmxremote

 -Dcom.sun.management.jmxremote.authenticate=false

 -Dcom.sun.management.jmxremote.ssl=false

 -Dcom.sun.management.jmxremote.port=8001

 TheMainClassInHere

Once you start your application and DataNucleus is initialized you can browse DataNucleus MBeans
using a tool called jconsole (jconsole is distributed with the Sun JDK) via the URL:

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

1 7 8 M o n i t o r i n g 1089

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

service:jmx:rmi:///jndi/rmi://hostName:portNum/jmxrmi

Note that the mode of usage is presented in this document as matter of example, and by no means we
recommend to disable authentication and secured communication channels. Further details on the Sun
JMX implementation and how to configure it properly can be found in here.

DataNucleus MBeans are registered in a MBean Server when DataNucleus is started up (e.g. upon
JPA EMF instantiation). To see the full list of DataNucleus MBeans, refer to the javadocs.

To enable management using MX4J you must specify the persistence property datanucleus.jmxType
as mx4j when creating the EMF, and have the mx4j and mx4j-tools jars in the CLASSPATH.

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/management/runtime/package-summary.html

1 7 9 M a v e n w i t h D a t a N u c l e u s 1090

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

179 Maven with DataNucleus
...

179.1 DataNucleus JPA and Maven
Apache Maven is a project management and build tool that is quite common in organisations. Using
DataNucleus and JPA with Maven is simple since the DataNucleus jars, JPA API jar and Maven
plugin are present in the Maven central repository, so you don't need to define any repository to find
the artifacts.

The only remaining thing to do is identify which artifacts are required for your project, updating your
pom.xml accordingly.

<project>

 ...

 <dependencies>

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>javax.persistence</artifactId>

 <version>2.1.0</version>

 </dependency>

 </dependencies>

 ...

</project>

The only distinction to make here is that the above is for compile time since your persistence code (if
implementation independent) will only depend on the basic persistence API. At runtime you will need
the DataNucleus artifacts present also, so this becomes

http://maven.apache.org

1 7 9 M a v e n w i t h D a t a N u c l e u s 1091

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<project>

 ...

 <dependencies>

 ...

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>javax.persistence</artifactId>

 <version>2.1.0</version>

 </dependency>

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-core</artifactId>

 <version>(3.9,)</version>

 <scope>runtime</scope>

 </dependency>

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-api-jpa</artifactId>

 <version>(3.9,)</version>

 <scope>runtime</scope>

 </dependency>

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-rdbms</artifactId>

 <version>(3.9,)</version>

 <scope>runtime</scope>

 </dependency>

 </dependencies>

 ...

</project>

Obviously replace the datanucleus-rdbms jar with the jar for whichever datastore you are using. If
you are running the Maven "exec" plugin you may not need the "runtime" specifications.

Please note that you can alternatively use the convenience artifact for JPA+RDBMS (when using
RDBMS).

<project>

 ...

 <dependencies>

 ...

 <dependency>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-accessplatform-jpa-rdbms</artifactId>

 <version>4.0.0-release</version>

 <type>pom</type>

 </dependency>

 </dependencies>

 ...

</project>

1 7 9 M a v e n w i t h D a t a N u c l e u s 1092

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

179.1.1 Maven2 Plugin : Enhancement and SchemaTool

Now that you have the DataNucleus jars available to you, via the repositories, you want to perform
DataNucleus operations. The primary operations are enhancement and SchemaTool. If you want
to use the DataNucleus Maven plugin for enhancement or SchemaTool add the following to your
pom.xml

<project>

 ...

 <build>

 <plugins>

 <plugin>

 <groupId>org.datanucleus</groupId>

 <artifactId>datanucleus-maven-plugin</artifactId>

 <version>4.0.0-release</version>

 <configuration>

 <api>JPA</api>

 <persistenceUnitName>MyUnit</persistenceUnitName>

 <log4jConfiguration>${basedir}/log4j.properties</log4jConfiguration>

 <verbose>true</verbose>

 </configuration>

 <executions>

 <execution>

 <phase>process-classes</phase>

 <goals>

 <goal>enhance</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

</project>

Note that this plugin step will automatically try to bring in the latest applicable version of
datanucleus-core for use by the enhancer. It does this since you don't need to have datanucleus-core
in your POM for compilation/enhancement. If you want to use an earlier version then you need to add
exclusions to the maven-datanucleus-plugin

The executions part of that will make enhancement be performed immediately after compile, so
automatic. See also the Enhancer docs

To run the enhancer manually you do

mvn datanucleus:enhance

DataNucleus SchemaTool is achieved similarly, via

mvn datanucleus:schema-create

1 8 0 E c l i p s e w i t h D a t a N u c l e u s 1093

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

180 Eclipse with DataNucleus
...

180.1 DataNucleus JPA and Eclipse
Eclipse provides a powerful development environment for Java systems. DataNucleus provides
its own plugin for use within Eclipse, giving access to many features of DataNucleus from the
convenience of your development environment.

• Installation
• General Preferences
• Preferences : Enhancer
• Preferences : SchemaTool
• Enable DataNucleus Support
• Generate persistence.xml
• Run the Enhancer
• Run SchemaTool

180.1.1 Plugin Installation

The DataNucleus plugin requires Eclipse 3.1 or above. To obtain and install the DataNucleus Eclipse
plugin select Help -> Software Updates -> Find and Install On the panel that pops up select Search
for new features to install Select New Remote Site, and in that new window set the URL as http://
www.datanucleus.org/downloads/eclipse-update/ and the name as DataNucleus. Now select the site
it has added "DataNucleus", and click "Finish". This will then find the releases of the DataNucleus
plugin. Select the latest version of the DataNucleus Eclipse plugin. Eclipse then downloads and
installs the plugin. Easy!

180.1.2 Plugin configuration

The DataNucleus Eclipse plugin allows saving of preferences so that you get nice defaults for all
subsequent usage. You can set the preferences at two levels :-

• Globally for the Plugin : Go to Window -> Preferences -> DataNucleus Eclipse Plugin and see
the options below that

• For a Project : Go to {your project} -> Properties -> DataNucleus Eclipse Plugin and select
"Enable project-specific properties"

180.1.3 Plugin configuration - General

Firstly open the main plugin preferences page, set the API to be used, and configure the libraries
needed by DataNucleus. These are in addition to whatever you already have in your projects
CLASSPATH, but to run the DataNucleus Enhancer/SchemaTool you will require the following

• jdo-api.jar : since we use the JDO bytecode enhancement contract
• persistence-api.jar (or equivalent, e.g geronimo-specs-jpa)
• datanucleus-core
• datanucleus-api-jpa
• datanucleus-rdbms : for running SchemaTool
• Datastore driver jar (e.g JDBC) : for running SchemaTool

1 8 0 E c l i p s e w i t h D a t a N u c l e u s 1094

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Below this you can set the location of a configuration file for Log4j to use. This is useful when you
want to debug the Enhancer/SchemaTool operations.

180.1.4 Plugin configuration - Enhancer

Open the "Enhancer" page. You have the following settings

• Input file extensions : the enhancer accepts input defining the classes to be enhanced. With JPA
you will typically just specify the "persistence-unit" and list the classes and mapping files in
there. You can alternatively specify the suffices of files that define what will be enhanced (e.g
"class" for annotated classes, and "xml" for the ORM mapping file defining entities)

• Verbose : selecting this means you get much more output from the enhancer
• PersistenceUnit : Name of the persistence unit if enhancing a persistence-unit

1 8 0 E c l i p s e w i t h D a t a N u c l e u s 1095

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

180.1.5 Plugin configuration - SchemaTool

Open the "SchemaTool" page. You have the following settings

• Input file extensions : SchemaTool accepts input defining the classes to have their schema
generated. As for the enhancer, you can run this from a "persistence-unit"

• Verbose : selecting this means you get much more output from SchemaTool
• PersistenceUnit : Name of the persistence unit if running SchemaTool on a persistence-unit
• Datastore details : You can either specify the location of a properties file defining the location

of your datastore, or you supply the driver name, URL, username and password.

1 8 0 E c l i p s e w i t h D a t a N u c l e u s 1096

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

180.1.6 Enabling DataNucleus support

First thing to note is that the DataNucleus plugin is for Eclipse "Java project"s only. After having
configured the plugin you can now add DataNucleus support on your projects. Simply right-click on
your project in Package Explorer and select DataNucleus->"Add DataNucleus Support" from the
context menu.

1 8 0 E c l i p s e w i t h D a t a N u c l e u s 1097

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

1 8 0 E c l i p s e w i t h D a t a N u c l e u s 1098

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

180.1.7 Defining 'persistence.xml'

You can also use the DataNucleus plugin to generate a "persistence.xml" file adding all classes into a
single persistence-unit. You do this by right-clicking on a package in your project, and selecting the
option. The "persistence.xml" is generated under META-INF for the source folder. Please note that
the wizard will overwrite existing files without further notice.

180.1.8 Enhancing the classes

The DataNucleus Eclipse plugin allows you to easily byte-code enhance your classes using the
DataNucleus enhancer. Right-click on your project and select "Enable Auto-Enhancement" from
the DataNucleus context menu. Now that you have the enhancer set up you can enable enhancement
of your classes. The DataNucleus Eclipse plugin currently works by enabling/disabling automatic
enhancement as a follow on process for the Eclipse build step. This means that when you enable
it, every time Eclipse builds your classes it will then enhance the classes defined by the available
mapping files or what is annotated. Thereafter every time that you build your classes the JPA enabled
ones will be enhanced. Easy! Messages from the enhancement process will be written to the Eclipse
Console. Make sure that you have your Java files in a source folder, and that the binary class
files are written elsewhere If everything is set-up right, you should see the output below.

1 8 0 E c l i p s e w i t h D a t a N u c l e u s 1099

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

180.1.9 Generating your database schema

Once your classes have been enhanced you are in a position to create the database schema (assuming
you will be using a new schema - omit this step if you already have your schema). Click on the project
under "Package Explorer" and under "DataNucleus" there is an option "Run SchemaTool". This
brings up a panel to define your database location (URL, login, password etc). You enter these details
and the schema will be generated.

Messages from the SchemaTool process will be written to the Eclipse Console.

1 8 1 E c l i p s e D a l i 1100

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

181 Eclipse Dali
...

181.1 DataNucleus, Eclipse Dali, JPA
The Eclipse Dali project provides a powerful development environment for Java Persistence.
DataNucleus does not stay behind, and permits the powerful DataNucleus persistence engine to be
combined with Eclipse Dali for development.

In this (5 mins) tutorial, we use Eclipse Dali to reverse engineer a database table (ACCOUNT)
and generate a persistent class (Account). The DataNucleus Eclipse plug-in is used to enhance the
persistent class before running the application.

181.1.1 Requirements

For using the IDE, you must install Eclipse 3.2, Eclipse Dali and the DataNucleus Eclipse plug-in.
For using the DataNucleus runtime, see JPA annotations.

181.1.2 Demo

181.1.3 Source Code

The source code for org.jpox.demo.Account class.

http://www.eclipse.org/dali/

1 8 1 E c l i p s e D a l i 1101

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.jpox.demo;

import java.io.Serializable;

import java.math.BigDecimal;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

@Entity

public class Account implements Serializable {

 @Id

 @Column(name="ACCOUNT_ID")

 private BigDecimal accountId;

 private String username;

 private BigDecimal enabled;

 private static final long serialVersionUID = 1L;

 public Account() {

 super();

 }

 public BigDecimal getAccountId() {

 return this.accountId;

 }

 public void setAccountId(BigDecimal accountId) {

 this.accountId = accountId;

 }

 public String getUsername() {

 return this.username;

 }

 public void setUsername(String username) {

 this.username = username;

 }

 public BigDecimal getEnabled() {

 return this.enabled;

 }

 public void setEnabled(BigDecimal enabled) {

 this.enabled = enabled;

 }

}

The source code for org.jpox.demo.Main class.

1 8 1 E c l i p s e D a l i 1102

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.jpox.demo;

import java.math.BigDecimal;

import java.util.Random;

import javax.jdo.JDOHelper;

import javax.jdo.PersistenceManager;

import javax.jdo.PersistenceManagerFactory;

public class Main

{

 public static void main(String[] args)

 {

 java.io.InputStream is = Main.class.getClassLoader().getResourceAsStream("PMFProperties.properties");

 PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(is);

 PersistenceManager pm = pmf.getPersistenceManager();

 try

 {

 pm.currentTransaction().begin();

 Account acc = new Account();

 BigDecimal dec = new BigDecimal(new Random().nextInt());

 acc.setAccountId(dec);

 acc.setEnabled(BigDecimal.ONE);

 pm.makePersistent(acc);

 pm.currentTransaction().commit();

 System.out.println("Account "+dec+" was persisted.");

 }

 finally

 {

 if(pm.currentTransaction().isActive())

 {

 pm.currentTransaction().rollback();

 }

 pm.close();

 }

 }

}

The source code for PMFProperties.properties file.

1 8 1 E c l i p s e D a l i 1103

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

javax.jdo.PersistenceManagerFactoryClass=org.jpox.PersistenceManagerFactoryImpl

javax.jdo.option.ConnectionDriverName=oracle.jdbc.driver.OracleDriver

javax.jdo.option.ConnectionURL=jdbc:oracle:thin:@127.0.0.1:1521:XE

javax.jdo.option.ConnectionUserName=test

javax.jdo.option.ConnectionPassword=password

org.jpox.autoCreateSchema=true

org.jpox.metadata.validate=false

org.jpox.autoStartMechanism=XML

org.jpox.autoCreateTables=true

org.jpox.validateTables=false

org.jpox.autoCreateColumns=true

org.jpox.autoCreateConstraints=true

org.jpox.validateConstraints=false

org.jpox.autoCreateSchema=true

org.jpox.rdbms.stringDefaultLength=255

The database schema model.

CREATE TABLE Account (

 ACCOUNT_ID NUMBER NOT NULL,

 username VARCHAR2(255),

 enabled NUMBER(1 , 0) NOT NULL

);

ALTER TABLE Account ADD CONSTRAINT Account_PK PRIMARY KEY (ACCOUNT_ID);

1 8 2 T o m E E a n d D a t a N u c l e u s 1104

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

182 TomEE and DataNucleus
...

182.1 TomEE and DataNucleus JPA
Apache TomEE ships with OpenJPA/EclipseLink as the default JPA provider (depending on version
of TomEE), however any valid JPA provider can be used.

The basic steps are:

• Add the DataNucleus jars to <tomee-home>/lib/
• Configure the web-app or the server to use DataNucleus.

182.1.1 Webapp Configuration

Any web-app can specify the JPA provider it would like to use via the persistence.xml file, which can
be at any of the following locations in a webapp

• WEB-INF/persistence.xml of the .war file
• META-INF/persistence.xml in any jar located in WEB-INF/lib/

A single web-app may have many persistence.xml files and each may use whichever JPA provider it
needs. The following is an example of a fairly common persistence.xml for DataNucleus

<persistence version="1.0"

 xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

 <persistence-unit name="movie-unit">

 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>

 <jta-data-source>movieDatabase</jta-data-source>

 <non-jta-data-source>movieDatabaseUnmanaged</non-jta-data-source>

 <properties>

 <property name="javax.persistence.schema-generation.database.action" value="drop-and-create"/>

 </properties>

 </persistence-unit>

</persistence>

Note that you may have to set the persistence property datanucleus.jtaLocator and
datanucleus.jtaJndiLocation to find your JNDI data sources.

182.1.2 Server Configuration

The default JPA provider can be changed at the server level to favour DataNucleus over OpenJPA/
EclipseLink. Using the <tomee-home>/conf/system.properties file or any other valid means of
setting java.lang.System.getProperties(), the following standard properties can set the default for any
persistence.xml file.

1 8 2 T o m E E a n d D a t a N u c l e u s 1105

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

javax.persistence.provider

javax.persistence.transactionType

javax.persistence.jtaDataSource

javax.persistence.nonJtaDataSource

So, for example, DataNucleus can become the default provider via setting

CATALINA_OPTS=-Djavax.persistence.provider=org.datanucleus.api.jpa.PersistenceProviderImpl

You must of course add the DataNucleus libraries to <tomee-home>/lib/ for this to work.

182.1.3 DataNucleus libraries

Jars needed for DataNucleus 4.x:

Add:

<tomee-home>/lib/datanucleus-core-4.1.10.jar

<tomee-home>/lib/datanucleus-api-jpa-4.1.9.jar

<tomee-home>/lib/datanucleus-rdbms-4.1.12.jar

Remove (optional):

<tomee-home>/lib/asm-3.2.jar

<tomee-home>/lib/commons-lang-2.6.jar

<tomee-home>/lib/openjpa-2.2.0.jar (or EclipseLink)

<tomee-home>/lib/serp-1.13.1.jar

1 8 3 S a m p l e s 1106

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

183 Samples
...

183.1 Samples for JPA
The following samples demonstrate the use of JPA using DataNucleus. If you have a sample and
associated document that you think would be useful in educating users in some concepts of JPA,
please contribute it via our website.

• Tutorial with RDBMS
• Tutorial with ODF
• Tutorial with Excel
• Tutorial with MongoDB
• Tutorial with HBase
• Tutorial with Neo4J
• Tutorial with Cassandra
• JPA Tutorial (TheServerSide)

http://www.theserverside.com/tutorial/Slingshot-Yourself-Into-DataNucleus-21-and-JPA-20-with-this-Tutorial-for-RDBMS

1 8 4 T u t o r i a l w i t h R D B M S 1107

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

184 Tutorial with RDBMS
...

184.1 DataNucleus - Tutorial for JPA for RDBMS

184.1.1 Background

An application can be JPA-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the Dali Eclipse plugin coupled with the DataNucleus Eclipse
plugin. Alternatively the project could use Ant, Maven2 or some other build tool. In this case this
tutorial should be used as a guiding way for using DataNucleus in the application. The JPA process is
quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jpa-tutorial-*").

184.1.2 Step 0 : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore (in this case RDBMS). You can do this from SourceForge DataNucleus
download page. When you open the zip you will find DataNucleus jars in the lib directory, and
dependency jars in the deps directory.

184.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jpa/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 8 4 T u t o r i a l w i t h R D B M S 1108

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jpa.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jpa.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jpa.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 8 4 T u t o r i a l w i t h R D B M S 1109

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as an Entity so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object.

So this is what we do now. Note that we could define persistence using XML metadata, annotations.
In this tutorial we will use annotations.

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Inventory

{

 @Id

 String name = null;

 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.MERGE, CascadeType.DETACH})

 Set<Product> products = new HashSet();

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

public class Product

{

 @Id

 @GeneratedValue(strategy=GenerationType.TABLE)

 long id;

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @Entity and their primary key field(s)
with @Id In addition we defined a valueStrategy for Product field id so that it will have its values
generated automatically. In this tutorial we are using application identity which means that all objects
of these classes will have their identity defined by the primary key field(s). You can read more in
application identity when designing your systems persistence.

1 8 4 T u t o r i a l w i t h R D B M S 1110

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

184.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JPA tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="jdbc:hsqldb:mem:datanucleus"/>

 <property name="javax.persistence.jdbc.driver" value="org.hsqldb.jdbcDriver"/>

 <property name="javax.persistence.jdbc.user" value="sa"/>

 <property name="javax.persistence.jdbc.password" value=""/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

184.1.5 Step 3 : Enhance your classes

DataNucleus relies on the classes that you want to persist be enhanced to implement the interface
Persistable. You could write your classes manually to do this but this would be laborious.
Alternatively you can use a post-processing step to compilation that "enhances" your compiled
classes, adding on the necessary extra methods to make them Persistable. There are several ways to
do this, most notably at post-compile, or at runtime. We use the post-compile step in this tutorial.
DataNucleus JPA provides its own byte-code enhancer for instrumenting/enhancing your classes (in
datanucleus-core) and this is included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various source and
metadata files are stored

1 8 4 T u t o r i a l w i t h R D B M S 1111

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

src/main/java/org/datanucleus/samples/jpa/tutorial/Book.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jpa/tutorial/Book.class

target/classes/org/datanucleus/samples/jpa/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jpa/tutorial/Product.class

[when using Ant]

lib/persistence-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jpa.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jpa.jar:lib/persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jpa.jar;lib\persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances all classes defined in the persistence-unit "Tutorial". If you accidentally
omitted this step, at the point of running your application and trying to persist an object, you would
get a ClassNotPersistableException thrown. The use of the enhancer is documented in more detail in
the Enhancer Guide. The output of this step are a set of class files that represent persistable classes.

1 8 4 T u t o r i a l w i t h R D B M S 1112

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

184.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JPA is
performed via an EntityManager. This provides methods for persisting of objects, removal of objects,
querying for persisted objects, etc. This section gives examples of typical scenarios encountered in an
application.

The initial step is to obtain access to an EntityManager, which you do as follows

EntityManagerFactory emf = Persistence.createEntityManagerFactory("Tutorial");

EntityManager em = emf.createEntityManager();

So we created an EntityManagerFactory for our "persistence-unit" called "Tutorial" which we defined
above. Now that the application has an EntityManager it can persist objects. This is performed as
follows

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 em.persist(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Please note that the finally step is important in that it tidies up connections to the datastore and the
EntityManager.

Now we want to retrieve some objects from persistent storage, so we will use a "Query". In our case
we want access to all Product objects that have a price below 150.00 and ordering them in ascending
order.

1 8 4 T u t o r i a l w i t h R D B M S 1113

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Query q = pm.createQuery("SELECT p FROM Product p WHERE p.price < 150.00");

 List results = q.getResultList();

 Iterator iter = results.iterator();

 while (iter.hasNext())

 {

 Product p = (Product)iter.next();

 ... (use the retrieved object)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 // Find and delete all objects whose last name is 'Jones'

 Query q = em.createQuery("DELETE FROM Person p WHERE p.lastName = 'Jones'");

 int numberInstancesDeleted = q.executeUpdate();

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JPA book will provide many examples.

1 8 4 T u t o r i a l w i t h R D B M S 1114

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

184.1.7 Step 5 : Run your application

To run your JPA-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• The "persistence.xml" file (stored under META-INF/)
• Any ORM MetaData files for your persistable classes
• Any JDBC driver classes needed for accessing your datastore
• The JPA API JAR (defining the JPA interface)
• The DataNucleus Core, DataNucleus JPA API and DataNucleus RDBMS JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

Using Ant (you need the included persistence.xml to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/persistence-api.jar:lib/datanucleus-core.jar:lib/datanucleus-rdbms.jar:

 lib/datanucleus-api-jpa.jar:lib/{jdbc-driver}.jar:target/classes/:.

 org.datanucleus.samples.jpa.tutorial.Main

Manually on Windows :

java -cp lib\persistence-api.jar;lib\datanucleus-core.jar;lib\datanucleus-rdbms.jar;

 lib\datanucleus-api-jpa.jar;lib\{jdbc-driver}.jar;target\classes\;.

 org.datanucleus.samples.jpa.tutorial.Main

Output :

DataNucleus Tutorial with JPA

======================

Persisting products

Product and Book have been persisted

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

End of Tutorial

1 8 4 T u t o r i a l w i t h R D B M S 1115

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

184.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JPA and persist objects to an RDBMS.
Obviously this just scratches the surface of what you can do, and to use JPA requires minimal work
from the user. In this second part we show some further things that you are likely to want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

184.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema. We define this in
XML to separate schema information from persistence information. So we define a file META-INF/
orm.xml at the root of the CLASSPATH.

1 8 4 T u t o r i a l w i t h R D B M S 1116

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings>

 <description>DataNucleus JPA tutorial</description>

 <package>org.datanucleus.samples.jpa.tutorial</package>

 <entity class="org.datanucleus.samples.jpa.tutorial.Product" name="Product">

 <table name="JPA_PRODUCTS"/>

 <attributes>

 <id name="id">

 <generated-value strategy="TABLE"/>

 </id>

 <basic name="name">

 <column name="PRODUCT_NAME" length="100"/>

 </basic>

 <basic name="description">

 <column length="255"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Book" name="Book">

 <table name="JPA_BOOKS"/>

 <attributes>

 <basic name="isbn">

 <column name="ISBN" length="20"></column>

 </basic>

 <basic name="author">

 <column name="AUTHOR" length="40"/>

 </basic>

 <basic name="publisher">

 <column name="PUBLISHER" length="40"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Inventory" name="Inventory">

 <table name="JPA_INVENTORY"/>

 <attributes>

 <id name="name">

 <column name="NAME" length="40"></column>

 </id>

 <one-to-many name="products">

 <join-table name="JPA_INVENTORY_PRODUCTS">

 <join-column name="INVENTORY_ID_OID"/>

 <inverse-join-column name="PRODUCT_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

</entity-mappings>

1 8 4 T u t o r i a l w i t h R D B M S 1117

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

184.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the DataNucleus SchemaTool to generate the tables where these domain
objects will be persisted. DataNucleus RDBMS SchemaTool is a command line utility (it can be
invoked from Maven/Ant in a similar way to how the Enhancer is invoked). The first thing that you
need is to update the src/main/resources/META-INF/persistence.xml file with your database details.
Here we have a sample file (for HSQLDB) that contains

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="jdbc:hsqldb:mem:datanucleus"/>

 <property name="javax.persistence.jdbc.driver" value="org.hsqldb.jdbcDriver"/>

 <property name="javax.persistence.jdbc.user" value="sa"/>

 <property name="javax.persistence.jdbc.password" value=""/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus RDBMS SchemaTool. For our case above you would do something
like this

1 8 4 T u t o r i a l w i t h R D B M S 1118

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/persistence-api.jar:lib/datanucleus-core.jar:

 lib/datanucleus-rdbms.jar:lib/datanucleus-api-jpa.jar:lib/{jdbc_driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\persistence-api.jar;lib\datanucleus-core.jar;

 lib\datanucleus-rdbms.jar;lib\datanucleus-api-jpa.jar;lib\{jdbc_driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, indexes, and foreign keys for the classes defined in the
annotations and orm.xml Meta-Data file.

184.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 8 5 T u t o r i a l w i t h O D F 1119

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

185 Tutorial with ODF
...

185.1 DataNucleus - Tutorial for JPA for ODF

185.1.1 Background

An application can be JPA-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the Dali Eclipse plugin coupled with the DataNucleus Eclipse
plugin. Alternatively the project could use Ant, Maven2 or some other build tool. In this case this
tutorial should be used as a guiding way for using DataNucleus in the application. The JPA process is
quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jpa-tutorial-*").

185.1.2 Step 0 : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore (in this case ODF). You can do this from SourceForge DataNucleus
download page. When you open the zip you will find DataNucleus jars in the lib directory, and
dependency jars in the deps directory.

185.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jpa/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 8 5 T u t o r i a l w i t h O D F 1120

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jpa.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jpa.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jpa.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 8 5 T u t o r i a l w i t h O D F 1121

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as an Entity so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object.

So this is what we do now. Note that we could define persistence using XML metadata, annotations.
In this tutorial we will use annotations.

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Inventory

{

 @Id

 String name = null;

 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.MERGE, CascadeType.DETACH})

 Set<Product> products = new HashSet();

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

public class Product

{

 @Id

 @GeneratedValue(strategy=GenerationType.TABLE)

 long id;

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @Entity and their primary key field(s)
with @Id In addition we defined a valueStrategy for Product field id so that it will have its values
generated automatically. In this tutorial we are using application identity which means that all objects
of these classes will have their identity defined by the primary key field(s). You can read more in
application identity when designing your systems persistence.

1 8 5 T u t o r i a l w i t h O D F 1122

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

185.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JPA tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="odf:file:tutorial.ods"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

185.1.5 Step 3 : Enhance your classes

DataNucleus relies on the classes that you want to persist be enhanced to implement the interface
Persistable. You could write your classes manually to do this but this would be laborious.
Alternatively you can use a post-processing step to compilation that "enhances" your compiled
classes, adding on the necessary extra methods to make them Persistable. There are several ways to
do this, most notably at post-compile, or at runtime. We use the post-compile step in this tutorial.
DataNucleus JPA provides its own byte-code enhancer for instrumenting/enhancing your classes (in
datanucleus-core) and this is included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various files are stored

1 8 5 T u t o r i a l w i t h O D F 1123

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

src/main/java/org/datanucleus/samples/jpa/tutorial/Book.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jpa/tutorial/Book.class

target/classes/org/datanucleus/samples/jpa/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jpa/tutorial/Product.class

[when using Ant]

lib/persistence-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jpa.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jpa.jar:lib/persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jpa.jar;lib\persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances all class files specified in the persistence-unit "Tutorial". If you accidentally
omitted this step, at the point of running your application and trying to persist an object, you would
get a ClassNotPersistableException thrown. The use of the enhancer is documented in more detail in
the Enhancer Guide. The output of this step are a set of class files that represent persistable classes.

1 8 5 T u t o r i a l w i t h O D F 1124

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

185.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JPA is
performed via an EntityManager. This provides methods for persisting of objects, removal of objects,
querying for persisted objects, etc. This section gives examples of typical scenarios encountered in an
application.

The initial step is to obtain access to an EntityManager, which you do as follows

EntityManagerFactory emf = Persistence.createEntityManagerFactory("Tutorial");

EntityManager em = emf.createEntityManager();

So we created an EntityManagerFactory for our "persistence-unit" called "Tutorial" and an
EntityManager. Now that the application has an EntityManager it can persist objects. This is
performed as follows

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 em.persist(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Please note that the finally step is important in that it tidies up connections to the datastore and the
EntityManager.

Now we want to retrieve some objects from persistent storage, so we will use a "Query". In our case
we want access to all Product objects that have a price below 150.00 and ordering them in ascending
order.

1 8 5 T u t o r i a l w i t h O D F 1125

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Query q = pm.createQuery("SELECT p FROM Product p WHERE p.price < 150.00");

 List results = q.getResultList();

 Iterator iter = results.iterator();

 while (iter.hasNext())

 {

 Product p = (Product)iter.next();

 ... (use the retrieved object)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 // Find and delete all objects whose last name is 'Jones'

 Query q = em.createQuery("DELETE FROM Person p WHERE p.lastName = 'Jones'");

 int numberInstancesDeleted = q.executeUpdate();

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JPA book will provide many examples.

1 8 5 T u t o r i a l w i t h O D F 1126

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

185.1.7 Step 5 : Run your application

To run your JPA-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• The "persistence.xml" file (stored under META-INF/)
• Any ORM MetaData files for your persistable classes
• ODFDOM jar needed for accessing your datastore
• The JPA API JAR (defining the JPA interface)
• The DataNucleus Core, DataNucleus JPA API and DataNucleus ODF JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

Using Ant (you need the included persistence.xml to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/persistence-api.jar:lib/datanucleus-core.jar:lib/datanucleus-odf.jar:

 lib/datanucleus-api-jpa.jar:lib/odfdom.jar:target/classes/:.

 org.datanucleus.samples.jpa.tutorial.Main

Manually on Windows :

java -cp lib\persistence-api.jar;lib\datanucleus-core.jar;lib\datanucleus-odf.jar;

 lib\datanucleus-api-jpa.jar;lib\odfdom.jar;target\classes\;.

 org.datanucleus.samples.jpa.tutorial.Main

Output :

DataNucleus Tutorial with JPA

=============================

Persisting products

Product and Book have been persisted

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

End of Tutorial

1 8 5 T u t o r i a l w i t h O D F 1127

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

185.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JPA and persist objects to an ODF
spreadsheet. Obviously this just scratches the surface of what you can do, and to use JPA requires
minimal work from the user. In this second part we show some further things that you are likely to
want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

185.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema. We define this in
XML to separate schema information from persistence information. So we define a file META-INF/
orm.xml

1 8 5 T u t o r i a l w i t h O D F 1128

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings>

 <description>DataNucleus JPA tutorial</description>

 <package>org.datanucleus.samples.jpa.tutorial</package>

 <entity class="org.datanucleus.samples.jpa.tutorial.Product" name="Product">

 <table name="JPA_PRODUCTS"/>

 <attributes>

 <id name="id">

 <generated-value strategy="TABLE"/>

 </id>

 <basic name="name">

 <column name="PRODUCT_NAME" length="100"/>

 </basic>

 <basic name="description">

 <column length="255"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Book" name="Book">

 <table name="JPA_BOOKS"/>

 <attributes>

 <basic name="isbn">

 <column name="ISBN" length="20"></column>

 </basic>

 <basic name="author">

 <column name="AUTHOR" length="40"/>

 </basic>

 <basic name="publisher">

 <column name="PUBLISHER" length="40"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Inventory" name="Inventory">

 <table name="JPA_INVENTORY"/>

 <attributes>

 <id name="name">

 <column name="NAME" length="40"></column>

 </id>

 <one-to-many name="products">

 <join-table name="JPA_INVENTORY_PRODUCTS">

 <join-column name="INVENTORY_ID_OID"/>

 <inverse-join-column name="PRODUCT_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

</entity-mappings>

This file should be placed at the root of the CLASSPATH under META-INF.

1 8 5 T u t o r i a l w i t h O D F 1129

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

185.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the DataNucleus SchemaTool to generate the tables where these domain
objects will be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked
from Maven/Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to
update the src/java/META-INF/persistence.xml file with your database details. Here we have a sample
file (for HSQLDB) that contains

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="odf:file:tutorial.ods"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 8 5 T u t o r i a l w i t h O D F 1130

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/persistence-api.jar:lib/datanucleus-core.jar:

 lib/datanucleus-odf.jar:lib/datanucleus-api-jpa.jar:lib/{odfdom.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\persistence-api.jar;lib\datanucleus-core.jar;

 lib\datanucleus-odf.jar;lib\datanucleus-api-jpa.jar;lib\{odfdom.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, indexes, and foreign keys for the classes defined in the
annotations and orm.xml Meta-Data file.

185.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 8 6 T u t o r i a l w i t h E x c e l 1131

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

186 Tutorial with Excel
...

186.1 DataNucleus - Tutorial for JPA for Excel

186.1.1 Background

An application can be JPA-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the Dali Eclipse plugin coupled with the DataNucleus Eclipse
plugin. Alternatively the project could use Ant, Maven2 or some other build tool. In this case this
tutorial should be used as a guiding way for using DataNucleus in the application. The JPA process is
quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jpa-tutorial-*").

186.1.2 Step 0 : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore (in this case Excel). You can do this from SourceForge DataNucleus
download page. When you open the zip you will find DataNucleus jars in the lib directory, and
dependency jars in the deps directory.

186.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jpa/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 8 6 T u t o r i a l w i t h E x c e l 1132

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jpa.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jpa.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jpa.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 8 6 T u t o r i a l w i t h E x c e l 1133

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as an Entity so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object.

So this is what we do now. Note that we could define persistence using XML metadata, annotations.
In this tutorial we will use annotations.

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Inventory

{

 @Id

 String name = null;

 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.MERGE, CascadeType.DETACH})

 Set<Product> products = new HashSet();

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

public class Product

{

 @Id

 @GeneratedValue(strategy=GenerationType.TABLE)

 long id;

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @Entity and their primary key field(s)
with @Id In addition we defined a valueStrategy for Product field id so that it will have its values
generated automatically. In this tutorial we are using application identity which means that all objects
of these classes will have their identity defined by the primary key field(s). You can read more in
application identity when designing your systems persistence.

1 8 6 T u t o r i a l w i t h E x c e l 1134

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

186.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JPA tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="excel:file:tutorial.xls"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

186.1.5 Step 3 : Enhance your classes

DataNucleus relies on the classes that you want to persist be enhanced to implement the interface
Persistable. You could write your classes manually to do this but this would be laborious.
Alternatively you can use a post-processing step to compilation that "enhances" your compiled
classes, adding on the necessary extra methods to make them Persistable. There are several ways to
do this, most notably at post-compile, or at runtime. We use the post-compile step in this tutorial.
DataNucleus JPA provides its own byte-code enhancer for instrumenting/enhancing your classes (in
datanucleus-core) and this is included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various files are stored

1 8 6 T u t o r i a l w i t h E x c e l 1135

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

src/main/java/org/datanucleus/samples/jpa/tutorial/Book.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jpa/tutorial/Book.class

target/classes/org/datanucleus/samples/jpa/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jpa/tutorial/Product.class

[when using Ant]

lib/persistence-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jpa.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jpa.jar:lib/persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jpa.jar;lib\persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances all class files specified in the persistence-unit "Tutorial". If you accidentally
omitted this step, at the point of running your application and trying to persist an object, you would
get a ClassNotPersistableException thrown. The use of the enhancer is documented in more detail in
the Enhancer Guide. The output of this step are a set of class files that represent persistable classes.

1 8 6 T u t o r i a l w i t h E x c e l 1136

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

186.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JPA is
performed via an EntityManager. This provides methods for persisting of objects, removal of objects,
querying for persisted objects, etc. This section gives examples of typical scenarios encountered in an
application.

The initial step is to obtain access to an EntityManager, which you do as follows

EntityManagerFactory emf = Persistence.createEntityManagerFactory("Tutorial");

EntityManager em = emf.createEntityManager();

So we created an EntityManagerFactory for our "persistence-unit" called "Tutorial". Now that the
application has an EntityManager it can persist objects. This is performed as follows

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 em.persist(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Please note that the finally step is important in that it tidies up connections to the datastore and the
EntityManager.

Now we want to retrieve some objects from persistent storage, so we will use a "Query". In our case
we want access to all Product objects that have a price below 150.00 and ordering them in ascending
order.

1 8 6 T u t o r i a l w i t h E x c e l 1137

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Query q = pm.createQuery("SELECT p FROM Product p WHERE p.price < 150.00");

 List results = q.getResultList();

 Iterator iter = results.iterator();

 while (iter.hasNext())

 {

 Product p = (Product)iter.next();

 ... (use the retrieved object)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 // Find and delete all objects whose last name is 'Jones'

 Query q = em.createQuery("DELETE FROM Person p WHERE p.lastName = 'Jones'");

 int numberInstancesDeleted = q.executeUpdate();

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JPA book will provide many examples.

1 8 6 T u t o r i a l w i t h E x c e l 1138

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

186.1.7 Step 5 : Run your application

To run your JPA-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• The "persistence.xml" file (stored under META-INF/)
• Any ORM MetaData files for your persistable classes
• Apache POI jar needed for accessing your datastore
• The JDO API JAR (defining the JDO bytecode enhancement contract)
• The JPA API JAR (defining the JPA interface)
• The DataNucleus Core, DataNucleus JPA API and DataNucleus Excel JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

Using Ant (you need the included persistence.xml to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/persistence-api.jar:lib/datanucleus-core.jar:lib/datanucleus-excel.jar:

 lib/datanucleus-api-jpa.jar:lib/{poi_jars}:target/classes/:.

 org.datanucleus.samples.jpa.tutorial.Main

Manually on Windows :

java -cp lib\persistence-api.jar;lib\datanucleus-core.jar;lib\datanucleus-excel.jar;

 lib\datanucleus-api-jpa.jar;lib\{poi_jars};target\classes\;.

 org.datanucleus.samples.jpa.tutorial.Main

Output :

DataNucleus Tutorial with JPA

=============================

Persisting products

Product and Book have been persisted

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

End of Tutorial

1 8 6 T u t o r i a l w i t h E x c e l 1139

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

186.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JPA and persist objects to an Excel
spreadsheet. Obviously this just scratches the surface of what you can do, and to use JPA requires
minimal work from the user. In this second part we show some further things that you are likely to
want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

186.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema. We define this in
XML to separate schema information from persistence information. So we define a file orm.xml

1 8 6 T u t o r i a l w i t h E x c e l 1140

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings>

 <description>DataNucleus JPA tutorial</description>

 <package>org.datanucleus.samples.jpa.tutorial</package>

 <entity class="org.datanucleus.samples.jpa.tutorial.Product" name="Product">

 <table name="JPA_PRODUCTS"/>

 <attributes>

 <id name="id">

 <generated-value strategy="TABLE"/>

 </id>

 <basic name="name">

 <column name="PRODUCT_NAME" length="100"/>

 </basic>

 <basic name="description">

 <column length="255"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Book" name="Book">

 <table name="JPA_BOOKS"/>

 <attributes>

 <basic name="isbn">

 <column name="ISBN" length="20"></column>

 </basic>

 <basic name="author">

 <column name="AUTHOR" length="40"/>

 </basic>

 <basic name="publisher">

 <column name="PUBLISHER" length="40"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Inventory" name="Inventory">

 <table name="JPA_INVENTORY"/>

 <attributes>

 <id name="name">

 <column name="NAME" length="40"></column>

 </id>

 <one-to-many name="products">

 <join-table name="JPA_INVENTORY_PRODUCTS">

 <join-column name="INVENTORY_ID_OID"/>

 <inverse-join-column name="PRODUCT_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

</entity-mappings>

This file should be placed at the root of the CLASSPATH under META-INF.

1 8 6 T u t o r i a l w i t h E x c e l 1141

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

186.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the DataNucleus SchemaTool to generate the tables where these domain
objects will be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked
from Maven/Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to
update the src/java/META-INF/persistence.xml file with your database details. Here we have a sample
file (for HSQLDB) that contains

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <properties>

 <property name="javax.persistence.jdbc.url" value="excel:file:tutorial.xls"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 8 6 T u t o r i a l w i t h E x c e l 1142

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/persistence-api.jar:lib/datanucleus-core.jar:

 lib/datanucleus-excel.jar:lib/datanucleus-api-jpa.jar:lib/{poi.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\persistence-api.jar;lib\datanucleus-core.jar;

 lib\datanucleus-excel.jar;lib\datanucleus-api-jpa.jar;lib\{poi.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, indexes, and foreign keys for the classes defined in the
annotations and orm.xml Meta-Data file.

186.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 8 7 T u t o r i a l w i t h M o n g o D B 1143

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

187 Tutorial with MongoDB
...

187.1 DataNucleus - Tutorial for JPA for MongoDB

187.1.1 Background

An application can be JPA-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the Dali Eclipse plugin coupled with the DataNucleus Eclipse
plugin. Alternatively the project could use Ant, Maven2 or some other build tool. In this case this
tutorial should be used as a guiding way for using DataNucleus in the application. The JPA process is
quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jpa-tutorial-*").

187.1.2 Step 0 : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution
zip appropriate to your datastore (in this case MongoDB). You can do this from SourceForge
DataNucleus download page. When you open the zip you will find DataNucleus jars in the lib
directory, and dependency jars in the deps directory.

187.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jpa/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 8 7 T u t o r i a l w i t h M o n g o D B 1144

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jpa.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jpa.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jpa.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 8 7 T u t o r i a l w i t h M o n g o D B 1145

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as an Entity so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object.

So this is what we do now. Note that we could define persistence using XML metadata, annotations.
In this tutorial we will use annotations.

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Inventory

{

 @Id

 String name = null;

 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.MERGE, CascadeType.DETACH})

 Set<Product> products = new HashSet();

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

public class Product

{

 @Id

 @GeneratedValue(strategy=GenerationType.TABLE)

 long id;

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @Entity and their primary key field(s)
with @Id In addition we defined a valueStrategy for Product field id so that it will have its values
generated automatically. In this tutorial we are using application identity which means that all objects
of these classes will have their identity defined by the primary key field(s). You can read more in
application identity when designing your systems persistence.

1 8 7 T u t o r i a l w i t h M o n g o D B 1146

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

187.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JPA tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="mongodb:/nucleus1"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

187.1.5 Step 3 : Enhance your classes

DataNucleus relies on the classes that you want to persist be enhanced to implement the interface
Persistable. You could write your classes manually to do this but this would be laborious.
Alternatively you can use a post-processing step to compilation that "enhances" your compiled
classes, adding on the necessary extra methods to make them Persistable. There are several ways to
do this, most notably at post-compile, or at runtime. We use the post-compile step in this tutorial.
DataNucleus JPA provides its own byte-code enhancer for instrumenting/enhancing your classes (in
datanucleus-core) and this is included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various files are stored

src/java/org/datanucleus/samples/jpa/tutorial/Book.java

src/java/org/datanucleus/samples/jpa/tutorial/Inventory.java

src/java/org/datanucleus/samples/jpa/tutorial/Product.java

target/classes/org/datanucleus/samples/jpa/tutorial/Book.class

target/classes/org/datanucleus/samples/jpa/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jpa/tutorial/Product.class

[when using Ant]

lib/persistence-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jpa.jar

1 8 7 T u t o r i a l w i t h M o n g o D B 1147

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jpa.jar:lib/persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jpa.jar;lib\persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances all class files specified in the persistence-unit "Tutorial". If you accidentally
omitted this step, at the point of running your application and trying to persist an object, you would
get a ClassNotPersistableException thrown. The use of the enhancer is documented in more detail in
the Enhancer Guide. The output of this step are a set of class files that represent persistable classes.

187.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JPA is
performed via an EntityManager. This provides methods for persisting of objects, removal of objects,
querying for persisted objects, etc. This section gives examples of typical scenarios encountered in an
application.

The initial step is to obtain access to an EntityManager, which you do as follows

EntityManagerFactory emf = Persistence.createEntityManagerFactory("Tutorial");

EntityManager em = emf.createEntityManager();

So we created an EntityManagerFactory for our "persistence-unit" called "Tutorial". Now that the
application has an EntityManager it can persist objects. This is performed as follows

1 8 7 T u t o r i a l w i t h M o n g o D B 1148

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 em.persist(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Please note that the finally step is important in that it tidies up connections to the datastore and the
EntityManager.

Now we want to retrieve some objects from persistent storage, so we will use a "Query". In our case
we want access to all Product objects that have a price below 150.00 and ordering them in ascending
order.

1 8 7 T u t o r i a l w i t h M o n g o D B 1149

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Query q = pm.createQuery("SELECT p FROM Product p WHERE p.price < 150.00");

 List results = q.getResultList();

 Iterator iter = results.iterator();

 while (iter.hasNext())

 {

 Product p = (Product)iter.next();

 ... (use the retrieved object)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 // Find and delete all objects whose last name is 'Jones'

 Query q = em.createQuery("DELETE FROM Person p WHERE p.lastName = 'Jones'");

 int numberInstancesDeleted = q.executeUpdate();

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JPA book will provide many examples.

1 8 7 T u t o r i a l w i t h M o n g o D B 1150

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

187.1.7 Step 5 : Run your application

To run your JPA-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• The "persistence.xml" file (stored under META-INF/)
• Any ORM MetaData files for your persistable classes
• MongoDB Java driver jar needed for accessing your datastore
• The JPA API JAR (defining the JPA interface)
• The DataNucleus Core, DataNucleus JPA API and DataNucleus MongoDB JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

Using Ant (you need the included persistence.xml to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/persistence-api.jar:lib/datanucleus-core.jar:lib/datanucleus-mongodb.jar:

 lib/datanucleus-api-jpa.jar:lib/mongo-java.jar:target/classes/:.

 org.datanucleus.samples.jpa.tutorial.Main

Manually on Windows :

java -cp lib\persistence-api.jar;lib\datanucleus-core.jar;lib\datanucleus-mongodb.jar;

 lib\datanucleus-api-jpa.jar;lib\mongo-java.jar;target\classes\;.

 org.datanucleus.samples.jpa.tutorial.Main

Output :

DataNucleus Tutorial with JPA

=============================

Persisting products

Product and Book have been persisted

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

End of Tutorial

1 8 7 T u t o r i a l w i t h M o n g o D B 1151

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

187.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JPA and persist objects to a MongoDB
database. Obviously this just scratches the surface of what you can do, and to use JPA requires
minimal work from the user. In this second part we show some further things that you are likely to
want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

187.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema. We define this in
XML to separate schema information from persistence information. So we define a file orm.xml

1 8 7 T u t o r i a l w i t h M o n g o D B 1152

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings>

 <description>DataNucleus JPA tutorial</description>

 <package>org.datanucleus.samples.jpa.tutorial</package>

 <entity class="org.datanucleus.samples.jpa.tutorial.Product" name="Product">

 <table name="JPA_PRODUCTS"/>

 <attributes>

 <id name="id">

 <generated-value strategy="TABLE"/>

 </id>

 <basic name="name">

 <column name="PRODUCT_NAME"/>

 </basic>

 <basic name="description">

 <column name="Desc"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Book" name="Book">

 <table name="JPA_BOOKS"/>

 <attributes>

 <basic name="isbn">

 <column name="ISBN"/>

 </basic>

 <basic name="author">

 <column name="AUTHOR"/>

 </basic>

 <basic name="publisher">

 <column name="PUBLISHER"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Inventory" name="Inventory">

 <table name="JPA_INVENTORY"/>

 <attributes>

 <id name="name">

 <column name="NAME" length="40"></column>

 </id>

 <one-to-many name="products">

 </one-to-many>

 </attributes>

 </entity>

</entity-mappings>

This file should be placed at the root of the CLASSPATH under META-INF.

1 8 7 T u t o r i a l w i t h M o n g o D B 1153

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

187.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the DataNucleus SchemaTool to generate the tables where these domain
objects will be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked
from Maven/Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to
update the src/java/META-INF/persistence.xml file with your database details. Here we have a sample
file (for HSQLDB) that contains

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="mongodb:/nucleus1"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 8 7 T u t o r i a l w i t h M o n g o D B 1154

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/persistence-api.jar:lib/datanucleus-core.jar:

 lib/datanucleus-mongodb.jar:lib/datanucleus-api-jpa.jar:lib/{mongo-java.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\persistence-api.jar;lib\datanucleus-core.jar;

 lib\datanucleus-mongodb.jar;lib\datanucleus-api-jpa.jar;lib\{mongo-java.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, indexes, and foreign keys for the classes defined in the
annotations and orm.xml Meta-Data file.

187.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 8 8 T u t o r i a l w i t h H B a s e 1155

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

188 Tutorial with HBase
...

188.1 DataNucleus - Tutorial for JPA for HBase

188.1.1 Background

An application can be JPA-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the Dali Eclipse plugin coupled with the DataNucleus Eclipse
plugin. Alternatively the project could use Ant, Maven2 or some other build tool. In this case this
tutorial should be used as a guiding way for using DataNucleus in the application. The JPA process is
quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jpa-tutorial-*").

188.1.2 Step 0 : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore (in this case HBase). You can do this from SourceForge DataNucleus
download page. When you open the zip you will find DataNucleus jars in the lib directory, and
dependency jars in the deps directory.

188.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jpa/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 8 8 T u t o r i a l w i t h H B a s e 1156

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jpa.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jpa.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jpa.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 8 8 T u t o r i a l w i t h H B a s e 1157

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as an Entity so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object.

So this is what we do now. Note that we could define persistence using XML metadata, annotations.
In this tutorial we will use annotations.

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Inventory

{

 @Id

 String name = null;

 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.MERGE, CascadeType.DETACH})

 Set<Product> products = new HashSet();

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

public class Product

{

 @Id

 @GeneratedValue(strategy=GenerationType.TABLE)

 long id;

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @Entity and their primary key field(s)
with @Id In addition we defined a valueStrategy for Product field id so that it will have its values
generated automatically. In this tutorial we are using application identity which means that all objects
of these classes will have their identity defined by the primary key field(s). You can read more in
application identity when designing your systems persistence.

1 8 8 T u t o r i a l w i t h H B a s e 1158

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

188.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JPA tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="hbase:"/>

 </properties>

 </persistence-unit>

</persistence>

188.1.5 Step 3 : Enhance your classes

DataNucleus relies on the classes that you want to persist be enhanced to implement the interface
Persistable. You could write your classes manually to do this but this would be laborious.
Alternatively you can use a post-processing step to compilation that "enhances" your compiled
classes, adding on the necessary extra methods to make them Persistable. There are several ways to
do this, most notably at post-compile, or at runtime. We use the post-compile step in this tutorial.
DataNucleus JPA provides its own byte-code enhancer for instrumenting/enhancing your classes (in
datanucleus-core) and this is included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various files are stored

src/main/java/org/datanucleus/samples/jpa/tutorial/Book.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jpa/tutorial/Book.class

target/classes/org/datanucleus/samples/jpa/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jpa/tutorial/Product.class

[when using Ant]

lib/persistence-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jpa.jar

1 8 8 T u t o r i a l w i t h H B a s e 1159

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jpa.jar:lib/persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jpa.jar;lib\persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances all class files specified in the persistence-unit "Tutorial". If you accidentally
omitted this step, at the point of running your application and trying to persist an object, you would
get a ClassNotPersistableException thrown. The use of the enhancer is documented in more detail in
the Enhancer Guide. The output of this step are a set of class files that represent persistable classes.

188.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JPA is
performed via an EntityManager. This provides methods for persisting of objects, removal of objects,
querying for persisted objects, etc. This section gives examples of typical scenarios encountered in an
application.

The initial step is to obtain access to an EntityManager, which you do as follows

EntityManagerFactory emf = Persistence.createEntityManagerFactory("Tutorial");

EntityManager em = emf.createEntityManager();

So we created an EntityManagerFactory for our "persistence-unit" called "Tutorial". Now that the
application has an EntityManager it can persist objects. This is performed as follows

1 8 8 T u t o r i a l w i t h H B a s e 1160

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 em.persist(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Please note that the finally step is important in that it tidies up connections to the datastore and the
EntityManager.

Now we want to retrieve some objects from persistent storage, so we will use a "Query". In our case
we want access to all Product objects that have a price below 150.00 and ordering them in ascending
order.

1 8 8 T u t o r i a l w i t h H B a s e 1161

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Query q = pm.createQuery("SELECT p FROM Product p WHERE p.price < 150.00");

 List results = q.getResultList();

 Iterator iter = results.iterator();

 while (iter.hasNext())

 {

 Product p = (Product)iter.next();

 ... (use the retrieved object)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 // Find and delete all objects whose last name is 'Jones'

 Query q = em.createQuery("DELETE FROM Person p WHERE p.lastName = 'Jones'");

 int numberInstancesDeleted = q.executeUpdate();

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JPA book will provide many examples.

1 8 8 T u t o r i a l w i t h H B a s e 1162

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

188.1.7 Step 5 : Run your application

To run your JPA-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• The "persistence.xml" file (stored under META-INF/)
• Any ORM MetaData files for your persistable classes
• HBase/Hadoop jars needed for accessing your datastore
• The JPA API JAR (defining the JPA interface)
• The DataNucleus Core, DataNucleus JPA API and DataNucleus HBase JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

Using Ant (you need the included persistence.xml to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/persistence-api.jar:lib/datanucleus-core.jar:lib/datanucleus-hbase.jar:

 lib/datanucleus-api-jpa.jar:lib/{hbase_jars}:target/classes/:.

 org.datanucleus.samples.jpa.tutorial.Main

Manually on Windows :

java -cp lib\persistence-api.jar;lib\datanucleus-core.jar;lib\datanucleus-hbase.jar;

 lib\datanucleus-api-jpa.jar;lib\{hbase_jars};target\classes\;.

 org.datanucleus.samples.jpa.tutorial.Main

Output :

DataNucleus Tutorial with JPA

=============================

Persisting products

Product and Book have been persisted

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

End of Tutorial

1 8 8 T u t o r i a l w i t h H B a s e 1163

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

188.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JPA and persist objects to a HBase database.
Obviously this just scratches the surface of what you can do, and to use JPA requires minimal work
from the user. In this second part we show some further things that you are likely to want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

188.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema. We define this in
XML to separate schema information from persistence information. So we define a file orm.xml

1 8 8 T u t o r i a l w i t h H B a s e 1164

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings>

 <description>DataNucleus JPA tutorial</description>

 <package>org.datanucleus.samples.jpa.tutorial</package>

 <entity class="org.datanucleus.samples.jpa.tutorial.Product" name="Product">

 <table name="JPA_PRODUCTS"/>

 <attributes>

 <id name="id">

 <generated-value strategy="TABLE"/>

 </id>

 <basic name="name">

 <column name="PRODUCT_NAME" length="100"/>

 </basic>

 <basic name="description">

 <column length="255"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Book" name="Book">

 <table name="JPA_BOOKS"/>

 <attributes>

 <basic name="isbn">

 <column name="ISBN" length="20"></column>

 </basic>

 <basic name="author">

 <column name="AUTHOR" length="40"/>

 </basic>

 <basic name="publisher">

 <column name="PUBLISHER" length="40"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Inventory" name="Inventory">

 <table name="JPA_INVENTORY"/>

 <attributes>

 <id name="name">

 <column name="NAME" length="40"></column>

 </id>

 <one-to-many name="products">

 <join-table name="JPA_INVENTORY_PRODUCTS">

 <join-column name="INVENTORY_ID_OID"/>

 <inverse-join-column name="PRODUCT_ID_EID"/>

 </join-table>

 </one-to-many>

 </attributes>

 </entity>

</entity-mappings>

This file should be placed at the root of the CLASSPATH under META-INF.

1 8 8 T u t o r i a l w i t h H B a s e 1165

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

188.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the DataNucleus SchemaTool to generate the tables where these domain
objects will be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked
from Maven/Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to
update the src/java/META-INF/persistence.xml file with your database details. Here we have a sample
file (for HSQLDB) that contains

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="datanucleus.ConnectionURL" value="hbase:"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 <property name="datanucleus.schema.validateTables" value="false"/>

 <property name="datanucleus.schema.validateConstraints" value="false"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 8 8 T u t o r i a l w i t h H B a s e 1166

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/persistence-api.jar:lib/datanucleus-core.jar:

 lib/datanucleus-hbase.jar:lib/datanucleus-api-jpa.jar:lib/{hbase-jars}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\persistence-api.jar;lib\datanucleus-core.jar;

 lib\datanucleus-hbase.jar;lib\datanucleus-api-jpa.jar;lib\{hbase-jars}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, indexes, and foreign keys for the classes defined in the
annotations and orm.xml Meta-Data file.

188.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 8 9 T u t o r i a l w i t h N e o 4 j 1167

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

189 Tutorial with Neo4j
...

189.1 DataNucleus - Tutorial for JPA for Neo4j

189.1.1 Background

An application can be JPA-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the Dali Eclipse plugin coupled with the DataNucleus Eclipse
plugin. Alternatively the project could use Ant, Maven2 or some other build tool. In this case this
tutorial should be used as a guiding way for using DataNucleus in the application. The JPA process is
quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jpa-tutorial-*").

189.1.2 Step 0 : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution zip
appropriate to your datastore (in this case Neo4j, so get the full download). You can do this from
SourceForge DataNucleus download page. When you open the zip you will find DataNucleus jars in
the lib directory, and dependency jars in the deps directory.

189.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jpa/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 8 9 T u t o r i a l w i t h N e o 4 j 1168

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jpa.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jpa.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jpa.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 8 9 T u t o r i a l w i t h N e o 4 j 1169

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as an Entity so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object.

So this is what we do now. Note that we could define persistence using XML metadata, annotations.
In this tutorial we will use annotations.

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Inventory

{

 @Id

 String name = null;

 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.MERGE, CascadeType.DETACH})

 Set<Product> products = new HashSet();

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

public class Product

{

 @Id

 @GeneratedValue(strategy=GenerationType.TABLE)

 long id;

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @Entity and their primary key field(s)
with @Id In addition we defined a valueStrategy for Product field id so that it will have its values
generated automatically. In this tutorial we are using application identity which means that all objects
of these classes will have their identity defined by the primary key field(s). You can read more in
application identity when designing your systems persistence.

1 8 9 T u t o r i a l w i t h N e o 4 j 1170

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

189.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JPA tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="neo4j:testDB"/>

 </properties>

 </persistence-unit>

</persistence>

189.1.5 Step 3 : Enhance your classes

DataNucleus relies on the classes that you want to persist be enhanced to implement the interface
Persistable. You could write your classes manually to do this but this would be laborious.
Alternatively you can use a post-processing step to compilation that "enhances" your compiled
classes, adding on the necessary extra methods to make them Persistable. There are several ways to
do this, most notably at post-compile, or at runtime. We use the post-compile step in this tutorial.
DataNucleus JPA provides its own byte-code enhancer for instrumenting/enhancing your classes (in
datanucleus-core) and this is included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various files are stored

src/main/java/org/datanucleus/samples/jpa/tutorial/Book.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Inventory.java

src/main/java/org/datanucleus/samples/jpa/tutorial/Product.java

src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jpa/tutorial/Book.class

target/classes/org/datanucleus/samples/jpa/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jpa/tutorial/Product.class

[when using Ant]

lib/persistence-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jpa.jar

1 8 9 T u t o r i a l w i t h N e o 4 j 1171

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jpa.jar:lib/persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jpa.jar;lib\persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances all class files specified in the persistence-unit "Tutorial". If you accidentally
omitted this step, at the point of running your application and trying to persist an object, you would
get a ClassNotPersistableException thrown. The use of the enhancer is documented in more detail in
the Enhancer Guide. The output of this step are a set of class files that represent persistable classes.

189.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JPA is
performed via an EntityManager. This provides methods for persisting of objects, removal of objects,
querying for persisted objects, etc. This section gives examples of typical scenarios encountered in an
application.

The initial step is to obtain access to an EntityManager, which you do as follows

EntityManagerFactory emf = Persistence.createEntityManagerFactory("Tutorial");

EntityManager em = emf.createEntityManager();

So we created an EntityManagerFactory for our "persistence-unit" called "Tutorial", and an
EntityManager. Now that the application has an EntityManager it can persist objects. This is
performed as follows

1 8 9 T u t o r i a l w i t h N e o 4 j 1172

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 em.persist(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Please note that the finally step is important in that it tidies up connections to the datastore and the
EntityManager.

Now we want to retrieve some objects from persistent storage, so we will use a "Query". In our case
we want access to all Product objects that have a price below 150.00 and ordering them in ascending
order.

1 8 9 T u t o r i a l w i t h N e o 4 j 1173

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Query q = pm.createQuery("SELECT p FROM Product p WHERE p.price < 150.00");

 List results = q.getResultList();

 Iterator iter = results.iterator();

 while (iter.hasNext())

 {

 Product p = (Product)iter.next();

 ... (use the retrieved object)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 // Find and delete all objects whose last name is 'Jones'

 Query q = em.createQuery("DELETE FROM Person p WHERE p.lastName = 'Jones'");

 int numberInstancesDeleted = q.executeUpdate();

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JPA book will provide many examples.

1 8 9 T u t o r i a l w i t h N e o 4 j 1174

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

189.1.7 Step 5 : Run your application

To run your JPA-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• The "persistence.xml" file (stored under META-INF/)
• Any ORM MetaData files for your persistable classes
• Neo4J jar(s) needed for accessing your datastore
• The JPA API JAR (defining the JPA interface)
• The DataNucleus Core, DataNucleus JPA API and DataNucleus Neo4J JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

Using Ant (you need the included persistence.xml to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/persistence-api.jar:lib/datanucleus-core.jar:lib/datanucleus-neo4j.jar:

 lib/datanucleus-api-jpa.jar:lib/{neo4j-jars}:target/classes/:.

 org.datanucleus.samples.jpa.tutorial.Main

Manually on Windows :

java -cp lib\persistence-api.jar;lib\datanucleus-core.jar;lib\datanucleus-neo4j.jar;

 lib\datanucleus-api-jpa.jar;lib\{neo4j_jars};target\classes\;.

 org.datanucleus.samples.jpa.tutorial.Main

Output :

DataNucleus Tutorial with JPA

=============================

Persisting products

Product and Book have been persisted

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

End of Tutorial

1 8 9 T u t o r i a l w i t h N e o 4 j 1175

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

189.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JPA and persist objects to a Neo4J database.
Obviously this just scratches the surface of what you can do, and to use JPA requires minimal work
from the user. In this second part we show some further things that you are likely to want to do.

1. Step 6 : Controlling the schema.

189.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema. We define this in
XML to separate schema information from persistence information. So we define a file orm.xml

1 8 9 T u t o r i a l w i t h N e o 4 j 1176

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings>

 <description>DataNucleus JPA tutorial</description>

 <package>org.datanucleus.samples.jpa.tutorial</package>

 <entity class="org.datanucleus.samples.jpa.tutorial.Product" name="Product">

 <attributes>

 <id name="id">

 <generated-value strategy="AUTO"/>

 </id>

 <basic name="name">

 <column name="PRODUCT_NAME"/>

 </basic>

 <basic name="description">

 <column name="Desc"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Book" name="Book">

 <attributes>

 <basic name="isbn">

 <column name="ISBN"/>

 </basic>

 <basic name="author">

 <column name="AUTHOR"/>

 </basic>

 <basic name="publisher">

 <column name="PUBLISHER"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Inventory" name="Inventory">

 <attributes>

 <id name="name">

 <column name="NAME"/>

 </id>

 <one-to-many name="products">

 </one-to-many>

 </attributes>

 </entity>

</entity-mappings>

This file should be placed at the root of the CLASSPATH under META-INF.

189.2.2 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1177

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

190 Tutorial with Cassandra
...

190.1 DataNucleus - Tutorial for JPA for Cassandra

190.1.1 Background

An application can be JPA-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the Dali Eclipse plugin coupled with the DataNucleus Eclipse
plugin. Alternatively the project could use Ant, Maven2 or some other build tool. In this case this
tutorial should be used as a guiding way for using DataNucleus in the application. The JPA process is
quite straightforward.

1. Prerequisite : Download DataNucleus AccessPlatform
2. Step 1 : Define their persistence definition using Meta-Data.
3. Step 2 : Define the "persistence-unit"
4. Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).
5. Step 4 : Write your code to persist your objects within the DAO layer.
6. Step 5 : Run your application.

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jpa-tutorial-*").

190.1.2 Step 0 : Download DataNucleus AccessPlatform

You can download DataNucleus in many ways, but the simplest is to download the distribution
zip appropriate to your datastore (in this case Cassandra). You can do this from SourceForge
DataNucleus download page. When you open the zip you will find DataNucleus jars in the lib
directory, and dependency jars in the deps directory.

190.1.3 Step 1 : Take your model classes and mark which are persistable

For our tutorial, say we have the following classes representing a store of products for sale.

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jpa/tree/master/tutorial
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1178

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

package org.datanucleus.samples.jpa.tutorial;

public class Inventory

{

 String name = null;

 Set<Product> products = new HashSet();

 public Inventory(String name)

 {

 this.name = name;

 }

 public Set<Product> getProducts() {return products;}

}

package org.datanucleus.samples.jpa.tutorial;

public class Product

{

 long id;

 String name = null;

 String description = null;

 double price = 0.0;

 public Product(String name, String desc, double price)

 {

 this.name = name;

 this.description = desc;

 this.price = price;

 }

}

package org.datanucleus.samples.jpa.tutorial;

public class Book extends Product

{

 String author=null;

 String isbn=null;

 String publisher=null;

 public Book(String name, String desc, double price, String author,

 String isbn, String publisher)

 {

 super(name,desc,price);

 this.author = author;

 this.isbn = isbn;

 this.publisher = publisher;

 }

}

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1179

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book). Now
we need to be able to persist objects of all of these types, so we need to define persistence for them.
There are many things that you can define when deciding how to persist objects of a type but the
essential parts are

• Mark the class as an Entity so it is visible to the persistence mechanism
• Identify which field(s) represent the identity of the object.

So this is what we do now. Note that we could define persistence using XML metadata, annotations.
In this tutorial we will use annotations.

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Inventory

{

 @Id

 String name = null;

 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.MERGE, CascadeType.DETACH})

 Set<Product> products = new HashSet();

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

public class Product

{

 @Id

 @GeneratedValue(strategy=GenerationType.TABLE)

 long id;

 ...

}

package org.datanucleus.samples.jpa.tutorial;

@Entity

public class Book extends Product

{

 ...

}

Note that we mark each class that can be persisted with @Entity and their primary key field(s)
with @Id In addition we defined a valueStrategy for Product field id so that it will have its values
generated automatically. In this tutorial we are using application identity which means that all objects
of these classes will have their identity defined by the primary key field(s). You can read more in
application identity when designing your systems persistence.

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1180

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

190.1.4 Step 2 : Define the 'persistence-unit'

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the root of
the CLASSPATH. Like this

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- JPA tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="cassandra:"/>

 <property name="datanucleus.mapping.Schema" value="schema1"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 </properties>

 </persistence-unit>

</persistence>

190.1.5 Step 3 : Enhance your classes

DataNucleus relies on the classes that you want to persist be enhanced to implement the interface
Persistable. You could write your classes manually to do this but this would be laborious.
Alternatively you can use a post-processing step to compilation that "enhances" your compiled
classes, adding on the necessary extra methods to make them Persistable. There are several ways to
do this, most notably at post-compile, or at runtime. We use the post-compile step in this tutorial.
DataNucleus JPA provides its own byte-code enhancer for instrumenting/enhancing your classes (in
datanucleus-core) and this is included in the DataNucleus AccessPlatform zip file prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various files are stored

src/java/org/datanucleus/samples/jpa/tutorial/Book.java

src/java/org/datanucleus/samples/jpa/tutorial/Inventory.java

src/java/org/datanucleus/samples/jpa/tutorial/Product.java

target/classes/org/datanucleus/samples/jpa/tutorial/Book.class

target/classes/org/datanucleus/samples/jpa/tutorial/Inventory.class

target/classes/org/datanucleus/samples/jpa/tutorial/Product.class

[when using Ant]

lib/persistence-api.jar

lib/datanucleus-core.jar

lib/datanucleus-api-jpa.jar

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1181

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but
the downloadable JAR provides an Ant task, and a Maven2 project to do this for you.

Using Ant :

ant compile

Using Maven :

mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :

ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)

mvn datanucleus:enhance

Manually on Linux/Unix :

java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-jpa.jar:lib/persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jpa.jar;lib\persistence-api.jar

 org.datanucleus.enhancer.DataNucleusEnhancer

 -api JPA -pu Tutorial

[Command shown on many lines to aid reading - should be on single line]

This command enhances all class files specified in the persistence-unit "Tutorial". If you accidentally
omitted this step, at the point of running your application and trying to persist an object, you would
get a ClassNotPersistableException thrown. The use of the enhancer is documented in more detail in
the Enhancer Guide. The output of this step are a set of class files that represent persistable classes.

190.1.6 Step 4 : Write the code to persist objects of your classes

Writing your own classes to be persisted is the start point, but you now need to define which objects
of these classes are actually persisted, and when. Interaction with the persistence framework of JPA is
performed via an EntityManager. This provides methods for persisting of objects, removal of objects,
querying for persisted objects, etc. This section gives examples of typical scenarios encountered in an
application.

The initial step is to obtain access to an EntityManager, which you do as follows

EntityManagerFactory emf = Persistence.createEntityManagerFactory("Tutorial");

EntityManager em = emf.createEntityManager();

So we created an EntityManagerFactory for our "persistence-unit" called "Tutorial". Now that the
application has an EntityManager it can persist objects. This is performed as follows

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1182

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Inventory inv = new Inventory("My Inventory");

 Product product = new Product("Sony Discman", "A standard discman from Sony", 49.99);

 inv.getProducts().add(product);

 em.persist(inv);

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Please note that the finally step is important in that it tidies up connections to the datastore and the
EntityManager.

Now we want to retrieve some objects from persistent storage, so we will use a "Query". In our case
we want access to all Product objects that have a price below 150.00 and ordering them in ascending
order.

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1183

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 Query q = pm.createQuery("SELECT p FROM Product p WHERE p.price < 150.00");

 List results = q.getResultList();

 Iterator iter = results.iterator();

 while (iter.hasNext())

 {

 Product p = (Product)iter.next();

 ... (use the retrieved object)

 }

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

If you want to delete an object from persistence, you would perform an operation something like

Transaction tx = em.getTransaction();

try

{

 tx.begin();

 // Find and delete all objects whose last name is 'Jones'

 Query q = em.createQuery("DELETE FROM Person p WHERE p.lastName = 'Jones'");

 int numberInstancesDeleted = q.executeUpdate();

 tx.commit();

}

finally

{

 if (tx.isActive())

 {

 tx.rollback();

 }

 em.close();

}

Clearly you can perform a large range of operations on objects. We can't hope to show all of these
here. Any good JPA book will provide many examples.

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1184

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

190.1.7 Step 5 : Run your application

To run your JPA-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• The "persistence.xml" file (stored under META-INF/)
• Any ORM MetaData files for your persistable classes
• DataStax Cassandra Java driver jar needed for accessing your datastore
• The JPA API JAR (defining the JPA interface)
• The DataNucleus Core, DataNucleus JPA API and DataNucleus Cassandra JARs

After that it is simply a question of starting your application and all should be taken care of. You
can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL actually sent to the datastore as well as
many other parts of the persistence process.

Using Ant (you need the included persistence.xml to specify your database)

ant run

Using Maven:

mvn exec:java

Manually on Linux/Unix :

java -cp lib/persistence-api.jar:lib/datanucleus-core.jar:lib/datanucleus-cassandra.jar:

 lib/datanucleus-api-jpa.jar:lib/cassandra-driver.jar:target/classes/:.

 org.datanucleus.samples.jpa.tutorial.Main

Manually on Windows :

java -cp lib\persistence-api.jar;lib\datanucleus-core.jar;lib\datanucleus-cassandra.jar;

 lib\datanucleus-api-jpa.jar;lib\cassandra-driver.jar;target\classes\;.

 org.datanucleus.samples.jpa.tutorial.Main

Output :

DataNucleus Tutorial with JPA

=============================

Persisting products

Product and Book have been persisted

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

End of Tutorial

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1185

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

190.2 Part 2 : Next steps

In the above simple tutorial we showed how to employ JPA and persist objects to a Cassandra
database. Obviously this just scratches the surface of what you can do, and to use JPA requires
minimal work from the user. In this second part we show some further things that you are likely to
want to do.

1. Step 6 : Controlling the schema.
2. Step 7 : Generate the database tables where your classes are to be persisted using SchemaTool.

190.2.1 Step 6 : Controlling the schema

In the above simple tutorial we didn't look at controlling the schema generated for these classes. Now
let's pay more attention to this part by defining XML Metadata for the schema. We define this in
XML to separate schema information from persistence information. So we define a file orm.xml

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1186

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings>

 <description>DataNucleus JPA tutorial</description>

 <package>org.datanucleus.samples.jpa.tutorial</package>

 <entity class="org.datanucleus.samples.jpa.tutorial.Product" name="Product">

 <table name="JPA_PRODUCTS"/>

 <attributes>

 <id name="id">

 <generated-value strategy="TABLE"/>

 </id>

 <basic name="name">

 <column name="PRODUCT_NAME"/>

 </basic>

 <basic name="description">

 <column name="Desc"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Book" name="Book">

 <table name="JPA_BOOKS"/>

 <attributes>

 <basic name="isbn">

 <column name="ISBN"/>

 </basic>

 <basic name="author">

 <column name="AUTHOR"/>

 </basic>

 <basic name="publisher">

 <column name="PUBLISHER"/>

 </basic>

 </attributes>

 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Inventory" name="Inventory">

 <table name="JPA_INVENTORY"/>

 <attributes>

 <id name="name">

 <column name="NAME" length="40"></column>

 </id>

 <one-to-many name="products">

 </one-to-many>

 </attributes>

 </entity>

</entity-mappings>

This file should be placed at the root of the CLASSPATH under META-INF.

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1187

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

190.2.2 Step 7 : Generate any schema required for your domain classes

This step is optional, depending on whether you have an existing database schema. If you haven't,
at this point you can use the DataNucleus SchemaTool to generate the tables where these domain
objects will be persisted. DataNucleus SchemaTool is a command line utility (it can be invoked
from Maven/Ant in a similar way to how the Enhancer is invoked). The first thing that you need is to
update the src/java/META-INF/persistence.xml file with your database details. Here we have a sample
file (for HSQLDB) that contains

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd" version="2.0">

 <!-- Tutorial "unit" -->

 <persistence-unit name="Tutorial">

 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>

 <class>org.datanucleus.samples.jpa.tutorial.Product</class>

 <class>org.datanucleus.samples.jpa.tutorial.Book</class>

 <exclude-unlisted-classes/>

 <properties>

 <property name="javax.persistence.jdbc.url" value="cassandra:"/>

 <property name="datanucleus.mapping.Schema" value="schema1"/>

 <property name="datanucleus.schema.autoCreateAll" value="true"/>

 </properties>

 </persistence-unit>

</persistence>

Now we need to run DataNucleus SchemaTool. For our case above you would do something like this

1 9 0 T u t o r i a l w i t h C a s s a n d r a 1188

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

Using Ant :

ant createschema

Using Maven :

mvn datanucleus:schema-create

Manually on Linux/Unix :

java -cp target/classes:lib/persistence-api.jar:lib/datanucleus-core.jar:

 lib/datanucleus-cassandra.jar:lib/datanucleus-api-jpa.jar:lib/{cassandra-driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

Manually on Windows :

java -cp target\classes;lib\persistence-api.jar;lib\datanucleus-core.jar;

 lib\datanucleus-cassandra.jar;lib\datanucleus-api-jpa.jar;lib\{cassandra-driver.jar}

 org.datanucleus.store.schema.SchemaTool

 -create -api JPA -pu Tutorial

[Command shown on many lines to aid reading. Should be on single line]

This will generate the required tables, indexes, and foreign keys for the classes defined in the
annotations and orm.xml Meta-Data file.

190.2.3 Any questions?

If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you don't
find what you're looking for go to our Forums.

The DataNucleus Team

http://forum.datanucleus.org

1 9 1 R E S T A P I 1189

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

191 REST API
...

191.1 REST API
The DataNucleus REST API provides a RESTful interface to persist JSON objects to the datastore.
All entities are accessed, queried and stored as resources via well defined HTTP methods. This
API consists of a servlet that internally handles the persistence of objects (using JDO). Your POJO
classes need to be accessible from this servlet, and can use either JDO or JPA metadata (annotations
or XML). The REST API automatically exposes the persistent class in RESTful style, and requires
minimum configuration as detailed in the sections linked below.

191.2 Servlet Configuration

The configuration of the REST API consists in the deployment of jar libraries to the CLASSPATH
and the configuration of the servlet in the /WEB-INF/web.xml. After it's configured, all persistent
classes are automatically exposed via RESTful HTTP interface. You need to have enhanced versions
of the model classes in the CLASSPATH.

191.2.1 Libraries

DataNucleus REST API requires the libraries: datanucleus-core, datanucleus-api-rest, datanucleus-
api-jdo, jdo-api, as well as datanucleus-rdbms (or whichever datastore you wish to persist to if not
RDBMS). You would also require JPA API jar if using JPA metadata (XML/annotations) in your
model classes. In WAR files, these libraries are deployed under the folder /WEB-INF/lib/.

191.2.2 web.xml

The DataNucleus REST Servlet class implementation is org.datanucleus.api.rest.RestServlet. It has to
be configured in the /WEB-INF/web.xml file, and it takes one initialisation parameter.

Parameter Description

persistence-context Name of a PMF (if using jdoconfig.xml), or the name of
a persistence-unit (if using persistence.xml) accessible
to the servlet

1 9 1 R E S T A P I 1190

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5">

 <servlet>

 <servlet-name>DataNucleus</servlet-name>

 <servlet-class>org.datanucleus.api.rest.RestServlet</servlet-class>

 <init-param>

 <param-name>persistence-context</param-name>

 <param-value>myPMFName</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>DataNucleus</servlet-name>

 <url-pattern>/dn/*</url-pattern>

 </servlet-mapping>

...

</web-app>

changing myPMFName to the name of your PMF, or the name of your persistence-unit, and changing
/dn/* to the URL pattern where you want DataNucleus REST API calls to be answered.

191.3 HTTP Methods

The persistence to the datastore in your application is performed via HTTP methods as following:

Method Operation URL format Return Arguments

POST Insert object /{full-class-name} The JSON Object is
returned.

The JSON Object is
passed in the HTTP
Content.

PUT Update object /{full-class-name}/
{primary key}

The JSON Object is
returned.

The JSON Object
is passed in the
HTTP Content.
The primary-key
is specified in the
URL if the PK is
application-identity
single field or if it is
datastore-identity

DELETE Delete object /{full-class-name}/
{primary key}

The primary key
fields are passed in
the HTTP Content
(JSONObject) if the
PK uses multiple PK
fields, otherwise in
the URL.

1 9 1 R E S T A P I 1191

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

DELETE Delete all objects of
type

/{full-class-name}

GET Fetch all objects of
type

/{full-class-name}[?
fetchGroup={fetchGroupName}]
[&maxFetchDepth={depth}]

JSON Array of
JSON objects

GET Fetch a single object /{full-class-name}/
{primary key}[?
fetchGroup={fetchGroupName}]
[&maxFetchDepth={depth}]

A JSON object The primary key
fields are passed in
the HTTP Content
(JSONObject) if the
PK uses multiple PK
fields, otherwise in
the URL

GET Query objects via
a filter. Returns
a JSON Array of
objects

/{full-class-name}?
[filter={filter}]
[&fetchGroup={fetchGroupName}]
[&maxFetchDepth={depth}]

JSON Array of
JSON objects

Filter component of
a JDOQL query

GET Query objects via
JDOQL. Returns
a JSON Array of
objects

/jdoql?
query={JDOQL-
single-string-query}
[&fetchGroup={fetchGroupName}]
[&maxFetchDepth={depth}]

JSON Array of
JSON objects

JDOQL single string
query

GET Query objects via
JPQL. Returns
a JSON Array of
objects

/jpql?query={JPQL-
single-string-query}
[&fetchGroup={fetchGroupName}]
[&maxFetchDepth={depth}]

JSON Array of
JSON objects

JPQL single string
query

HEAD Validates if an
object exists

/{full-class-name}/
{primary key}

The primary key
fields are passed in
the HTTP Content
(JSONObject) if the
PK uses multiple PK
fields, otherwise in
the URL

HEAD Validates if an
object exists

/{full-class-name}?
filter={filter}

Object is uniquely
defined using the
filter.

191.4 Example REST Usages
Note that the URL in all of these examples assumes you have "/dn/*" in your web.xml configuration.

191.4.1 Insert a new object of class using application identity

This inserts a Greeting object. The returned object will have the "id" field set.

POST http://localhost/dn/mydomain.Greeting

{"author":null,

 "content":"test insert",

 "date":1239213923232}

Response:

1 9 1 R E S T A P I 1192

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

{"author":null,

 "content":"test insert",

 "date":1239213923232,

 "id":1}

191.4.2 Insert a new object with related (new) object

This inserts a User object and an Account object (for that user).

POST http://localhost/dn/mydomain.User

{"id":"bert",

 "name":"Bert Smith",

 "account":{"class":"mydomain.model.SimpleAccount",

 "id":1,

 "type":"Basic"}

}

Note that the "class" attribute specified for the related object is an artificial discriminator so that
DataNucleus REST knows what type to persist on the server. If the Account type (referred to by
User.account) has no subclasses then "class" is not required and it will persist an Account object.

191.4.3 Insert a new object of class using datastore identity

This inserts a Person object. The returned object will have the "_id" property set.

POST http://localhost/dn/mydomain.Person

{"firstName":"Joe",

 "lastName":"User",

 "age":15}

Response:

{"firstName":"Joe",

 "lastName":"User",

 "age":15,

 "_id":2}

191.4.4 Update an object of class using application identity

This updates a Greeting object with id=1, updating the "content" field only.

PUT http://localhost/dn/mydomain.Greeting/1

{"content":"test update"}

191.4.5 Update an object using datastore identity

This updates a Person object with identity of 2, updating the "age" field only.

1 9 1 R E S T A P I 1193

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

PUT http://localhost/dn/mydomain.Person/2

{"age":23}

191.4.6 Fetch all objects of class using application identity

This gets the Extent of Greeting objects.

GET http://localhost/dn/mydomain.Greeting

Response:

[{"author":null,

 "content":"test",

 "date":1239213624216,

 "id":1},

 {"author":null,

 "content":"test2",

 "date":1239213632286,

 "id":2}]

191.4.7 Fetch object with id 2 using datastore identity

GET http://localhost/dn/mydomain.Person/2

Response:

{"firstName":"Joe",

 "lastName":"User",

 "age":23,

 "_id":2}

Note that it replies with a JSONObject that has "_id" property representing the datastore id.

191.4.8 Query object of class using application identity

This performs the JDOQL query

SELECT FROM mydomain.Greeting WHERE content == 'test'

GET http://localhost/dn/mydomain.Greeting?content=='test'

Response:

1 9 1 R E S T A P I 1194

© 2 0 1 7 , D a t a N u c l e u s • A L L R I G H T S R E S E R V E D .

[{"author":null,

 "content":"test",

 "date":1239213624216,

 "id":1}]

191.4.9 Fetch object using Application PrimaryKey Class (JSON)

GET http://localhost/dn/google.maps.Markers/{"class":"com.google.appengine.api.datastore.Key","id":1001,"kind":"Markers"}

Response:

{"class":"google.maps.Markers",

 "key":{"class":"com.google.appengine.api.datastore.Key",

 "id":1001,

 "kind":"Markers"

 },

 "markers":[

 {"class":"google.maps.Marker",

 "html":"Paris",

 "key":{"class":"com.google.appengine.api.datastore.Key",

 "id":1,

 "kind":"Marker",

 "parent":{"class":"com.google.appengine.api.datastore.Key",

 "id":1001,

 "kind":"Markers"

 }

 },

 "lat":48.862222,

 "lng":2.351111

 }

]

}

	Table of Contents
	General
	What's New
	Upgrade Migration
	Getting Started
	Dependencies
	Persistence API Choice
	Development Process
	Compatibility
	Services
	Persistence Properties
	Security
	Logging

	Datastore
	Supported Features
	RDBMS
	Java Types (Spatial)
	Datastore Types
	Failover
	Queries
	JDOQL : Spatial Methods
	Statement Batching
	Views
	Datastore API

	ODF
	Excel (XLS)
	Excel (OOXML)
	XML
	HBase
	MongoDB
	Cassandra
	Neo4j
	JSON
	Amazon S3
	GoogleStorage
	LDAP
	Relations by DN
	Relations by Attribute
	Relations by Hierarchy
	Embedded Objects

	NeoDatis

	JDO API
	Class Mapping
	Datastore Identity
	Application Identity
	Nondurable Identity
	Compound Identity
	Versioning
	Inheritance
	Fields/Properties
	Java Types
	Value Generation
	Sequences
	Embedded Fields
	Serialised Fields
	Interface Fields
	Object Fields
	Array Fields
	1-to-1 Relations
	1-to-N Relations
	Collections
	Sets
	Lists
	Maps

	N-to-1 Relations
	M-to-N Relations
	Cascading

	MetaData Reference
	XML
	Annotations
	MetaData API
	ORM MetaData

	Schema Mapping
	Multitenancy
	Datastore Identifiers
	Secondary Tables

	Constraints
	Enhancer
	Datastore Schema
	Bean Validation
	PersistenceManagerFactory
	L2 Cache
	Auto-Start
	Data Federation

	PersistenceManager
	Managing Relationships
	PM Proxy
	Object Lifecycle
	Lifecycle Callbacks
	Attach/Detach
	Datastore Connection

	Transactions
	Fetch Groups
	Query API
	Query Cache
	JDOQL
	JDOQL Declarative
	JDOQL Typesafe
	SQL
	Stored Procedures
	JPQL

	Development Guides
	Datastore Replication
	JEE Environments
	OSGi Environments
	Troubleshooting
	Performance Tuning
	Monitoring
	Maven with DataNucleus
	Eclipse with DataNucleus
	DAO Layer Design

	Samples
	Tutorial with RDBMS
	Tutorial with ODF
	Tutorial with Excel
	Tutorial with MongoDB
	Tutorial with HBase
	Tutorial with Neo4j
	1-N Bidir FK Relation
	M-N Relation
	M-N Attributed Relation
	Spatial Types Tutorial

	JPA API
	Class Mapping
	Application Identity
	Datastore Identity
	Compound Identity
	Versioning
	Inheritance
	Fields/Properties
	Java Types
	Value Generation
	Embedded Fields
	Serialised Fields
	Interface Fields
	Object Fields
	Array Fields
	1-to-1 Relations
	1-to-N Relations
	Collections
	Sets
	Lists
	Maps

	N-to-1 Relations
	M-to-N Relations
	Cascading

	MetaData Reference
	XML
	Annotations

	Schema Mapping
	Multitenancy
	Datastore Identifiers
	Secondary Tables

	Constraints
	Enhancer
	Datastore Schema
	Bean Validation
	EntityManagerFactory
	L2 Cache

	Entity Manager
	Managing Relationships
	Object Lifecycle
	Lifecycle Callbacks
	Datastore Connection

	Transactions
	Entity Graphs
	Query API
	Query Cache
	JPQL
	JPQL Criteria
	Native Query
	Stored Procedures

	Development Guides
	Datastore Replication
	JavaEE Environments
	OSGi Environments
	Performance Tuning
	Troubleshooting
	Monitoring
	Maven with DataNucleus
	Eclipse with DataNucleus
	Eclipse Dali
	TomEE and DataNucleus

	Samples
	Tutorial with RDBMS
	Tutorial with ODF
	Tutorial with Excel
	Tutorial with MongoDB
	Tutorial with HBase
	Tutorial with Neo4j
	Tutorial with Cassandra

	REST API

